NP-completeness

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong
What we say

“INDEPENDENT-SET is at least as hard as CLIQUE”

What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the additional restriction of polynomial-time.
Polynomial-time reductions

CLIQUE = \{ \langle G, k \rangle \mid G \text{ is a graph having a clique of } k \text{ vertices} \} \\
INDEPENDENT-SET = \{ \langle G, k \rangle \mid G \text{ is a graph having an independent set of } k \text{ vertices} \}

Theorem

If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE
If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM A

We want to build a TM S that uses A to solve CLIQUE

$\langle G, k \rangle \xrightarrow{R} \langle G', k' \rangle \xrightarrow{A} S$

- accept if G' has a clique of size k
- reject otherwise
Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machine R that turns the question

“Does G have a clique of size k?”

into

“Does G' have an independent set (IS) of size k'?”

Graph G

clique of size k

Graph G'

IS of size k'

flip all edges
Reducing CLIQUE to INDEPENDENT-SET

On input \(\langle G, k \rangle \)

Construct \(G' \) by flipping all edges of \(G \)

Set \(k' = k \)

Output \(\langle G', k' \rangle \)

\[\langle G, k \rangle \rightarrow R \rightarrow \langle G', k' \rangle \]

Cliques in \(G \) \iff Independent sets in \(G' \)

\(\cdot \) If \(G \) has a clique of size \(k \)

then \(G' \) has an independent set of size \(k \)

\(\cdot \) If \(G \) does not have a clique of size \(k \)

then \(G' \) does not have an independent set of size \(k \)
We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of CLIQUE into ones of INDEPENDENT-SET
Polynomial-time reductions

Language L polynomial-time reduces to L' if

there exists a polynomial-time Turing machine R that takes an instance x of L into an instance y of L' such that

$x \in L$ if and only if $y \in L'$

<table>
<thead>
<tr>
<th>Clique</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L'</td>
</tr>
</tbody>
</table>

$x = \langle G, k \rangle$

$x \in L$

G has a clique of size k

$y = \langle G', k' \rangle$

$y \in L'$

G' has an IS of size k
The meaning of reductions

L reduces to L' means L is no harder than L'

If we can solve L', then we can also solve L

Therefore

If L polynomial-time reduces to L' and $L' \in P$, then $L \in P$

\[\begin{array}{c}
x & \rightarrow & R & \rightarrow & y \\
& & & \rightarrow & \text{poly-time TM for } L' \\
& & \rightarrow & \text{accept} & \\
& & \rightarrow & \text{reject} & \\
\end{array}\]

\[\begin{array}{c}
x \in L & \leftarrow & \rightarrow & y \in L' & \leftarrow & TM accepts \\
\end{array}\]
Pay attention to the direction of reduction

“A is no harder than B” and “B is no harder than A” have completely different meanings.

It is possible that L reduces to L' and L' reduces to L.

That means L and L' are as hard as each other.

For example, IS and CLIQUE reduce to each other.
A boolean formula is an expression made up of variables, ANDs, ORs, and negations, like

\[\varphi = (x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_1) \]

Task: Assign TRUE/FALSE values to variables so that the formula evaluates to true

e.g. \(x_1 = F \quad x_2 = F \quad x_3 = T \quad x_4 = T \)

Given a formula, decide whether such an assignment exist
SAT = \{\langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula}\}

3SAT = \{\langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula in conjunctive normal form with 3 literals per clause}\}

literal: \(x_i \) or \(\overline{x_i} \)

Conjunctive Normal Form (CNF): AND of ORs of literals

3CNF: CNF with 3 literals per clause (repetitions allowed)

\[
\left(\overline{x_1} \lor x_2 \lor \overline{x_2} \right) \land \left(\overline{x_2} \lor x_3 \lor x_4 \right)
\]

literal \hspace{10cm} clause
3SAT is in NP

\[\varphi = (x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3} \lor x_4) \land (\overline{x_1}) \]

Finding a solution:
Try all possible assignments
- FFFF FTFF TFFF TTFF
- FFFT FTFT TFFT TTFT
- FFTF FTTF TFTF TTTF
- FFTT FTTT TFFT TTTT
For \(n \) variables, there are \(2^n \) possible assignments
Takes exponential time

Verifying a solution:
substitute
- \(x_1 = F \quad x_2 = F \)
- \(x_3 = T \quad x_4 = T \)
evaluating the formula
\(\varphi = (F \lor T) \land (F \lor F \lor T) \land (T) \)
can be done in linear time
Cook–Levin theorem

Every $L \in \text{NP}$ polynomial-time reduces to SAT

$\text{SAT} = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula} \}$

e.g. $\varphi = (x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_1)$

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT must be the “hardest problem” in NP

If SAT $\in \text{P}$, then $\text{P} = \text{NP}$
A language L is **NP-hard** if:

For every N in NP, N polynomial-time reduces to L

A language L is **NP-complete** if L is in NP and L is NP-hard

Cook–Levin theorem

SAT is NP-complete
Our (conjectured) picture of NP

In practice, most NP problems are either in P (easy) or NP-complete (probably hard)

\[A \rightarrow B: A \text{ polynomial-time reduces to } B \]
Interpretation of Cook–Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many other

Pessimistic:

Since we believe $P \neq NP$, it is unlikely that we will ever have a fast algorithm for SAT
We saw a few examples of NP-complete problems, but there are many more.

Surprisingly, most computational problems are either in P or NP-complete.

By now thousands of problems have been identified as NP-complete.
Reducing IS to VC

$\langle G, k \rangle \xrightarrow{R} \langle G', k' \rangle$

G has an IS of size k \iff G' has a VC of size k'

Example

Independent sets:
$\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}$

Vertex covers:
$\{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}$
Reducing IS to VC

Claim

S is an independent set if and only if \overline{S} is a vertex cover

Proof:

S is an independent set

\implies

no edge has both endpoints in S

\implies

every edge has an endpoint in \overline{S}

\implies

\overline{S} is a vertex cover

<table>
<thead>
<tr>
<th>IS</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${1, 2, 3, 4}$</td>
</tr>
<tr>
<td>${1}$</td>
<td>${2, 3, 4}$</td>
</tr>
<tr>
<td>${2}$</td>
<td>${1, 3, 4}$</td>
</tr>
<tr>
<td>${3}$</td>
<td>${1, 2, 4}$</td>
</tr>
<tr>
<td>${4}$</td>
<td>${1, 2, 3}$</td>
</tr>
<tr>
<td>${1, 2}$</td>
<td>${3, 4}$</td>
</tr>
<tr>
<td>${1, 3}$</td>
<td>${2, 4}$</td>
</tr>
</tbody>
</table>
Reducing IS to VC

\[\langle G, k \rangle \rightarrow R \rightarrow \langle G', k' \rangle \]

\(R \): On input \(\langle G, k \rangle \)

Output \(\langle G, n - k \rangle \)

\(G \) has an IS of size \(k \) \iff \(G \) has a VC of size \(n - k \)

Overall sequence of reductions:

SAT → 3SAT → CLIQUE → IS → VC
Reducing 3SAT to CLIQUE

3SAT = \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula in 3CNF} \}

CLIQUE = \{ \langle G, k \rangle \mid G \text{ is a graph having a clique of } k \text{ vertices} \}

3CNF formula \varphi \rightarrow R \rightarrow \langle G, k \rangle

\varphi \text{ is satisfiable} \iff G \text{ has a clique of size } k
Reducing 3SAT to CLIQUE

Example:

$$\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_3)$$

One vertex for each literal occurrence

One edge for each consistent pair (non-opposite literals)
Reducing 3SAT to CLIQUE

3CNF formula $\varphi \rightarrow R \rightarrow \langle G, k \rangle$

R: On input φ, where φ is a 3CNF formula with m clauses

Construct the following graph G:

G has $3m$ vertices, divided into m groups

One for each literal occurrence in φ

If vertices u and v are in different groups and consistent

Add an edge (u, v)

Output $\langle G, m \rangle$
Reducing 3SAT to CLIQUE

3CNF formula $\varphi \rightarrow R \rightarrow \langle G, k \rangle$

φ is satisfiable \iff G has a clique of size m

$\varphi = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2 \lor x_3)$
Reducing 3SAT to CLIQUE: Summary

3CNF formula $\varphi \rightarrow R \rightarrow \langle G, k \rangle$

Every satisfying assignment of φ gives a clique of size m in G

Conversely, every clique of size m in G gives a satisfying assignment of φ

Overall sequence of reductions:

$\text{SAT} \rightarrow \text{3SAT} \rightarrow \text{CLIQUE} \rightarrow \text{IS} \rightarrow \text{VC}$
SAT and 3SAT

\[\text{SAT} = \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula} \} \]

e.g. \((x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \lor (x_1 \lor (x_2 \land x_3)) \land \overline{x_3} \)

\[\text{3SAT} = \{ \varphi' \mid \varphi' \text{ is a satisfiable 3CNF formula in 3CNF} \} \]

e.g. \((x_1 \lor x_2 \lor x_2) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \)
Reducing SAT to 3SAT

Example: $\varphi = (x_2 \lor (x_1 \land \overline{x_2})) \land (\overline{x_1} \land (x_1 \lor x_2))$

Tree representation of φ

Add extra variable to φ' for each wire in the tree
Reducing SAT to 3SAT

Example: \(\varphi = (x_2 \lor (x_1 \land \overline{x}_2)) \land (\overline{x}_1 \land (x_1 \lor x_2)) \)

Add clauses to \(\varphi' \) for each gate

<table>
<thead>
<tr>
<th>(x_4x_5x_7)</th>
<th>(x_7 = x_4 \land x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T T</td>
<td>T</td>
</tr>
<tr>
<td>T T F</td>
<td>F</td>
</tr>
<tr>
<td>T F T</td>
<td>F</td>
</tr>
<tr>
<td>T F F</td>
<td>T</td>
</tr>
<tr>
<td>F T T</td>
<td>F</td>
</tr>
<tr>
<td>F T F</td>
<td>T</td>
</tr>
<tr>
<td>F F T</td>
<td>F</td>
</tr>
<tr>
<td>F F F</td>
<td>T</td>
</tr>
</tbody>
</table>

Clauses added:

\((\overline{x}_4 \lor \overline{x}_5 \lor x_7) \land (\overline{x}_4 \lor x_5 \lor \overline{x}_7) \)

\((x_4 \lor \overline{x}_5 \lor \overline{x}_7) \land (x_4 \lor x_5 \lor \overline{x}_7) \)
Reducing SAT to 3SAT

Boolean formula $\varphi \rightarrow R \rightarrow 3$CNF formula φ'

R: On input $\langle \varphi \rangle$, where φ is a Boolean formula

Construct and output the following 3CNF formula φ'

φ' has extra variable x_{n+1}, \ldots, x_{n+t}

one for each gate G_j in φ

For each gate G_j, construct the formula φ_j

forcing the output of G_j to be correct given its inputs

Set $\varphi' = \varphi_{n+1} \land \cdots \land \varphi_{n+t} \land (x_{n+t} \lor x_{n+t} \lor x_{n+t})$

requires output of φ to be TRUE
Reducing SAT to 3SAT

Boolean formula $\varphi \rightarrow R \rightarrow 3$CNF formula φ'

φ satisfiable $\iff \varphi'$ satisfiable

Every satisfying assignment of φ extends uniquely to a satisfying assignment of φ'

In the other direction, in every satisfying assignment of φ', the x_1, \ldots, x_n part satisfies φ