NP-completeness

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong
Polynomial-time reductions

What we say

“INDEPENDENT-SET is at least as hard as CLIQUE”

What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine, then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with the additional restriction of polynomial-time
Theorem

If **INDEPENDENT-SET** has a polynomial-time Turing machine, so does **CLIQUE**
If INDEPENDENT-SET has a polynomial-time Turing machine, so does CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM A

We want to build a TM S that uses A to solve CLIQUE
We look for a polynomial-time Turing machine R that turns the question

“Does G have a clique of size k?”

into

“Does G' have an independent set (IS) of size k'?”

flip all edges

Graph G

clique of size k

Graph G'

IS of size k'
Reducing CLIQUE to INDEPENDENT-SET

On input \langle G, k \rangle

Construct \(G' \) by flipping all edges of \(G \)

Set \(k' = k \)

Output \(\langle G', k' \rangle \)

\(\langle G, k \rangle \rightarrow R \rightarrow \langle G', k' \rangle \)

Clique in \(G \) \iff \text{Independent sets in } G' \)

- If \(G \) has a clique of size \(k \)
 then \(G' \) has an independent set of size \(k \)
- If \(G \) does not have a clique of size \(k \)
 then \(G' \) does not have an independent set of size \(k \)
We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing machine, so is CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for CLIQUE

To do this, we came up with a reduction that transforms instances of CLIQUE into ones of INDEPENDENT-SET
Polynomial-time reductions

Language L polynomial-time reduces to L' if there exists a polynomial-time Turing machine R that takes an instance x of L into an instance y of L' such that $x \in L$ if and only if $y \in L'$.

<table>
<thead>
<tr>
<th>CLIQUE</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L'</td>
</tr>
</tbody>
</table>

$x = \langle G, k \rangle$
$x \in L$
G has a clique of size k

$y = \langle G', k' \rangle$
$y \in L'$
G' has an IS of size k
The meaning of reductions

L reduces to L' means L is no harder than L'

If we can solve L', then we can also solve L

Therefore

If L polynomial-time reduces to L' and $L' \in P$, then $L \in P$

\[x \xrightarrow{R} y \xrightarrow{TM \text{ for } L'} \]

\[x \in L \quad y \in L' \quad TM \text{ accepts} \]
Pay attention to the direction of reduction

“A is no harder than B” and “B is no harder than A”

have completely different meanings

It is possible that L reduces to L' and L' reduces to L

That means L and L' are as hard as each other

For example, IS and CLIQUE reduce to each other
A **boolean formula** is an expression made up of variables, ANDs, ORs, and negations, like

\[\varphi = (x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3} \lor x_4) \land (\overline{x_1}) \]

Task: Assign TRUE/FALSE values to variables so that the formula evaluates to true

e.g. \(x_1 = F \quad x_2 = F \quad x_3 = T \quad x_4 = T \)

Given a formula, decide whether such an assignment exist
\[SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula} \} \]

\[3\text{SAT} = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula in conjunctive normal form with 3 literals per clause} \} \]

\[\text{literal: } x_i \text{ or } \overline{x}_i \]

Conjunctive Normal Form (CNF): AND of ORs of literals

\[3\text{CNF: } \text{CNF with 3 literals per clause (repetitions allowed)} \]

\[
(\overline{x}_1 \lor x_2 \lor \overline{x}_2) \land (\overline{x}_2 \lor x_3 \lor x_4)
\]

\[\text{literal} \quad \text{clause} \]
3SAT is in NP

\[\varphi = (x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3} \lor x_4) \land (\overline{x_1}) \]

Finding a solution:
Try all possible assignments

FFFF	FTFF	TFFF	TTFF
FFFT	FTFT	TFFT	TTFT
FFTF	FTTF	TFTT	TTTT
FFTT	FTTT	TFTT	TTTT

For \(n \) variables, there are \(2^n \) possible assignments
Takes exponential time

Verifying a solution:
substitute
\(x_1 = F \quad x_2 = F \)
\(x_3 = T \quad x_4 = T \)
evaluating the formula
\[\varphi = (F \lor T) \land (F \lor F \lor T) \land (T) \]
can be done in linear time
Cook–Levin theorem

Every $L \in \text{NP}$ polynomial-time reduces to SAT

SAT = $\{\langle \varphi \rangle \mid \varphi$ is a satisfiable Boolean formula$\}$

e.g. $\varphi = (x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3} \lor x_4) \land (\overline{x_1})$

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT must be the “hardest problem” in NP

If SAT \in P, then P = NP
A language L is **NP-hard** if:

For every N in NP, N polynomial-time reduces to L

A language L is **NP-complete** if L is in NP and L is NP-hard

Cook–Levin theorem

SAT is NP-complete
Our (conjectured) picture of NP

In practice, most NP problems are either in P (easy) or NP-complete (probably hard)
Interpretation of Cook–Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many other

Pessimistic:

Since we believe P ≠ NP, it is unlikely that we will ever have a fast algorithm for SAT
We saw a few examples of NP-complete problems, but there are many more.

Surprisingly, most computational problems are either in P or NP-complete.

By now thousands of problems have been identified as NP-complete.
Reducing IS to VC

\[\langle G, k \rangle \xrightarrow{R} \langle G', k' \rangle \]

\(G \) has an IS of size \(k \) \iff \(G' \) has a VC of size \(k' \)

Example

Independent sets:
\[\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\} \]

Vertex covers:
\[\{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\} \]
Reducing IS to VC

Claim

\(S \) is an independent set if and only if \(\overline{S} \) is a vertex cover

Proof:

\(S \) is an independent set
\(\Downarrow \)
no edge has both endpoints in \(S \)
\(\Downarrow \)
every edge has an endpoint in \(\overline{S} \)
\(\Downarrow \)
\(\overline{S} \) is a vertex cover

<table>
<thead>
<tr>
<th>IS</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>{1, 2, 3, 4}</td>
</tr>
<tr>
<td>{1}</td>
<td>{2, 3, 4}</td>
</tr>
<tr>
<td>{2}</td>
<td>{1, 3, 4}</td>
</tr>
<tr>
<td>{3}</td>
<td>{1, 2, 4}</td>
</tr>
<tr>
<td>{4}</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>{3, 4}</td>
</tr>
<tr>
<td>{1, 3}</td>
<td>{2, 4}</td>
</tr>
</tbody>
</table>
Reducing IS to VC

\[\langle G, k \rangle \rightarrow \langle G', k' \rangle \]

\(R \): On input \(\langle G, k \rangle \)

Output \(\langle G, n - k \rangle \)

\(G \) has an IS of size \(k \) \iff \(G \) has a VC of size \(n - k \)

Overall sequence of reductions:

SAT \(\rightarrow \) 3SAT \(\rightarrow \) CLIQUE \(\rightarrow \) IS \(\rightarrow \) VC
Reducing 3SAT to CLIQUE

$3\text{SAT} = \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula in 3CNF}\}$

$\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is a graph having a clique of } k \text{ vertices}\}$

$3\text{CNF} \text{ formula } \varphi \rightarrow \langle G, k \rangle$

$\varphi \text{ is satisfiable } \iff G \text{ has a clique of size } k$
Reducing 3SAT to CLIQUE

Example:

\[\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_2) \land (x_1 \lor x_2 \lor x_3) \]

One vertex for each literal occurrence

One edge for each consistent pair (non-opposite literals)
Reducing 3SAT to CLIQUE

R: On input φ, where φ is a 3CNF formula with m clauses

Construct the following graph G:

G has $3m$ vertices, divided into m groups

One for each literal occurrence in φ

If vertices u and v are in different groups and consistent

Add an edge (u, v)

Output $\langle G, k \rangle$
Reducing 3SAT to CLIQUE

3CNF formula $\varphi \rightarrow R \rightarrow \langle G, k \rangle$

φ is satisfiable $\iff G$ has a clique of size m

$\varphi = (x_1 \lor x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_2) \land (\overline{x}_1 \lor x_2 \lor x_3)$
Reducing 3SAT to CLIQUE: Summary

Every satisfying assignment of φ gives a clique of size m in G

Conversely, every clique of size m in G gives a satisfying assignment of φ

Overall sequence of reductions:

SAT \rightarrow 3SAT \rightarrow CLIQUE \rightarrow IS \rightarrow VC
SAT and 3SAT

\[\text{SAT} = \{ \varphi \mid \varphi \text{ is a satisfiable Boolean formula} \} \]

e.g. \((x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \lor (x_1 \lor (x_2 \land x_3)) \land \overline{x_3}\)

\[\text{3SAT} = \{ \varphi' \mid \varphi' \text{ is a satisfiable 3CNF formula} \} \]

e.g. \((x_1 \lor x_2 \lor x_2) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5})\)
Reducing SAT to 3SAT

Example: \(\varphi = (x_2 \lor (x_1 \land \overline{x_2})) \land (\overline{x_1} \land (x_1 \lor x_2)) \)

Tree representation of \(\varphi \)
Add extra variable to \(\varphi' \) for each wire in the tree
Reducing SAT to 3SAT

Example: \(\varphi = (x_2 \lor (x_1 \land \overline{x}_2)) \land (\overline{x}_1 \land (x_1 \lor x_2)) \)

Add clauses to \(\varphi' \) for each gate

<table>
<thead>
<tr>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_7)</th>
<th>(x_7 = x_4 \land x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Clauses added:

\[
(\overline{x}_4 \lor \overline{x}_5 \lor x_7) \land (\overline{x}_4 \lor x_5 \lor \overline{x}_7) \\
(x_4 \lor \overline{x}_5 \lor \overline{x}_7) \land (x_4 \lor x_5 \lor \overline{x}_7)
\]
Reducing SAT to 3SAT

R: On input $\langle \varphi \rangle$, where φ is a Boolean formula

Construct and output the following 3CNF formula φ'

φ' has extra variable x_{n+1}, \ldots, x_{n+t}

one for each gate G_j in φ

For each gate G_j, construct the formula φ_j

forcing the output of G_j to be correct given its inputs

Set $\varphi' = \varphi_{n+1} \land \cdots \land \varphi_{n+t} \land (x_{n+t} \lor x_{n+t} \lor x_{n+t})$

requires output of φ to be TRUE
Reducing SAT to 3SAT

Boolean formula $\varphi \rightarrow R \rightarrow 3$CNF formula φ'

φ satisfiable $\iff \varphi'$ satisfiable

Every satisfying assignment of φ extends uniquely to a satisfying assignment of φ'

In the other direction, in every satisfying assignment of φ', the x_1, \ldots, x_n part satisfies φ