Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong
Undecidability

\[A_{TM} = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ accepts input } w \} \]

Turing’s Theorem
The language \(A_{TM} \) is undecidable

Note: a Turing machine \(M \) may take as input its own description \(\langle M \rangle \)
Turing’s Theorem: Proof sketch (in Python)

Suppose function $H(M)$ correctly decides whether program M halts, given its source code $\langle M \rangle$

```python
>>> M = "x = 1"
```

```python
>>> print(H(M))
True
```

```python
>>> M = ""
```

```python
>>> while True: continue
""
```

```python
>>> print(H(M))
False
```

D checks whether itself halts using H and does the opposite

```python
def D():
    if H(D):
        loop_forever()
```

Does D halt?
Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

$\langle M, w \rangle \rightarrow H$:
- accept if M accepts w
- reject if M rejects or loops on w
Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

$$\langle M, w \rangle \rightarrow \begin{cases}
\text{accept if } M \text{ accepts } w \\
\text{reject if } M \text{ rejects or loops on } w
\end{cases}$$

Construct a new TM D (that uses H as a subroutine):

Turing machine D: On input $\langle M \rangle$

1. Run H on input $\langle M, \langle M \rangle \rangle$
2. Output the opposite of H: If H accepts, reject; if H rejects, accept
Formal proof of Turing’s Theorem

What happens when $M = D$?

- $\langle M \rangle \rightarrow D$
 - accept if M rejects or loops on $\langle M \rangle$
 - reject if M accepts $\langle M \rangle$

- $\langle D \rangle \rightarrow D$
 - accept if D rejects or loops on $\langle D \rangle$
 - reject if D accepts $\langle D \rangle$
Formal proof of Turing’s Theorem

What happens when $M = D$?

H never loops indefinitely, neither does D

If D rejects $\langle D \rangle$, then D accepts $\langle D \rangle$

If D accepts $\langle D \rangle$, then D rejects $\langle D \rangle$

Contradiction! D cannot exist! H cannot exist!
Proof of Turing’s theorem: conclusion

Proof by contradiction

Assume A_{TM} is decidable
Then there are TM H, H' and D
But D cannot exist!

Conclusion

The language A_{TM} is undecidable
Write an infinite table for the pairs \((M, w)\)

(Entries in this table are all made up for illustration)
Diagonalization

<table>
<thead>
<tr>
<th>all possible Turing machines</th>
<th>inputs w</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
</tr>
<tr>
<td>M_4</td>
<td>acc</td>
</tr>
</tbody>
</table>

...

Only look at those w that *describe* Turing machines.
Diagonalization

If A_{TM} is decidable, then TM D is in the table.

<table>
<thead>
<tr>
<th>Turing machines</th>
<th>inputs w</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
</tr>
<tr>
<td></td>
<td>loop</td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
</tr>
<tr>
<td></td>
<td>rej</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
</tr>
<tr>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
</tr>
<tr>
<td></td>
<td>acc</td>
</tr>
<tr>
<td></td>
<td>rej</td>
</tr>
</tbody>
</table>

$\langle M_1 \rangle$, $\langle M_2 \rangle$, $\langle M_3 \rangle$, $\langle M_4 \rangle$, ...
Diagonalization

<table>
<thead>
<tr>
<th>Turing machines</th>
<th>inputs w</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>loop</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All possible

D does the opposite of the diagonal entries

D on $\langle M_i \rangle$ = opposite of M_i on $\langle M_i \rangle$

$\langle D \rangle$ → accept if D rejects or loops on $\langle D \rangle$

$\langle D \rangle$ → reject if D accepts $\langle D \rangle$
We run into trouble when we look at \((D, \langle D \rangle)\)
Unrecognizable languages

The language A_{TM} is recognizable but not decidable

How about languages that are not recognizable?

$\overline{A_{TM}} = \{ \langle M, w \rangle | M \text{ is a TM that does not accept } w \}$

$\overline{A_{TM}} = \{ \langle M, w \rangle | M \text{ rejects or loops on input } w \}$

Claim

The language $\overline{A_{TM}}$ is not recognizable
Theorem

If \(L \) and \(\overline{L} \) are both recognizable, then \(L \) is decidable

Proof of Claim from Theorem:

We know \(A_{TM} \) is recognizable

if \(\overline{A_{TM}} \) were also, then \(A_{TM} \) would be decidable

But Turing’s Theorem says \(A_{TM} \) is not decidable
Unrecognizable languages

Theorem

If \(L \) and \(\overline{L} \) are both recognizable, then \(L \) is decidable

Proof idea (flawed):

Let \(M = \text{TM recognizing } L \), \(M' = \text{TM recognizing } \overline{L} \)

The following Turing machine \(N \) decides \(L \):

Turing machine \(N \): On input \(w \)

1. Simulate \(M \) on input \(w \). If \(M \) accepts, accept
2. Simulate \(M' \) on input \(w \). If \(M' \) accepts, reject
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (flawed):

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

Turing machine N: On input w

1. Simulate M on input w. If M accepts, accept
2. Simulate M' on input w. If M' accepts, reject

Problem: If M loops on w, we will never go to step 2
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

Turing machine N: On input w

For $t = 0, 1, 2, 3, \ldots$

Simulate first t transitions of M on input w.
If M accepts, accept
Simulate first t transitions of M' on input w.
If M' accepts, reject
Reductions
Reductions

Program S reduces to Program R solves Problem B reduces to Problem A

Reducing B to A

Transform program R that solves A into program S that solves B

If you can reduce B to A

Then you can solve problem B using subroutine R as a blackbox

Example from Lecture 16:

$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

$A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$

A_{NFA} reduces to A_{DFA} (by converting NFA into DFA)
Reductions in this course

If language B reduces to language A, and B is undecidable then A is also undecidable.

Steps for showing a language A to be undecidable:

1. If some TM R decides A
2. Using R, build another TM S that decides $B = A_{TM}$

But by Turing’s theorem, A_{TM} is not decidable.
Another undecidable language

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

We’ll show:

HALT\textsubscript{TM} is an undecidable language

We will argue that

If HALT\textsubscript{TM} is decidable, then so is \(A_{TM} \)
Undecidability of halting

If \(\text{HALT}_{\text{TM}} \) can be decided, so can \(A_{\text{TM}} \)

\[
\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \\
A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}
\]

Suppose \(\text{HALT}_{\text{TM}} \) is decidable by a Turing machine \(H \)

Then the following TM \(S \) decides \(A_{\text{TM}} \)

Turing machine \(S \): On input \(\langle M, w \rangle \)

1. Run \(H \) on input \(\langle M, w \rangle \)
2. If \(H \) rejects, reject
3. If \(H \) accepts, run the universal TM \(U \) on input \(\langle M, w \rangle \)
 - If \(U \) accepts, accept; else reject
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?

Undecidable!

Intuitive reason: To know whether \(M \) accepts \(\varepsilon \) seems to require simulating \(M \). But then we need to know whether \(M \) halts.
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:

To know whether \(M \) accepts \(\varepsilon \) seems to require simulating \(M \)

But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 1: Figuring out the reduction

Suppose A'_TM can be decided by a TM R

$\langle M' \rangle \rightarrow \text{accept if } M' \text{ accepts } \varepsilon$

$\langle M' \rangle \rightarrow \text{reject otherwise}$

We want to build a TM S

$\langle M, w \rangle \rightarrow \text{?}$

$\langle M' \rangle \rightarrow R \rightarrow \text{accept if } M \text{ accepts } w$

$\langle M' \rangle \rightarrow R \rightarrow \text{reject otherwise}$

M' should be a Turing machine such that

outcome of M' on input $\varepsilon = \text{outcome of } M \text{ on input } w$
Example 1: Implementing the reduction

\[(M, w) \rightarrow ? \rightarrow (M') \]

\(M'\) should be a Turing machine such that

\(M'\) on input \(\varepsilon = M\) on input \(w\)

Turing machine \(M'\): On input \(z\)

1. Simulate \(M\) on input \(w\)
2. If \(M\) accepts \(w\), accept
3. If \(M\) rejects \(w\), reject

- If \(M\) accepts \(w\), \(M'\) accepts \(\varepsilon\)
- If \(M\) rejects \(w\), \(M'\) rejects \(\varepsilon\)
- If \(M\) loops on \(w\), \(M'\) loops on \(\varepsilon\)
Turing machine S: On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

 $\langle M', w \rangle$ such that on input z,

 Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R
Example 1: The formal proof

\[A'_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]
\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Suppose \(A'_{\text{TM}} \) is decidable by a TM \(R \)
Consider the TM \(S \):

TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\[M' = \text{a TM such that on input } z, \]

 Simulate \(M \) on input \(w \) and accept/reject according to \(M \)

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)
So \(S \) decides \(A_{\text{TM}} \), which is impossible
Example 2

\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A''_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:

To know whether \(M \) accepts some strings seems to require simulating \(M \)

But then we need to know whether \(M \) halts

Let’s justify this intuition
Suppose A''_{TM} can be decided by a TM R

We want to build a TM S

M' should be a Turing machine such that M' accepts some strings if and only if M accepts input w
Implementing the reduction

Task: Given \(\langle M, w \rangle \), construct \(M' \) so that

If \(M \) accepts \(w \), then \(M' \) accepts some input

If \(M \) does not accept \(w \), then \(M' \) accepts no inputs

TM \(M' \): On input \(z \)

1. Simulate \(M \) on input \(w \)
2. If \(M \) accepts, accept
3. Otherwise, reject
Example 2: The formal proof

\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \} \]
\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Suppose \(A''_{TM} \) is decidable by a TM \(R \)

Consider the TM \(S \):

TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):
 \[M' = \text{a TM such that on input } z, \]
 Simulate \(M \) on input \(w \) and accept/reject according to \(M \)
2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)

So \(S \) decides \(A_{TM} \), which is impossible
$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\}$

Is E_{TM} decidable?

Undecidable! We will show:

If E_{TM} can be decided by some TM R

Then A''_{TM} can be decided by another TM S

$A''_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings}\}$
Example 3

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]
\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \} \]

Then \(E_{TM} = \overline{A''_{TM}} \) (except ill-formatted strings, which we will ignore)

Suppose \(E_{TM} \) can be decided by some TM \(R \)

Consider the following Turing machine \(S \):

TM \(S \): On input \(\langle M \rangle \) where \(M \) is a TM

1. Run \(R \) on input \(\langle M \rangle \)
2. If \(R \) accepts, reject
3. If \(R \) rejects, accept

Then \(S \) decides \(\overline{A''_{TM}} \), a contradiction
EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \}\n
Is EQ_{TM} decidable?

Undecidable!

We will show that EQ_{TM} can be decided by some TM R then EQ_{TM} can be decided by another TM S
Example 4: Setting up the reduction

\[\text{EQ}_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]
\[\text{E}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Given \(\langle M \rangle \), we need to construct \(\langle M_1, M_2 \rangle \) so that

- If \(M \) accepts no input, then \(M_1 \) and \(M_2 \) accept the same set of inputs
- If \(M \) accepts some input, then \(M_1 \) and \(M_2 \) do not accept the same set of inputs

Idea: Make \(M_1 = M \)

Make \(M_2 \) accept nothing
Example 4: The formal proof

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]
\[\text{ETM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Suppose \(\text{EQ}_{\text{TM}} \) is decidable and \(R \) decides it.

Consider the following Turing machine \(S \):

1. Construct a TM \(M_2 \) that rejects every input \(z \)
2. Run \(R \) on input \(\langle M, M_2 \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M \rangle \) if and only if \(M \) accepts no input.

So \(S \) decides \(\text{ETM} \) which is impossible.