Undecidable Problems for CFGs
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017
Decidable vs undecidable

<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA D accepts w</td>
<td>TM M accepts w</td>
</tr>
<tr>
<td>CFG G generates w</td>
<td>TM M halts on w</td>
</tr>
<tr>
<td>DFAs D and D' accept same inputs</td>
<td>TM M accepts some input</td>
</tr>
<tr>
<td></td>
<td>TM M and M' accept the same inputs</td>
</tr>
</tbody>
</table>

CFG G generates all inputs?
CFG G is ambiguous?
Representing computation

\[L_1 = \{ w%w \mid w \in \{ a, b \}^* \} \]
A configuration consists of current state, head position, and tape contents.

Configuration (abbreviation)

$ab \ q_1 \ a$

$abb \ q_{acc}$
Computation histories

\[q^0 \ abb%abb \]
\[x \ q^2 \ bb%abb \]
\[\vdots \]
\[\text{xbb} \ q_2 \ %abb \]
\[\text{xbb} \ q_3 \ \abb \]
\[\vdots \]
\[\text{xxx%xxx} \ q_1 \]
\[\text{xxx%xx} \ q_{acc} \ x \]

computation history
Computation histories as strings

If M halts on w, the computation history of (M, w) is the sequence of configurations C_1, \ldots, C_k that M goes through on input w.

The computation history can be written as a string h over alphabet $\Gamma \cup Q \cup \{\#\}$.

accepting history: M accepts w \iff q_{acc} appears in h

rejecting history: M rejects w \iff q_{rej} appears in h
Undecidable problems for CFGs

\[
\text{ALL}_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates all strings} \}
\]

The language \(\text{ALL}_{\text{CFG}} \) is undecidable

We will argue that

If \(\text{ALL}_{\text{CFG}} \) can be decided, so can \(\overline{A_{\text{TM}}} \)

\[
\overline{A_{\text{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that rejects or loops on } w \}
\]
Undecidable problems for CFGs

Proof by contradiction

Suppose some Turing machine A decides ALL_{CFG}

$\langle G \rangle \rightarrow A \rightarrow \text{accept if } G \text{ generates all strings}$
$\rightarrow \text{reject otherwise}$

We want to construct a Turing machine S that decides $\overline{A_{\text{TM}}}$

$\langle M, w \rangle \rightarrow \text{Convert to } G \rightarrow \langle G \rangle \rightarrow A \rightarrow S \rightarrow \text{accept if } M \text{ rejects or loops on } w$
$\rightarrow \text{reject if } M \text{ accepts } w$

G generates all strings if M rejects or loops on w

G fails to generate some string if M accepts w
Undecidable problems for CFGs

\[\langle M, w \rangle \xrightarrow{\text{Convert to } G} \langle G \rangle \]

\[G \text{ fails to generate some string} \]
\[\Updownarrow \]
\[M \text{ accepts } w \]

The alphabet of \(G \) will be \(\Gamma \cup Q \cup \{#\} \)

\(G \) will generate all strings except accepting computation histories of \((M, w) \)

First we construct a PDA \(P \), then convert it to CFG \(G \)
Undecidability via computation histories

candidate computation history h of (M, w) → P → accept everything except accepting h

$\#q_0ab%ab#xq_1b%ab#…#xx%xq_{acc}x#$ ⇒ Reject

$P = $ on input h (try to spot a mistake in h)

- If h is not of the form $\#w_1\#w_2\#…\#w_k#$, accept
- If $w_1 \neq q_0w$ or w_k does not contain q_{acc}, accept
- If two consecutive blocks $w_i\#w_{i+1}$ do not follow from the transitions of M, accept

Otherwise, h must be an accepting history, reject
Computation is local

Changes between configurations always occur around the head
Legal and illegal transitions windows

<table>
<thead>
<tr>
<th>legal windows</th>
<th>illegal windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>... abx ...</td>
<td>... q₃ab ...</td>
</tr>
<tr>
<td>... abx ...</td>
<td>... abq₃ ...</td>
</tr>
<tr>
<td>... a_q₃a ...</td>
<td>... q₃q₃a ...</td>
</tr>
<tr>
<td>... q₆ax ...</td>
<td>... q₃q₆x ...</td>
</tr>
<tr>
<td>... aba ...</td>
<td>... aq₃a ...</td>
</tr>
<tr>
<td>... abq₆ ...</td>
<td>... q₆ab ...</td>
</tr>
<tr>
<td>... aa□ ...</td>
<td>... aq₆x ...</td>
</tr>
<tr>
<td>... xa□ ...</td>
<td>... aq₆x ...</td>
</tr>
</tbody>
</table>
Implementing P

If two consecutive blocks $w_i \# w_{i+1}$ do not follow from the transitions of M, accept

\[
\text{For every position of } w_i:\n\begin{align*}
&\text{Remember offset from } \# \text{ in } w_i \text{ on stack} \\
&\text{Remember first row of window in state} \\
&\text{After reaching the next } \#: \\
&\text{Pop offset from } \# \text{ from stack as you consume input} \\
&\text{Remember second row of window in state} \\
&\text{If window is illegal, accept; Otherwise reject}
\end{align*}
\]
The computation history method

$$\text{ALL}_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates all strings} \}$$

If ALL_{CFG} can be decided, so can A_{TM}

$$\langle M, w \rangle \xrightarrow{\text{Convert to } G} \langle G' \rangle$$

G accepts all strings except accepting computation histories of (M, w)

We first construct a PDA P, then convert it to CFG G'
Post Correspondence Problem

Input: A fixed set of tiles, each containing a pair of strings

<table>
<thead>
<tr>
<th>bab</th>
<th>c</th>
<th>a</th>
<th>baa</th>
<th>a</th>
<th>bab</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc</td>
<td>ab</td>
<td>ab</td>
<td>a</td>
<td>baba</td>
<td>ε</td>
</tr>
</tbody>
</table>

Given an infinite supply of tiles from a particular set, can you match top and bottom?

<table>
<thead>
<tr>
<th>a</th>
<th>baa</th>
<th>bab</th>
<th>c</th>
<th>c</th>
<th>bab</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>a</td>
<td>ε</td>
<td>ab</td>
<td>ab</td>
<td>cc</td>
<td>baba</td>
</tr>
</tbody>
</table>

Top and bottom are both abaababcccbaba
Undecidability of PCP

PCP = \{ \langle T \rangle \mid T \text{ is a collection of tiles that contains a top-bottom match} \}

Next lecture we will show (using computation history method)

The language PCP is undecidable
Ambiguity of CFGs

\[\text{AMB} = \{ \langle G \rangle \mid G \text{ is an ambiguous CFG} \} \]

The language AMB is undecidable

We will argue that

If AMB can be decided, then so can PCP
Ambiguity of CFGs

\[T \text{ (collection of tiles)} \quad \mapsto \quad G \text{ (CFG)} \]

If \(T \) can be matched, then \(G \) is ambiguous
If \(T \) cannot be matched, then \(G \) is unambiguous

First, let’s number the tiles

1. bab cc
2. c ab
3. a ab
Ambiguity of CFGs

\[T \text{ (collection of tiles)} \quad \longmapsto \quad G \text{ (CFG)} \]

Terminals: a, b, c, 1, 2, 3

Variables: \(S, T, B \)

Productions:

\[
S \rightarrow T | B \\
T \rightarrow bab T_1 \quad T \rightarrow c T_2 \quad T \rightarrow a T_3 \\
B \rightarrow cc B_1 \quad B \rightarrow ab B_2 \quad B \rightarrow ab B_3 \\
T \rightarrow bab_1 \quad T \rightarrow c_2 \quad T \rightarrow a_3 \\
B \rightarrow cc_1 \quad B \rightarrow ab_2 \quad B \rightarrow ab_3
\]
Ambiguity of CFGs

Each sequence of tiles gives a pair of derivations

\[
\begin{align*}
S & \Rightarrow T \Rightarrow bab T1 \Rightarrow babc T21 \Rightarrow babcc221 \\
S & \Rightarrow B \Rightarrow cc B1 \Rightarrow ccab B21 \Rightarrow ccabab221
\end{align*}
\]

If the tiles match, these two derive the same string
(with different parse trees)
Ambiguity of CFGs

\[T \text{ (collection of tiles) } \mapsto G \text{ (CFG)} \]

If \(T \) can be matched, then \(G \) is ambiguous ▶
If \(T \) cannot be matched, then \(G \) is unambiguous ▶

If \(G \) is ambiguous, then the two parse trees will look like

\[
\begin{align*}
S & \quad S \\
| & | \\
T & B \\
| & | \\
\vdots & \vdots \\
T & B \\
| & | \\
a_1 & b_1 \\
a_2 & b_2 \\
\vdots & \vdots \\
a_i & b_j \\
n_1 & m_1 \\
n_2 & m_2 \\
n_i & m_j \\
\end{align*}
\]

Therefore \(n_1 n_2 \ldots n_i = m_1 m_2 \ldots m_j \), and there is a match