Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong
Undecidability

\[A_{TM} = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ accepts input } w \} \]

Turing’s Theorem

The language \(A_{TM} \) is undecidable

Note: a Turing machine \(M \) may take as input its own description \(\langle M \rangle \)
Proof of Turing’s Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

\[
\langle M, w \rangle \longrightarrow H \longrightarrow \begin{array}{c}
\text{accept if } M \text{ accepts } w \\
\text{reject if } M \text{ rejects or loops on } w
\end{array}
\]
Proof of Turing’s Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

$\langle M, w \rangle \rightarrow H \rightarrow$

accept if M accepts w

reject if M rejects or loops on w

Construct a new TM D (that uses H as a subroutine):

On input $\langle M \rangle$ (i.e. the description of a Turing machine M),

1. Run H on input $\langle M, \langle M \rangle \rangle$
2. Output the opposite of H: If H accepts, D rejects; if H rejects, D accepts
Proof of Turing’s theorem

\[\langle M \rangle \rightarrow D \]
- accept if \(M \) rejects or loops on \(\langle M \rangle \)
- reject if \(M \) accepts \(\langle M \rangle \)

What happens when \(M = D \)?

\[\langle D \rangle \rightarrow D \]
- accept if \(D \) rejects or loops on \(\langle D \rangle \)
- reject if \(D \) accepts \(\langle D \rangle \)

Contradiction! \(D \) cannot exist! \(H \) cannot exist!
Proof of Turing’s theorem

What happens when \(M = D \)?

\[\langle M \rangle \xrightarrow{D} \]

- accept if \(M \) rejects or loops on \(\langle M \rangle \)
- reject if \(M \) accepts \(\langle M \rangle \)

\[\langle D \rangle \xrightarrow{D} \]

- accept if \(D \) rejects or loops on \(\langle D \rangle \)
- reject if \(D \) accepts \(\langle D \rangle \)

\(H \) never loops indefinitely, neither does \(D \)

- If \(D \) rejects \(\langle D \rangle \), then \(D \) accepts \(\langle D \rangle \)
- If \(D \) accepts \(\langle D \rangle \), then \(D \) rejects \(\langle D \rangle \)

Contradiction! \(D \) cannot exist! \(H \) cannot exist!
Proof by contradiction

Assume A_{TM} is decidable

Then there are TM H, H' and D

But D cannot exist!

Conclusion

The language A_{TM} is undecidable
Write an infinite table for the pairs \((M, w)\)

(Entries in this table are all made up for illustration)
Diagonalization

Inputs w:

<table>
<thead>
<tr>
<th>w</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>loop</td>
<td>rej</td>
<td>rej</td>
<td>...</td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td>...</td>
</tr>
<tr>
<td>M_4</td>
<td>acc</td>
<td>acc</td>
<td>loop</td>
<td>acc</td>
<td>...</td>
</tr>
</tbody>
</table>

Only look at those w that describe Turing machines
Diagonalization

If A_{TM} is decidable, then TM D is in the table.
Diagonalization

<table>
<thead>
<tr>
<th>all possible Turing machines</th>
<th>inputs w</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>$\langle M_1 \rangle$</td>
</tr>
<tr>
<td>M_2</td>
<td>$\langle M_2 \rangle$</td>
</tr>
<tr>
<td>M_3</td>
<td>$\langle M_3 \rangle$</td>
</tr>
<tr>
<td>D</td>
<td>$\langle D \rangle$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

D does the opposite of the diagonal entries

D on $\langle M_i \rangle$ = opposite of M_i on $\langle M_i \rangle$

- accept if D rejects or loops on $\langle D \rangle$
- reject if D accepts $\langle D \rangle$
Diagonalization

We run into trouble when we look at $(D, \langle D \rangle)$
The language A_{TM} is recognizable but not decidable

How about languages that are \textbf{not recognizable}?

$A_{\overline{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$

$= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$

Claim

The language $A_{\overline{TM}}$ is not recognizable
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know A_{TM} is recognizable
if $\overline{A_{TM}}$ were also, then A_{TM} would be decidable

But Turing’s Theorem says A_{TM} is not decidable
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

1. Simulate M on input w. If M accepts, N accepts.
2. Simulate M' on input w. If M' accepts, N rejects.
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

1. Simulate M on input w. If M accepts, N accepts.
2. Simulate M' on input w. If M' accepts, N rejects.

Problem: If M loops on w, we will never go to step 2
Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

For $t = 0, 1, 2, 3, \ldots$

- Simulate first t transitions of M on input w.

 If M accepts, N accepts.

- Simulate first t transitions of M' on input w.

 If M' accepts, N rejects.
Reductions
Another undecidable language

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

We’ll show:

\[\text{HALT}_{TM} \text{ is an undecidable language} \]

We will argue that

If \(\text{HALT}_{TM} \) is decidable, then so is \(A_{TM} \)

...but by Turing’s theorem, \(A_{TM} \) is not
Undecidability of halting

If \(\text{HALT}_{\text{TM}} \) can be decided, so can \(A_{\text{TM}} \)

Suppose \(H \) decides \(\text{HALT}_{\text{TM}} \)

\[\langle M, w \rangle \rightarrow H \]

- accept if \(M \) halts on \(w \)
- reject if \(M \) loops on \(w \)

We want to construct a TM \(S \) that decides \(A_{\text{TM}} \)

\[\langle M, w \rangle \rightarrow ? \]

- accept if \(M \) accepts \(w \)
- reject if \(M \) rejects or loops on \(w \)
Undecidability of halting

\[
\text{HALT}_{TM} = \{\langle M, w \rangle | M \text{ is a TM that halts on input } w\} \\
\text{A}_{TM} = \{\langle M, w \rangle | M \text{ is a TM that accepts input } w\}
\]

Suppose \(\text{HALT}_{TM}\) is decidable
Let \(H\) be a TM that decides \(\text{HALT}_{TM}\)

The following TM \(S\) decides \(\text{A}_{TM}\)

On input \(\langle M, w \rangle\):

Run \(H\) on input \(\langle M, w \rangle\)
If \(H\) rejects, reject
If \(H\) accepts, run universal TM \(U\) on input \(\langle M, w \rangle\)
 If \(U\) accepts, accept; else reject
Steps for showing that a language L is undecidable:

1. If some TM R decides L
2. Using R, build another TM S that decides A_{TM}

But A_{TM} is undecidable, so R cannot exist
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:
To know whether \(M \) accepts \(\varepsilon \) seems to require simulating \(M \)
But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 1: Figuring out the reduction

Suppose A'_{TM} can be decided by a TM R

$\langle M' \rangle \rightarrow R$
accept if M' accepts ε
reject otherwise

We want to build a TM S

$\langle M, w \rangle \rightarrow \langle M' \rangle \rightarrow R$
accept if M accepts w
reject otherwise

M' should be a Turing machine such that

M' on input $\varepsilon = M$ on input w
Example 1: Implementing the reduction

\[\langle M, w \rangle \rightarrow ? \rightarrow \langle M' \rangle \]

\(M' \) should be a Turing machine such that

\(M' \) on input \(\varepsilon = M \) on input \(w \)

Description of the machine \(M' \):

On input \(z \)

1. Simulate \(M \) on input \(w \)
2. If \(M \) accepts \(w \), accept
3. If \(M \) rejects \(w \), reject
Description of S:

On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

 $M' = a$ TM such that on input z,

 Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R
Example 1: The formal proof

\[A'_{TM} = \{\langle M \rangle | M \text{ is a TM that accepts input } \varepsilon \} \]
\[A_{TM} = \{\langle M, w \rangle | M \text{ is a TM that accepts input } w \} \]

Suppose \(A'_{TM} \) is decidable by a TM \(R \).

Consider the TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\(M' = \) a TM such that on input \(z \),

 Simulate \(M \) on input \(w \) and accept/reject according to \(M \)

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)

So \(S \) decides \(A_{TM} \), which is impossible
Example 2

\[A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A''_{\text{TM}} \) decidable? Why?
Example 2

\[A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A''_{\text{TM}} \) decidable? Why?

Undecidable!

Intuitive reason:

To know whether \(M \) accepts some strings seems to require **simulating** \(M \)

But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 2: Figuring out the reduction

Suppose A''_{TM} can be decided by a TM R

$\langle M' \rangle \rightarrow R$

accept if M' accepts some strings

reject otherwise

We want to build a TM S'

$\langle M, w \rangle \rightarrow ? \rightarrow \langle M' \rangle \rightarrow R \rightarrow S$

accept if M accepts w

reject otherwise

M' should be a Turing machine such that

M' accepts some strings if and only if M accepts input w
Task: Given $\langle M, w \rangle$, construct M' so that

If M accepts w, then M' accepts some input
If M does not accept w, then M' accepts no inputs

$M' = a$ TM such that on input z,

1. Simulate M on input w
2. If M accepts, accept
3. Otherwise, reject
Example 2: The formal proof

\[A''_{TM} = \{ \langle M \rangle | M \text{ is a TM that accepts some input} \} \]
\[A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts input } w \} \]

Suppose \(A''_{TM} \) is decidable by a TM \(R \).

Consider the TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\[M' = \text{a TM such that on input } z, \text{ Simulate } M \text{ on input } w \text{ and accept/reject according to } M \]

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)

So \(S \) decides \(A_{TM} \), which is impossible
Example 3

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Is \(E_{TM} \) decidable?
Example 3

\[E_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Is \(E_{\text{TM}} \) decidable?

Undecidable! We will show:

If \(E_{\text{TM}} \) can be decided by some TM \(R \)

Then \(A''_{\text{TM}} \) can be decided by another TM \(S \)

\[A''_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]
Example 3

$$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$$

$$A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$$

Note that E_{TM} and A''_{TM} are complement of each other (except ill-formatted strings, which we will ignore)

Suppose E_{TM} can be decided by some TM R

Consider the following TM S:

On input $\langle M \rangle$ where M is a TM

1. Run R on input $\langle M \rangle$
2. If R accepts, reject
3. If R rejects, accept

Then S decides A''_{TM}, a contradiction
Example 4

\[\text{EQ}_\text{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

Is \(\text{EQ}_\text{TM} \) decidable?
Example 4

\[EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

Is \(EQ_{\text{TM}} \) decidable?

Undecidable!

We will show that \(EQ_{\text{TM}} \) can be decided by some TM \(R \) then \(E_{\text{TM}} \) can be decided by another TM \(S \).
Example 4: Setting up the reduction

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]
\[\text{ETM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Given \(\langle M \rangle \), we need to construct \(\langle M_1, M_2 \rangle \) so that

If \(M \) accepts no input, then \(M_1 \) and \(M_2 \) accept same set of inputs

If \(M \) accepts some input, then \(M_1 \) and \(M_2 \) do not accept same set of inputs

Idea: Make \(M_1 = M \)

Make \(M_2 \) accept nothing
Example 4: The formal proof

$$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \}$$

$$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input} \}$$

Suppose EQ_{TM} is decidable and R decides it.

Consider the following TM S:

On input $\langle M \rangle$ where M is a TM

1. Construct a TM M_2 that rejects every input z
2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R.

Then S accepts $\langle M \rangle$ if and only if M accepts no input.

So S decides E_{TM} which is impossible.