Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong
Problems about automata

Does \(q_0\rightarrow q_1\) accept input \(abb\)?

We can formulate this question as a language

\[A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Is \(A_{DFA}\) decidable?

One possible way to encode a DFA \(D = (Q, \Sigma, \delta, q_0, F)\) and input \(w\)

\[
((q_0, q_1)(a, b))(q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1)(q_0)(q_1)|(abb)
\]
$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Pseudocode:
On input $\langle D, w \rangle$, where $D = (Q, \Sigma, \delta, q_0, F)$

Set $q \leftarrow q_0$
For $i \leftarrow 1$ to $\text{length}(w)$
 $q \leftarrow \delta(q, w_i)$
If $q \in F$ accept, else reject

TM description:
On input $\langle D, w \rangle$, where D is a DFA, w is a string

Simulate D on input w
If simulation ends in an accept state, accept; else reject
Problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation:

\[
((\dot{q_0}, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{\text{a}}\text{b}b)
\]

\[
((\dot{q_0}, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{\text{a}}\text{b}b)
\]

\[
((\dot{q_0}, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}\text{b}\text{b})
\]

\[
((\dot{q_0}, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}\text{b}\text{b})
\]

\[
((\dot{q_0}, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}\text{b}\text{b})
\]
Problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Turing machine details:

Check input is in correct format
(Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of \(D \) and first symbol of \(w \)

Until marker for \(w \) reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: \(A_{\text{DFA}} \) is decidable
Acceptance problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

Which of these is decidable?
Acceptance problems about automata

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

The following TM decides \(A_{\text{NFA}} \):

On input \(\langle N, w \rangle \) where \(N \) is an NFA and \(w \) is a string

- Convert \(N \) to a DFA \(D \) using the conversion procedure from Lecture 3
- Run TM \(M \) for \(A_{\text{DFA}} \) on input \(\langle D, w \rangle \)
- If \(M \) accepts, accept; else reject

Conclusion: \(A_{\text{NFA}} \) is decidable ✔
Acceptance problems about automata

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

The following TM decides \(A_{\text{REX}} \)

On input \(\langle R, w \rangle \), where \(R \) is a regular expression and \(w \) is a string

Convert \(R \) to NFA \(N \) using the conversion procedure from Lecture 4
Run the TM \(M' \) for \(A_{\text{NFA}} \) on input \(\langle N, w \rangle \)
If \(M' \) accepts, accept; else reject

Conclusion: \(A_{\text{REX}} \) is decidable
Other problems about automata

\[
\text{MIN}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}
\]

\[
\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}
\]

\[
\text{E}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \}
\]

Which of the above is decidable?
Other problems about automata

\[\text{MIN}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \} \]

The following TM decides \(\text{MIN}_{\text{DFA}} \)

On input \(\langle D \rangle \), where \(D \) is a DFA

- Run the DFA minimization algorithm from Lecture 7
- If every pair of states is distinguishable, accept; else reject

Conclusion: \(\text{MIN}_{\text{DFA}} \) is decidable
Other problems about automata

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

The following Turing machine \(S \) decides \(\text{EQ}_{\text{DFA}} \)

TM \(S \): On input \(\langle D_1, D_2 \rangle \), where \(D_1 \) and \(D_2 \) are DFAs

- Run DFA minimization algorithm on \(D_1 \) to obtain a minimal DFA \(D'_1 \)
- Run DFA minimization algorithm on \(D_2 \) to obtain a minimal DFA \(D'_2 \)
- If \(D'_1 = D'_2 \), accept; else reject

Conclusion: \(\text{EQ}_{\text{DFA}} \) is decidable
Other problems about automata

\[E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \} \]

The following TM \(T \) decides \(E_{DFA} \)

Turing machine \(M \): On input \(\langle D \rangle \), where \(D \) is a DFA

Run the TM \(S \) for \(\text{EQ}_{DFA} \) on input \(\langle D, D' \rangle \),
where \(D' \) is any DFA that accepts no input, such as \(\longrightarrow \text{a,b} \)
If \(S \) accepts, accept; else reject

Conclusion: \(E_{DFA} \) is decidable

\(\checkmark \)
Problems about context-free grammars

\[A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

where \(L \) is a context-free language

\[EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

Which of the above is decidable?
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

The following TM \(V \) decides \(A_{\text{CFG}} \):

TM \(V \): On input \(\langle G, w \rangle \), where \(G \) is a CFG and \(w \) is a string

- Eliminate the \(\varepsilon \)- and unit productions from \(G \)
- Convert \(G \) into Chomsky Normal Form \(G' \)
- Run Cocke–Younger–Kasami algorithm on \(\langle G', w \rangle \)
- If the CYK algorithm finds a parse tree, accept; else reject

Conclusion: \(A_{\text{CFG}} \) is decidable
Problems about context-free grammars

Let L be a context-free language

There is a CFG G for L

Then the following TM decides L

On input w

Run TM V from the previous slide on input $\langle G, w \rangle$

If V accepts, **accept**; else **reject**

Conclusion: every context-free language L is decidable ✓
Problems about context-free grammars

\[\text{EQ}_{\text{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

is not decidable \(\times \)

What’s the difference between \(\text{EQ}_{\text{DFA}} \) and \(\text{EQ}_{\text{CFG}} \)?

To decide \(\text{EQ}_{\text{DFA}} \) we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA
Universal Turing Machine and Undecidability
A computer is a machine that manipulates data according to a list of instructions.

How does a Turing machine take a program as part of its input?
The universal TM U takes as inputs a program M and a string w, and simulates M on w.

The program M itself is specified as a TM.
A Turing machine is
\((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})\)

A Turing machine can be described by a string \(\langle M \rangle\)

Turing machine description \(\langle M \rangle\)
\[
(q,qa,qr)(0,1)(0,1,\square)
((q,q,\square/\square R)(q,qa,0/0 R)(q,qr,1/1 R))
(q)(qa)(qr)
\]

Analogy in Python

Compiled bytecode

```
2 0 LOAD_GLOBAL 0 (print)
2 LOAD_CONST 1 ('Hello world')
4 CALL_FUNCTION 1
6 POP_TOP
8 LOAD_CONST 0 (None)
10 RETURN_VALUE
```

Source code
```
def f(x):
    print("Hello world")
```
(Universal) Turing machine U: on input $\langle M, w \rangle$

- Simulate M on input w
- If M enters accept state, U accepts
- If M enters reject state, U rejects
Acceptance of Turing machines

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]

\(U \) on input \(\langle M, w \rangle \) simulates \(M \) on input \(w \)

\begin{align*}
M \text{ accepts } w & \quad \Downarrow \quad U \text{ accepts } \langle M, w \rangle \\
M \text{ rejects } w & \quad \Downarrow \quad U \text{ rejects } \langle M, w \rangle \\
M \text{ loops on } w & \quad \Downarrow \quad U \text{ loops on } \langle M, w \rangle
\end{align*}

TM \(U \) recognizes \(A_{TM} \) but does not decide \(A_{TM} \)
The language \textit{recognized} by a TM M is the set of all inputs that M accepts.

A TM \textit{decides} language L if it recognizes L and halts on every input.

A language L is \textit{decidable} if some TM decides L.