Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong
Undecidability

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ accepts input } w \} \]

Turing’s Theorem

The language \(A_{\text{TM}} \) is undecidable

Note: a Turing machine \(M \) may take as input its own description \(\langle M \rangle \)
Proof of Turing’s Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

$\langle M, w \rangle \rightarrow H$

- accept if M accepts w
- reject if M rejects or loops on w
Proof of Turing’s Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

$$\langle M, w \rangle \rightarrow H \rightarrow$$
- accept if M accepts w
- reject if M rejects or loops on w

Construct a new TM D (that uses H as a subroutine):

On input $\langle M \rangle$ (i.e. the description of a Turing machine M),
1. Run H on input $\langle M, \langle M \rangle \rangle$
2. Output the opposite of H: If H accepts, D rejects; if H rejects, D accepts
Proof of Turing’s theorem

What happens when $M = D$?

Contradiction! D cannot exist! H cannot exist!
Proof of Turing’s theorem

\[\langle M \rangle \rightarrow D \]
- accept if \(M \) rejects or loops on \(\langle M \rangle \)
- reject if \(M \) accepts \(\langle M \rangle \)

What happens when \(M = D \)?

\[\langle D \rangle \rightarrow D \]
- accept if \(D \) rejects or loops on \(\langle D \rangle \)
- reject if \(D \) accepts \(\langle D \rangle \)

\(H \) never loops indefinitely, neither does \(D \)

- If \(D \) rejects \(\langle D \rangle \), then \(D \) accepts \(\langle D \rangle \)
- If \(D \) accepts \(\langle D \rangle \), then \(D \) rejects \(\langle D \rangle \)

Contradiction! \(D \) cannot exist! \(H \) cannot exist!
Proof of Turing’s theorem: conclusion

Proof by contradiction

Assume A_{TM} is decidable

Then there are TM H, H' and D

But D cannot exist!

Conclusion

The language A_{TM} is undecidable
Diagonalization

Write an infinite table for the pairs \((M, w)\)

(Entries in this table are all made up for illustration)
Diagonalization

inputs w

<table>
<thead>
<tr>
<th>Turing machines</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>loop</td>
<td>rej</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>...</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>acc</td>
<td>acc</td>
<td>loop</td>
<td>acc</td>
<td></td>
</tr>
</tbody>
</table>

Only look at those w that **describe** Turing machines.
Diagonalization

If A_{TM} is decidable, then TM D is in the table.
Diagonalization

Inputs w

<table>
<thead>
<tr>
<th>(\langle M_1 \rangle)</th>
<th>(\langle M_2 \rangle)</th>
<th>(\langle M_3 \rangle)</th>
<th>(\langle M_4 \rangle)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>loop</td>
<td>rej</td>
<td>rej</td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>[rej]</td>
<td>acc</td>
<td>rej</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
<td>acc</td>
<td>[acc]</td>
<td>acc</td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
</tr>
</tbody>
</table>

D does the opposite of the diagonal entries

D on \(\langle M_i \rangle \) = opposite of M_i on \(\langle M_i \rangle \)

\[
\begin{align*}
\langle D \rangle & \rightarrow D \\
& \quad \text{accept if D rejects or loops on } \langle D \rangle \\
& \quad \text{reject if D accepts } \langle D \rangle
\end{align*}
\]
We run into trouble when we look at \((D, \langle D \rangle)\)
Unrecognizable languages

The language A_{TM} is recognizable but not decidable

How about languages that are not recognizable?

$\overline{A_{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$

$= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$

Claim

The language $\overline{A_{TM}}$ is not recognizable
Theorem

If \(L \) and \(\overline{L} \) are both recognizable, then \(L \) is decidable

Proof of Claim from Theorem:

We know \(A_{TM} \) is recognizable
if \(A_{TM} \) were also, then \(A_{TM} \) would be decidable

But Turing’s Theorem says \(A_{TM} \) is not decidable
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

1. Simulate M on input w. If M accepts, N accepts.
2. Simulate M' on input w. If M' accepts, N rejects.
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

1. Simulate M on input w. If M accepts, N accepts.
2. Simulate M' on input w. If M' accepts, N rejects.

Problem: If M loops on w, we will never go to step 2
Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M = \text{TM}$ recognizing $L, M' = \text{TM}$ recognizing \overline{L}

The following Turing machine N decides L:

On input w,

For $t = 0, 1, 2, 3, \ldots$

Simulate first t transitions of M on input w.

If M accepts, N accepts.

Simulate first t transitions of M' on input w.

If M' accepts, N rejects.
Reductions
Suppose you have a program R that solves problem A

Now you want to solve problem B, if you can reduce B to A

Then you can solve problem B

Using R as a subroutine

Example from Lecture 16

$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

$A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$

A_{NFA} reduces to A_{DFA} (by converting NFA into DFA)
If language A is decidable, and language B reduces to language A then B is also decidable.

If language B reduces to language A, and B is undecidable then A is also undecidable.
Another undecidable language

\[\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

We’ll show:

\[\text{HALT}_{\text{TM}} \text{ is an undecidable language} \]

We will argue that

If \(\text{HALT}_{\text{TM}} \) is decidable, then so is \(A_{\text{TM}} \)

...but by Turing’s theorem, \(A_{\text{TM}} \) is not
Undecidability of halting

If HALT_{TM} can be decided, so can A_{TM}

Suppose H decides HALT_{TM}

$$\langle M, w \rangle \rightarrow H$$

- accept if M halts on w
- reject if M loops on w

We want to construct a TM S that decides A_{TM}

$$\langle M, w \rangle \rightarrow ?$$

- accept if M accepts w
- reject if M rejects or loops on w
Undecidability of halting

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]
\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Suppose \(\text{HALT}_{TM} \) is decidable

Let \(H \) be a TM that decides \(\text{HALT}_{TM} \)

The following TM \(S \) decides \(A_{TM} \)

On input \(\langle M, w \rangle \):

Run \(H \) on input \(\langle M, w \rangle \)

If \(H \) rejects, reject

If \(H \) accepts, run universal TM \(U \) on input \(\langle M, w \rangle \)

If \(U \) accepts, accept; else reject
Steps for showing that a language L is undecidable:

1. If some TM R decides L
2. Using R, build another TM S that decides A_{TM}

But A_{TM} is undecidable, so R cannot exist
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:
To know whether \(M \) accepts \(\varepsilon \) seems to require simulating \(M \)

But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 1: Figuring out the reduction

Suppose A'_{TM} can be decided by a TM R

$\langle M' \rangle \rightarrow R$ accept if M' accepts ε

reject otherwise

We want to build a TM S

$\langle M, w \rangle \rightarrow ?$ $\langle M' \rangle \rightarrow R$ accept if M accepts w

reject otherwise

M' should be a Turing machine such that

outcome of M' on input $\varepsilon = $ outcome of M on input w
Example 1: Implementing the reduction

\[\langle M, w \rangle \rightarrow ? \rightarrow \langle M' \rangle \]

\(M' \) should be a Turing machine such that

\(M' \) on input \(\varepsilon = M \) on input \(w \)

Description of the machine \(M' \):

On input \(z \)

1. Simulate \(M \) on input \(w \)
2. If \(M \) accepts \(w \), accept
3. If \(M \) rejects \(w \), reject
Description of S:

On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

 $M' = \text{a TM such that on input } z,$

 Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R
Example 1: The formal proof

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]
\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Suppose \(A'_{TM} \) is decidable by a TM \(R \).

Consider the TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\[M' = \text{a TM such that on input } z, \]

Simulate \(M \) on input \(w \) and accept/reject according to \(M \)

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)

So \(S \) decides \(A_{TM} \), which is impossible
Example 2

\[A'''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A'''_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:
To know whether \(M \) accepts some strings seems to require simulating \(M \). But then we need to know whether \(M \) halts.
Example 2

\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A''_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:

To know whether \(M \) accepts some strings seems to require **simulating** \(M \)

But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 2: Figuring out the reduction

Suppose A''_{TM} can be decided by a TM R

$\langle M' \rangle \xrightarrow{R} \text{accept if } M' \text{ accepts some strings}$

reject otherwise

We want to build a TM S

$\langle M, w \rangle \xrightarrow{?} \langle M' \rangle \xrightarrow{R} \text{accept if } M \text{ accepts } w$

reject otherwise

M' should be a Turing machine such that M' accepts some strings if and only if M accepts input w
Task: Given \(\langle M, w \rangle \), construct \(M' \) so that

If \(M \) accepts \(w \), then \(M' \) accepts some input

If \(M \) does not accept \(w \), then \(M' \) accepts no inputs

\[M' = \text{a TM such that on input } z, \]

1. Simulate \(M \) on input \(w \)
2. If \(M \) accepts, accept
3. Otherwise, reject
Example 2: The formal proof

\[A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \} \]
\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Suppose \(A''_{\text{TM}} \) is decidable by a TM \(R \).

Consider the TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\[M' = \text{a TM such that on input } z, \]

Simulate \(M \) on input \(w \) and accept/reject according to \(M \)

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)

So \(S \) decides \(A_{\text{TM}} \), which is impossible
Example 3

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Is \(E_{\text{TM}} \) decidable?
Example 3

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM that accepts no input} \} \]

Is \(E_{TM} \) decidable?

Undecidable! We will show:

If \(E_{TM} \) can be decided by some TM \(R \)

Then \(A''_{TM} \) can be decided by another TM \(S \)

\[A''_{TM} = \{ \langle M \rangle | M \text{ is a TM that accepts some input strings} \} \]
Example 3

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]
\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \} \]

Note that \(E_{TM} \) and \(A''_{TM} \) are complement of each other (except ill-formatted strings, which we will ignore)

Suppose \(E_{TM} \) can be decided by some TM \(R \)

Consider the following TM \(S \):

On input \(\langle M \rangle \) where \(M \) is a TM

1. Run \(R \) on input \(\langle M \rangle \)
2. If \(R \) accepts, reject
3. If \(R \) rejects, accept

Then \(S \) decides \(A''_{TM} \), a contradiction
Example 4

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

Is \(\text{EQ}_{\text{TM}} \) decidable?
Example 4

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

Is \(\text{EQ}_{\text{TM}} \) decidable?

Undecidable!

We will show that \(\text{EQ}_{\text{TM}} \) can be decided by some TM \(R \) then \(E_{\text{TM}} \) can be decided by another TM \(S \)
Example 4: Setting up the reduction

\[
\text{EQ}_{\text{TM}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\} \\
\text{E}_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\}
\]

Given \langle M \rangle, we need to construct \langle M_1, M_2 \rangle so that

If \(M \) accepts no input, then \(M_1 \) and \(M_2 \) accept same set of inputs

If \(M \) accepts some input, then \(M_1 \) and \(M_2 \) do not accept same set of inputs

Idea: Make \(M_1 = M \)

Make \(M_2 \) accept nothing
Example 4: The formal proof

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

\[\text{E}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Suppose \(\text{EQ}_{\text{TM}} \) is decidable and \(R \) decides it.

Consider the following TM \(S \):

On input \(\langle M \rangle \) where \(M \) is a TM

1. Construct a TM \(M_2 \) that rejects every input \(z \)
2. Run \(R \) on input \(\langle M, M_2 \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M \rangle \) if and only if \(M \) accepts no input

So \(S \) decides \(\text{E}_{\text{TM}} \) which is impossible.