Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong
Problems about automata

Does \(q_0 \rightarrow a \rightarrow q_0 \rightarrow b \rightarrow q_1 \) accept input \(abb \)?

We can formulate this question as a language

\[
A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}
\]

Is \(A_{\text{DFA}} \) decidable?

One possible way to encode a DFA \(D = (Q, \Sigma, \delta, q_0, F) \) and input \(w \)

\[
((q_0, q_1)(a, b)(q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1)(abb)
\]
Problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Pseudocode:
On input \(\langle D, w \rangle \), where
\(D = (Q, \Sigma, \delta, q_0, F) \)

Set \(q \leftarrow q_0 \)
For \(i \leftarrow 1 \) to \(\text{length}(w) \)
\(q \leftarrow \delta(q, w_i) \)
If \(q \in F \) accept, else reject

TM description:
On input \(\langle D, w \rangle \), where \(D \) is a DFA, \(w \) is a string

Simulate \(D \) on input \(w \)
If simulation ends in an accept state, accept; else reject
Problems about automata

$$A_{\text{DFA}} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$$

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation:

$$(((q_0, q_1)(a, b))((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\hat{abb})$$

$$(((q_0, q_1)(a, b))((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\hat{ab}b)$$

$$(((q_0, q_1)(a, b))((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\hat{ab}b)$$

$$(((q_0, q_1)(a, b))((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\hat{abb})$$
Problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of \(D \) and first symbol of \(w \)

Until marker for \(w \) reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: \(A_{\text{DFA}} \) is decidable
Acceptance problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \] ✓

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

Which of these is decidable?
Acceptance problems about automata

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

The following TM decides \(A_{\text{NFA}} \):

On input \(\langle N, w \rangle \) where \(N \) is an NFA and \(w \) is a string

Convert \(N \) to a DFA \(D \) using the conversion procedure from Lecture 3

Run TM \(M \) for \(A_{\text{DFA}} \) on input \(\langle D, w \rangle \)

If \(M \) accepts, accept; else reject

Conclusion: \(A_{\text{NFA}} \) is decidable
Acceptance problems about automata

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

The following TM decides \(A_{\text{REX}} \)

On input \(\langle R, w \rangle \), where \(R \) is a regular expression and \(w \) is a string

Convert \(R \) to an NFA \(N \) using the conversion procedure from Lecture 4

Run the TM for \(A_{\text{NFA}} \) on input \(\langle N, w \rangle \)

If \(N \) accepts, accept; else reject

Conclusion: \(A_{\text{REX}} \) is decidable

\(\checkmark \)
MIN_{DFA} = \{\langle D \rangle \mid D \text{ is a minimal DFA}\}

EQ_{DFA} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}

E_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty}\}

Which of the above is decidable?
Other problems about automata

\[\text{MIN}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \} \]

The following TM decides \(\text{MIN}_{\text{DFA}} \)

On input \(\langle D \rangle \), where \(D \) is a DFA

Run the DFA minimization algorithm from Lecture 7

If every pair of states is distinguishable, accept; else reject

Conclusion: \(\text{MIN}_{\text{DFA}} \) is decidable
Other problems about automata

\[EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

The following TM decides \(EQ_{\text{DFA}} \)
On input \(\langle D_1, D_2 \rangle \), where \(D_1 \) and \(D_2 \) are DFAs

Run the DFA minimization algorithm from Lecture 7 on \(D_1 \) to obtain a
minimal DFA \(D'_1 \)

Run the DFA minimization algorithm from Lecture 7 on \(D_2 \) to obtain a
minimal DFA \(D'_2 \)

If \(D'_1 = D'_2 \), accept; else reject

Conclusion: \(EQ_{\text{DFA}} \) is decidable ✔️
Other problems about automata

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \} \]

The following TM \(T \) decides \(E_{\text{DFA}} \)

On input \(\langle D \rangle \), where \(D \) is a DFA

Run the TM \(S \) for \(\text{EQ}_{\text{DFA}} \) on input \(\langle D, D' \rangle \),
where \(D' \) is any DFA that accepts no input, such as \(a, b \)

If \(S \) accepts, \(T \) accepts; else \(T \) rejects

Conclusion: \(E_{\text{DFA}} \) is decidable

\(\checkmark \)
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

where \(L \) is a context-free language

\[\text{EQ}_{\text{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

Which of the above is decidable?
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

The following TM \(V \) decides \(A_{\text{CFG}} \):

On input \(\langle G, w \rangle \), where \(G \) is a CFG and \(w \) is a string

- Eliminate the \(\varepsilon \)- and unit productions from \(G \)
- Convert \(G \) into Chomsky Normal Form \(G' \)
- Run Cocke–Younger–Kasami algorithm on \(\langle G', w \rangle \)
- If the CYK algorithm finds a parse tree, \(V \) accepts; else \(V \) rejects

Conclusion: \(A_{\text{CFG}} \) is decidable
L where L is a context-free language

Let L be a context-free language

There is a CFG G for L

The following TM decides L

On input w

Run TM V from the previous slide on input $\langle G, w \rangle$

If V accepts, accept; else reject

Conclusion: every context-free language L is decidable ✔
EQ\textsubscript{CFG} = \{\langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2)\}\]

is not decidable \(\times\)

What’s the difference between EQ\textsubscript{DFA} and EQ\textsubscript{CFG}?

To decide EQ\textsubscript{DFA} we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA
Universal Turing Machine and Undecidability
A computer is a machine that manipulates data according to a list of instructions.

How does a Turing machine take a program as part of its input?
The universal TM U takes as inputs a program M and a string w, and simulates M on w.

The program M itself is specified as a TM.
A Turing machine is
\((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})\)

This Turing machine can be described by the string

\[
\langle M \rangle = (q, qa, qr)(0, 1)(0, 1, □)
\]

\[
((q, q, □/□R)(q, qa, 0/0R)(q, qr, 1/1R))
\]

\[
(q)(qa)(qr)
\]
Universal Turing machine

U on input $\langle M, w \rangle$:

Simulate M on input w

If M enters accept state, U accepts

If M enters reject state, U rejects
Acceptance of Turing machines

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]

\(U \) on input \(\langle M, w \rangle \) simulates \(M \) on input \(w \)

\[
\begin{align*}
M \text{ accepts } w & \quad \downarrow \quad U \text{ accepts } \langle M, w \rangle \\
M \text{ rejects } w & \quad \downarrow \quad U \text{ rejects } \langle M, w \rangle \\
M \text{ loops on } w & \quad \downarrow \quad U \text{ loops on } \langle M, w \rangle
\end{align*}
\]

TM \(U \) recognizes \(A_{TM} \) but does not decide \(A_{TM} \)
Recognizing versus deciding

The language recognized by a TM M is the set of all inputs that M accepts.

A TM decides language L if it recognizes L and halts on every input.

A language L is decidable if some TM decides L.