Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018
Chinese University of Hong Kong
Problems about automata

Does $q_0 \xrightarrow{a} b \xrightarrow{b} q_1$ accept input abb?

We can formulate this question as a language $A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Is A_{DFA} decidable?

One possible way to encode a DFA $D = (Q, \Sigma, \delta, q_0, F)$ and input w

$$
\langle q_0, q_1 \rangle (a, b) ((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1)) (q_0)(q_1) (abb)
$$
$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Pseudocode:
On input $\langle D, w \rangle$, where $D = (Q, \Sigma, \delta, q_0, F)$

1. Set $q \leftarrow q_0$
2. For $i \leftarrow 1$ to $\text{length}(w)$
 - $q \leftarrow \delta(q, w_i)$
3. If $q \in F$ accept, else reject

TM description:
On input $\langle D, w \rangle$, where D is a DFA, w is a string

1. Simulate D on input w
2. If simulation ends in an accept state, accept; else reject
Problems about automata

\[A_{\text{DFA}} = \{ (D, w) \mid D \text{ is a DFA that accepts input } w \} \]

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation:

\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}bb)
\]
\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}bb)
\]
\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}bb)
\]
\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{a}bb)
\]
\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{abb})
\]
\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{abb})
\]
Problems about automata

$$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$$

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of D and first symbol of w

Until marker for w reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: A_{DFA} is decidable
Acceptance problems about automata

\[A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \quad \checkmark \]

\[A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

\[A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

Which of these is decidable?
Acceptance problems about automata

\[A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

The following TM decides \(A_{NFA} \):

On input \(\langle N, w \rangle \) where \(N \) is an NFA and \(w \) is a string

Convert \(N \) to a DFA \(D \) using the conversion procedure from Lecture 3
Run TM \(M \) for \(A_{DFA} \) on input \(\langle D, w \rangle \)
If \(M \) accepts, accept; else reject

Conclusion: \(A_{NFA} \) is decidable
Acceptance problems about automata

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

The following TM decides \(A_{\text{REX}} \)

On input \(\langle R, w \rangle \), where \(R \) is a regular expression and \(w \) is a string

Convert \(R \) to an NFA \(N \) using the conversion procedure from Lecture 4

Run the TM for \(A_{\text{NFA}} \) on input \(\langle N, w \rangle \)

If \(N \) accepts, accept; else reject

Conclusion: \(A_{\text{REX}} \) is decidable

\(\checkmark \)
Other problems about automata

\[\text{MIN}_{\text{DFA}} = \{\langle D \rangle \mid D \text{ is a minimal DFA} \} \]

\[\text{EQ}_{\text{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

\[E_{\text{DFA}} = \{\langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \} \]

Which of the above is decidable?
Other problems about automata

\[\text{MIN}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \} \]

The following TM decides \(\text{MIN}_{\text{DFA}} \)

On input \(\langle D \rangle \), where \(D \) is a DFA

Run the DFA minimization algorithm from Lecture 7
If every pair of states is distinguishable, accept; else reject

Conclusion: \(\text{MIN}_{\text{DFA}} \) is decidable ✓
Other problems about automata

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

The following TM decides \(\text{EQ}_{\text{DFA}} \)

On input \(\langle D_1, D_2 \rangle \), where \(D_1 \) and \(D_2 \) are DFAs

Run the DFA minimization algorithm from Lecture 7 on \(D_1 \) to obtain a minimal DFA \(D'_1 \)

Run the DFA minimization algorithm from Lecture 7 on \(D_2 \) to obtain a minimal DFA \(D'_2 \)

If \(D'_1 = D'_2 \), accept; else reject

Conclusion: \(\text{EQ}_{\text{DFA}} \) is decidable ✓
Other problems about automata

\[E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \} \]

The following TM \(T \) decides \(E_{DFA} \)

On input \(\langle D \rangle \), where \(D \) is a DFA

Run the TM \(S \) for \(EQ_{DFA} \) on input \(\langle D, \quad \longrightarrow \quad \rangle \)

If \(S \) accepts, \(T \) accepts; else \(T \) rejects

Conclusion: \(E_{DFA} \) is decidable ✓
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

where \(L \) is a context-free language

\[\text{EQ}_{\text{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

Which of the above is decidable?
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

The following TM \(V \) decides \(A_{\text{CFG}} \)

On input \(\langle G, w \rangle \), where \(G \) is a CFG and \(w \) is a string

Eliminate the \(\varepsilon \)- and unit productions from \(G \)

Convert \(G \) into Chomsky Normal Form \(G' \)

Run Cocke–Younger–Kasami algorithm on \(\langle G', w \rangle \)

If the CYK algorithm finds a parse tree, \(V \) accepts; else \(V \) rejects

Conclusion: \(A_{\text{CFG}} \) is decidable \(\checkmark \)
Problems about context-free grammars

L where L is a context-free language

Let L be a context-free language

There is a CFG G for L

The following TM decides L

On input w

Run TM V from the previous slide on input $\langle G, w \rangle$

If V accepts, accept; else reject

Conclusion: every context-free language L is decidable
Problems about context-free grammars

\[\text{EQ}_{\text{CFG}} = \{ \langle G_1, G_2 \rangle | G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

is not decidable \(\times \)

What’s the difference between \(\text{EQ}_{\text{DFA}} \) and \(\text{EQ}_{\text{CFG}} \)?

To decide \(\text{EQ}_{\text{DFA}} \) we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA
Universal Turing Machine and Undecidability
A computer is a machine that manipulates data according to a list of instructions.

How does a Turing machine take a program as part of its input?
The universal TM U takes as inputs a program M and a string x, and simulates M on w.

The program M itself is specified as a TM.
A Turing machine is
\((Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})\)

This Turing machine can be described by the string

\[
\langle M \rangle = (q, qa, qr)(\emptyset, 1)(\emptyset, 1, \square)
((q, q, \square/\square R)(q, qa, \emptyset/\emptyset R)(q, qr, 1/1 R))
(q)(qa)(qr)
\]
Universal Turing machine

\[U \]

\[(q, qa, qr)(0, 1)(0, 1, \square) \ 001 \]

Program \(\langle M \rangle \)

Input \(w \) for \(M \)

\(U \) on input \(\langle M, w \rangle \):

Simulate \(M \) on input \(w \)

If \(M \) enters accept state, \(U \) accepts

If \(M \) enters reject state, \(U \) rejects
Acceptance of Turing machines

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

U on input $\langle M, w \rangle$ simulates M on input w

- M accepts w \implies U accepts $\langle M, w \rangle$
- M rejects w \implies U rejects $\langle M, w \rangle$
- M loops on w \implies U loops on $\langle M, w \rangle$

TM U recognizes A_{TM} but does not decide A_{TM}
Recognizing versus deciding

The language **recognized** by a TM M is the set of all inputs that M accepts.

A TM **decides** language L if it recognizes L and halts on every input.

A language L is **decidable** if some TM decides L.