Turing Machines

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong
Looping

Turing machine may not halt

\[Σ = \{0, 1\} \]

input: \(ε \)

Inputs can be divided into three types:

- \(q_{\text{acc}} \) Accept
- \(q_{\text{rej}} \) Reject
- Infinite loop
We say M halts on input x if there is a sequence of configurations C_0, C_1, \ldots, C_k:

- C_0 is starting
- C_i yields C_{i+1}
- C_k is accepting or rejecting

A TM M is a decider if it halts on every input.

A TM M decides a language L if M is a decider and recognizes L.

Language L is decidable if it is recognized by a TM that halts on every input.
Programming Turing machines: Are two strings equal?

\[L_1 = \{ w\#w \mid w \in \{a, b\}^* \} \]

Description of Turing Machine

1. **Until** you reach #
2. **Read** and remember entry
3. **Write** x
4. **Move** right past # and past all x’s
5. **If** this entry is different, reject
6. **Write** x
7. **Move** left past # and to right of first x
8. **If** you see only x’s followed by □, accept
Programming Turing machines: Are two strings equal?

\[L_1 = \{ w\#w \mid w \in \{a, b\}^* \} \]
Programming Turing machines: Are two strings equal?

Input:
aab#aab

Configurations:
- q_0: aab#aab
- x: qa1 ab#aab
- xa: q1 b#aab
- xab: qa1 #aab
- $xab#$: qa2 aab
- $xab q_2$: #xab
- xa: q2 b#xab
- x: q3 ab#xab
- q_3: xab#xab
- x: q0 ab#xab
Programming Turing machines

\[L_2 = \{ a^i b^j c^k \mid ij = k \text{ and } i, j, k > 0 \} \]

High level description of TM:

1. For every \(a \):
2. Cross off the same number of \(b \)'s and \(c \)'s
3. Uncross the crossed \(b \)'s (but not the \(c \)'s)
4. Cross off this \(a \)
5. If all \(a \)'s and \(c \)'s are crossed off, accept

Example:

\[
\begin{align*}
1 & \quad aabbcc \quad \text{aabbcccc} \\
2 & \quad bbcc \quad aabbc \quad \text{aabbc} \\
3 & \quad bbcc \quad aabbc \quad \text{aabbc} \\
4 & \quad bbcc \quad aabbc \quad \text{aabbc} \\
5 & \quad bbcc \quad aabbc \quad \text{aabbc} \\
\end{align*}
\]

\[\Sigma = \{ a, b, c \} \quad \Gamma = \{ a, b, c, \epsilon, \square \} \]
\[L_2 = \{a^i b^j c^k \mid ij = k \text{ and } i, j, k > 0\} \]

Low-level description of TM:

Scan input from left to right to check it looks like \texttt{aa*bb*cc*}

Move the head to the first symbol of the tape

For every \texttt{a}:

- Cross off the same number of \texttt{b}'s and \texttt{c}'s
- Restore the crossed off \texttt{b}'s (but not the \texttt{c}'s)
- Cross off this \texttt{a}

If all \texttt{a}'s and \texttt{c}'s are crossed off, accept
Programming Turing machines

\[L_2 = \{a^i b^j c^k \mid ij = k \text{ and } i, j, k > 0 \} \]

Low-level description of TM:

Scan input from left to right to check it looks like \(a a^* b b^* c c^* \)

Move the head to the first symbol of the tape \(\text{ How? } \)

For every \(a \):

- Cross off the \textbf{same number} of \(b \)'s and \(c \)'s \(\text{ How? } \)
- Restore the crossed off \(b \)'s (but not the \(c \)'s)
- Cross off this \(a \)

If all \(a \)'s and \(c \)'s are crossed off, accept
Programming Turing machines

Implementation details:

Move the head to the first symbol of the tape:
Put a special marker on top of the first \texttt{a} \texttt{àaabbccccc}

Cross off the same number of \texttt{b}'s and \texttt{c}'s: \texttt{àaabbbc} \texttt{ccc}
Replace \texttt{b} by \texttt{b} \texttt{àaabb} \texttt{cccc}
Move right until you see a \texttt{c} \texttt{àaabb} \texttt{èccc}
Replace \texttt{c} by \texttt{è} \texttt{àaabb} \texttt{èccc}
Move left just past the last \texttt{b} \texttt{àaabb} \texttt{èccc}
If any uncrossed \texttt{b}'s are left, repeat \texttt{àaabb} \texttt{èCCC}

\[\Sigma = \{a, b, c\} \quad \Gamma = \{a, b, c, a, b, c, \dot{a}, \dot{a}, \Box\}\]
Programming Turing machines: Element distinctness

\[L_3 = \{ \#x_1\#x_2\ldots\#x_m \mid x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for every } i \neq j \} \]

Example: \(\#01\#0011\#1 \in L_3 \)

High-level description of TM:

On input \(w \)

For every pair of blocks \(x_i \) and \(x_j \) in \(w \)

- Compare the blocks \(x_i \) and \(x_j \)
- If they are the same, reject

Accept
\[L_3 = \{ \#x_1\#x_2 \ldots \#x_m \mid x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for every } i \neq j \} \]

Low-level description:

0. If input is \(\varepsilon \), or has exactly one \#, accept

1. Mark the leftmost \# as \(\dot{\#} \) and move right

\[\#01\#0011\#1 \]

2. Mark the next unmarked \#

\[\#01\dot{\#}0011\#1 \]
Programming Turing machines: Element distinctness

\[L_3 = \{ \#x_1\#x_2 \ldots \#x_m \mid x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for every } i \neq j \} \]

3. Compare the two strings to the right of \(\# \) \(\#01\#0011\#1 \)
 If they are equal, reject

4. Move the right \(\# \) \(\#01\#0011\#1 \)
 If not possible, move the left \(\# \) to the next \(\# \)
 and put the right \(\# \) on the next \(\# \)
 If not possible, accept

5. Repeat Step 3
 \(\#01\#0011\#1 \)
 \(\#01\#0011\#1 \)
 \(\#01\#0011\#1 \)
Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams of Turing Machines.

We usually give a high-level description unless you’re asked for a low-level description or even state diagram.

We are interested in algorithms behind the Turing machines.
Programming Turing machines: Graph connectivity

$L_4 = \{\langle G \rangle \mid G \text{ is a connected undirected graph} \}$

How do we feed a graph into a Turing Machine?

How to encode a graph G as a string $\langle G \rangle$?

$\langle (1, 2, 3, 4), ((1, 4), (2, 3), (3, 4), (4, 2)) \rangle$

Conventions for describing graphs:

(nodes)(edges)
no node appears twice
edges are pairs (first node, second node)
\[L_3 = \{ \langle G \rangle \mid G \text{ is a connected undirected graph} \} \]

High-level description:

On input \(\langle G \rangle \)

0. Verify that \(\langle G \rangle \) is the description of a graph
 - No node/edge repeats; Edge endpoints are nodes

1. Mark the first node of \(G \)

2. Repeat until no new nodes are marked:
 2.1 For each node, mark it if it is adjacent to an already marked node

3. If all nodes are marked, accept; otherwise reject
Some low-level details:

0. Verify that $\langle G \rangle$ is the description of a graph
 No node/edge repeats: Similar to Element distinctness
 Edge endpoints are nodes: Also similar to Element distinctness

1. Mark the first node of G
 Mark the leftmost digit with a dot, e.g. 12 becomes $\dot{1}2$

2. Repeat until no new nodes are marked:
 2.1 For each node, mark it if it is attached to an already marked node
 For every dotted node u and every undotted node v:
 - Underline both u and v from the node list
 - Try to match them with an edge from the edge list
 - If not found, remove underline from u and/or v and try another pair