Church–Turing Thesis

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong
What is a computer?

A computer is a machine that manipulates data according to a list of instructions.
What is a computer?

```
def hello(name):
    print("Hello ", name)
```

Hello world

Google Now
Will it rain today?
No, rain is not expected today at Ma Liu Shui

Machine Learning algorithm
Environment
self driving
Can both read from and write to the tape

Head can move both left and right

Unlimited tape space

Has two special states accept and reject
Example

$L_1 = \{w#w \mid w \in \{a, b\}^*\}$

Strategy:

- Read and remember the first symbol
- Cross it off
- Read the first symbol past #
- If they don’t match, reject
- If they do, cross it off

Example:

- Read and remember the first symbol: `abbaa#abbaa`
- Cross it off: `xbbaa#abbaa`
- Read the first symbol past #: `xbbaa#abbaa`
- If they don’t match, reject: `xbbaa#abbaa`
- If they do, cross it off: `xbbaa#xbbaa`
Example

\[L_1 = \{ w\#w \mid w \in \{a, b\}^* \} \]

Strategy:

Find & remember first uncrossed symbol

Cross it off

Read first symbol past #

If they do, cross it off, else reject

At the end, there should be only x’s

if so, accept; otherwise reject
How Turing machines operate

current state: \(q_1 \)

Replace a with b, and move head left

new state: \(q_2 \)
Computing devices: from practice to theory
Brief history of computing devices

Antikythera Mechanism (~100BC)

Abacus (Sumer 2700-2300BC, China 1200)

Babbage Difference engine (1840s)

Its reproduction

Brief history of computing devices: programmable devices

Z3 (Germany, 1941)

ENIAC (Pennsylvania, US, 1945)

Personal computers (since 1970s)

Mobile phones

Computation is universal

In principle, all computers have *the same* problem solving ability.

If an algorithm can be implemented on any *realistic* computer, then it can be implemented on a Turing machine.
Church–Turing Thesis

Turing machine

Quantum computing

DNA computing
Invented the Turing Test to tell apart humans from computers

Broke German encryption machines during World War II

Turing Award is the “Nobel prize of Computer Science”

Turing’s motivation: Understand the limitations of human computation by studying his “automatic machines”
Hilbert’s Entscheidungsproblem, 1928 reformulation

David Hilbert

Entscheidungsproblem (Decision Problem)

“Write a program” to solve the following task:

Input: mathematical statement (in first-order logic)

Output: whether the statement is true

In fact, he didn’t ask to “write a program”, but to “design a procedure”

Examples of statements expressible in first-order logic:

Fermat’s last theorem:

\[x^n + y^n = z^n \]

has no integer solution for integer \(n \geq 3 \)

Twin prime conjecture:

There are infinitely many pairs of primes of the form \(p \) and \(p + 2 \)
Design a procedure to solve the following task:

Input: mathematical statement (in first-order logic)
Output: whether the statement is true

Church (1935-1936) and Turing (1936-1937) independently showed the procedure that Entscheidungsproblem asks for cannot exist!

Definitions of procedure/algorithm:

\(\lambda\)-calculus (Church) and automatic machine (Turing)
Church–Turing Thesis

Intuitive notion of algorithms coincides with those implementable on Turing machines

Supporting arguments:

1. Turing machine is intuitive
2. Many independent definitions of “algorithms” turn out to be equivalent

References:

Alan Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem”, 1937

Alonzo Church, “A Note on the Entscheidungsproblem”, 1936
A Turing Machine is \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})\), where

- \(Q\) is a finite set of states
- \(\Sigma\) is the finite input alphabet, not containing the blank symbol \(\square\)
- \(\Gamma\) is the finite tape alphabet (\(\Sigma \subset \Gamma\)) including \(\square\)
- \(q_0 \in Q\) is the initial state
- \(q_{\text{acc}}, q_{\text{rej}} \in Q\) are the accepting and rejecting states (\(q_{\text{acc}} \neq q_{\text{rej}}\))
- \(\delta\) is the transition function

\[
\delta : (Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}
\]

Turing machines are deterministic
A configuration consists of current state, head position, and tape contents.
The start configuration of the TM on input w is $q_0 w$

We say a configuration C yields C' if the TM can go from C to C' in one step

Example: $ab q_1 a$ yields $abb q_{acc}$

An accepting configuration is one that contains q_{acc}

A rejecting configuration is one that contains q_{rej}
A Turing machine M accepts x if there is a sequence of configurations C_0, C_1, \ldots, C_k where

C_0 is starting \quad \quad C_i$ yields C_{i+1} \quad \quad C_k$ is accepting

The language recognized by M is the set of all strings that M accepts.