LR(0) Parsers

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong
Parsing computer programs

```java
if (n == 0) { return x; }
```

First phase of `javac` compiler: lexical analysis

```java
if (ID == INT_LIT) { return ID; }
```

The alphabet of Java CFG consists of tokens like

\[
\Sigma = \{ \text{if, return, (,), }, , ; , ==, \text{ID, INT_LIT, \ldots} \}\]
if (n == 0) { return x; }
CFG of the java programming language

Identifier:
 IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

Literal:
 IntegerLiteral
 FloatingPointLiteral
 BooleanLiteral
 CharacterLiteral
 StringLiteral
 NullLiteral

Expression:
 LambdaExpression
 AssignmentExpression

AssignmentOperator:
 (one of) = *= /= %= += -= <<= >>= >>>= &= ^= |=

class Point2d {
 /* The X and Y coordinates of the point--instance variables */
 private double x;
 private double y;
 private boolean debug; // A trick to help with debugging

 public Point2d (double px, double py) { // Constructor
 x = px;
 y = py;

 debug = false; // turn off debugging
 }

 public Point2d () { // Default constructor
 this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
 }
 // Note that a this() invocation must be the BEGINNING of
 // statement body of constructor

 public Point2d (Point2d pt) { // Another constructor
 x = pt.getX();
 y = pt.getY();
 }
 ...
}

Simple Java program: about 1000 tokens
How long would it take to parse this program?

<table>
<thead>
<tr>
<th>Try all parse trees</th>
<th>$\geq 10^{80}$ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYK algorithm</td>
<td>hours</td>
</tr>
</tbody>
</table>

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs.

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!
Hierarchy of context-free grammars

context-free grammars

LR(∞) grammars

LR(1) grammars

LR(0) grammars

Java, Python, etc have **LR(1)** grammars

We will describe LR(0) parsing algorithm

A grammar is LR(0) if **LR(0) parser** works correctly for it
LR(0) parser: overview

\[S \rightarrow SA \mid A \]
\[A \rightarrow (S) \mid () \]

input: () ()

1. \(\bullet () () \)
2. \((\bullet)() \)
3. \(() \bullet () \)
4. \(A \bullet () \)
5. \(S \bullet () \)
6. \(S(\bullet) \)
7. \(S() \bullet \)
8. \(S \quad A \bullet \)

8/30
Features of LR(0) parser:

• Greedily reduce the recently completed rule into a variable
• Unique choice of reduction at any time
LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA P

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule $B \rightarrow \beta$ has just been completed and the PDA will reduce β to B

... \Rightarrow 2 $(\bullet)(\)$ \Rightarrow 3 $(\)\bullet(\)$ \Rightarrow 4 $A\bullet(\)$ \Rightarrow 5 $S\bullet(\)$ \Rightarrow ...

✓: NFA N accepts
NFA acceptance condition

A rule $B \rightarrow \beta$ has just been completed if

Case 1 input/buffer so far is exactly β

Examples: $3 \ (\) \ (\)$ and $4 \ A \ (\)$

Case 2 Or buffer so far is $\alpha\beta$ and there is another rule $C \rightarrow \alpha B \gamma$

Example: $7 \ S(\) \bullet$

This case can be chained
Designing NFA for Case 1

\[S \rightarrow SA | A \]
\[A \rightarrow (S) | () \]

Design an NFA \(N' \) to accept the right hand side of some rule \(B \rightarrow \beta \)
Design an NFA N' to accept the right hand side of some rule $B \rightarrow \beta$.

- $S \rightarrow SA | A$
- $A \rightarrow (S) | ()$

Diagram:
- Initial state q_0
- Transitions:
 - $S \rightarrow SA$
 - $S \rightarrow S \cdot A$
 - $A \rightarrow S \rightarrow SA$
 - $S \rightarrow \varepsilon$
 - $A \rightarrow \varepsilon$
 - $A \rightarrow (S)$
 - $A \rightarrow (S \cdot)$
 - $A \rightarrow (\cdot S)$
 - $A \rightarrow (\cdot)$
 - $A \rightarrow ()$
 - $A \rightarrow (S)\cdot$
 - $A \rightarrow (S \cdot)\cdot$
 - $A \rightarrow (\cdot)\cdot$
 - $A \rightarrow ()\cdot$
Designing NFA for Cases 1 & 2

Design an NFA N to accept $\alpha\beta$ for some rules $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$ and for longer chains.

- $S \rightarrow SA | A$
- $A \rightarrow (S) | ()$
Designing NFA for Cases 1 & 2

\[
S \rightarrow SA | A \\
A \rightarrow (S) | ()
\]

Design an NFA \(N\) to accept \(\alpha\beta\) for some rules \(C \rightarrow \alpha B\gamma, \ B \rightarrow \beta\) and for longer chains.

For every rule \(C \rightarrow \alpha B\gamma, \ B \rightarrow \beta\), add:

\[
C \rightarrow \alpha \bullet B\gamma \quad \xrightarrow{\varepsilon} \quad B \rightarrow \bullet \beta
\]

All blue \(\rightarrow\) are \(\varepsilon\)-transitions.
Summary of the NFA

For every rule $B \rightarrow \beta$, add

$$
\begin{array}{c}
q_0 \\
\epsilon
\end{array} \quad \rightarrow
\begin{array}{c}
B \rightarrow \bullet \beta
\end{array}
$$

For every rule $B \rightarrow \alpha X \beta$ (X may be terminal or variable), add

$$
\begin{array}{c}
B \rightarrow \alpha \bullet X \beta \\
X
\end{array} \quad \rightarrow
\begin{array}{c}
B \rightarrow \alpha X \bullet \beta
\end{array}
$$

Every completed rule $B \rightarrow \beta$ is accepting

$$
\begin{array}{c}
B \rightarrow \beta \bullet
\end{array}
$$

For every rule $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$, add

$$
\begin{array}{c}
C \rightarrow \alpha \bullet B \gamma \\
\epsilon
\end{array} \quad \rightarrow
\begin{array}{c}
B \rightarrow \bullet \beta
\end{array}
$$

The NFA N will accept whenever a rule has just been completed.
Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

Observation: every accepting state has only one rule: a completed rule, and such rules appear only in accepting states.
A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state has only one rule:
- a completed rule of the form $B \rightarrow \beta\bullet$
- and completed rules appear only in accepting states

Shift state:
- no completed rule

\[
S \rightarrow S \cdot A \\
A \rightarrow (S) \\
A \rightarrow ()
\]

Reduce state:
- has (unique) completed rule

\[
A \rightarrow (S)\bullet
\]
Simulating DFA D

Our parser P simulates state transitions in DFA D

$\text{(())} \Rightarrow \text{ (() A)}$

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack

go back to the correct state by looking at the stack
Let’s label D’s states
LR(0) parser: a “PDA” P simulating DFA D

P’s stack contains labels of D’s states to remember progress of partially completed rules

At D’s non-accepting state q_i

1. P simulates D’s transition upon reading terminal or variable X
2. P pushes current state label q_i onto its stack

At D’s accepting state with completed rule $B \rightarrow X_1 \ldots X_k$

1. P pops k labels q_k, \ldots, q_1 from its stack

2. constructs part of the parse tree

3. P goes to state q_1 (last label popped earlier), pretend next input symbol is B
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
</tr>
<tr>
<td>2</td>
<td>q_5</td>
</tr>
<tr>
<td>3</td>
<td>q_8</td>
</tr>
<tr>
<td>4</td>
<td>q_4</td>
</tr>
<tr>
<td>5</td>
<td>q_2</td>
</tr>
<tr>
<td>6</td>
<td>q_5</td>
</tr>
</tbody>
</table>

Diagram:

- State stack
 - State
 - Stack

- State stack
 - State
 - Stack
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$S(\cdot)\bullet$</td>
<td>q_8</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$S \bullet A$</td>
<td>q_2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$S \ A \bullet$</td>
<td>q_3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
</tr>
</tbody>
</table>

The parser's output is the parse tree.

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>$$$</td>
</tr>
<tr>
<td>q_2</td>
<td>$$$</td>
</tr>
<tr>
<td>q_2</td>
<td>$$$</td>
</tr>
</tbody>
</table>
Another LR(0) grammar

\[L = \{ w\#w^R \mid w \in \{a, b\}^* \} \]

\[C \rightarrow aCa \mid bCb \mid \# \]
Another LR(0) grammar

The grammar rules are:

\[C \rightarrow \bullet a Ca \]
\[C \rightarrow \bullet b Cb \]
\[C \rightarrow \bullet # \]

The input string is:

\[ba\#ab \]

The stack, state, and action table is:

<table>
<thead>
<tr>
<th>Stack</th>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>$1</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>$14</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>$143</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>$143</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>$1435</td>
<td>7</td>
<td>R</td>
</tr>
<tr>
<td>$14</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>$146</td>
<td>8</td>
<td>R</td>
</tr>
</tbody>
</table>

The diagram shows the transitions and actions for each input symbol.
Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as

\[L = \{ww^R \mid w \in \{a, b\}^*\} \]

What goes wrong when we do LR(0) parsing on \(L \)?
Example 2

\[L = \{ww^R \mid w \in \{a, b\}^*\} \]

\[C \rightarrow aCa \mid bCb \mid \varepsilon \]

NFA N:

- \(q_0 \) is the start state.
- Transitions include:
 - \(\varepsilon \) transitions leading to other states.
 - Transitions labeled with 'a' and 'b'.
 - finale state(s).
Example 2

\[C \rightarrow aCa \mid bCb \mid \varepsilon \]

shift-reduce conflicts
Motivation: Fast parsing for programming languages
LR(1) Grammar: a few words
LR(0) grammar revisited

LR(0) parser: Left-to-right read, Rightmost derivation, 0 lookahead symbol

Derivation

\[
S \rightarrow SA | A
\]

\[
A \rightarrow (S) | ()
\]

Reduction (derivation in reverse)

\[
()() \rightarrow A() \rightarrow S() \rightarrow SA \rightarrow S
\]

LR(0) parser looks for rightmost derivation

Rightmost derivation = Leftmost reduction
if (n == 0) { return x; }

```
if (n == 0) { return x; }
```

```
if (n == 0) { return x; }
```

CFGs of most programming languages are not LR(0). LR(0) parser cannot tell apart
```
Parsing computer programs

```java
if (n == 0) { return x; } else { return x + 1; }
```

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

```java
if ...then from if ...then ...else
```
LR(1) grammars resolve such conflicts by one symbol lookahead

States in NFA $N$

<table>
<thead>
<tr>
<th>LR(0):</th>
<th>LR(1):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow \alpha \cdot \beta$</td>
<td>$[A \rightarrow \alpha \cdot \beta, a]$</td>
</tr>
</tbody>
</table>

States in DFA $D$

<table>
<thead>
<tr>
<th></th>
<th>LR(0):</th>
<th>LR(1):</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift-reduce</td>
<td>forbidden</td>
<td>some allowed</td>
</tr>
<tr>
<td>conflicts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduce-reduce</td>
<td>forbidden</td>
<td>some allowed</td>
</tr>
<tr>
<td>conflicts</td>
<td></td>
<td>if resolvable with lookahead symbol $a$</td>
</tr>
</tbody>
</table>

We won’t cover LR(1) parser in this class; take CSCI 3180 for details