LR(0) Parsers
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017
Parsing computer programs

```java
if (n == 0) { return x; }
```

First phase of javac compiler: **lexical analysis**

```java
if (ID == INT_LIT) {
    return ID;
}
```

The alphabet of Java CFG consists of tokens like

\[\Sigma = \{ \text{if, return, (,), {}, ;, ==, ID, INT_LIT, ...} \} \]
Parsing computer programs

if (n == 0) { return x; }

Parse tree of a Java statement
CFG of the java programming language

Identifier:
 IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral
Literal:
 IntegerLiteral
 FloatingPointLiteral
 BooleanLiteral
 CharacterLiteral
 StringLiteral
 NullLiteral
Expression:
 LambdaExpression
 AssignmentExpression
AssignmentOperator:
 (one of) = *= /= %= += -= <<= >>= >>>= &= ^= |=

class Point2d {
 /* The X and Y coordinates of the point--instance variables */
 private double x;
 private double y;
 private boolean debug; // A trick to help with debugging

 public Point2d (double px, double py) { // Constructor
 x = px;
 y = py;

 debug = false; // turn off debugging
 }

 public Point2d () { // Default constructor
 this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
 }
 // Note that a this() invocation must be the BEGINNING of
 // statement body of constructor

 public Point2d (Point2d pt) { // Another constructor
 x = pt.getX();
 y = pt.getY();
 }

 ...
}

Simple Java program: about 1000 tokens
Parsing algorithms

How long would it take to parse this program?

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try all parse trees</td>
<td>$\geq 10^{80}$ years</td>
</tr>
<tr>
<td>CYK algorithm</td>
<td>hours</td>
</tr>
</tbody>
</table>

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs.

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!
Hierarchy of context-free grammars

context-free grammars

LR(∞) grammars

LR(1) grammars

LR(0) grammars

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm
A grammar is LR(0) if LR(0) parser works correctly for it
LR(0) parser: overview

\[S \rightarrow SA \mid A \]
\[A \rightarrow (S) \mid () \]

input: ()()
LR(0) parser: overview

\[
S \rightarrow SA \mid A \\
A \rightarrow (S) \mid ()
\]

Features of LR(0) parser:

- Greedily **reduce** the recently completed rule into a variable
- Unique choice of reduction at any time

Input: `(()())`

\[\begin{align*}
3 \quad ()\bullet() & \Rightarrow 4 \quad A\bullet() & \Rightarrow 5 \quad S\bullet() \\
& \quad \downarrow \\
& \quad \downarrow \\
& \quad (\quad) \quad \downarrow \\
& \quad (\quad)
\end{align*} \]
LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA P

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule $B \rightarrow \beta$ has just been completed
and the PDA will reduce β to B

\[
\begin{array}{cccccc}
... & \Rightarrow & 2 \ (\bullet)(\) & \Rightarrow & 3 \ (\)\bullet(\) & \Rightarrow & 4 \ \checkmark \ A\bullet(\) \ \checkmark & \Rightarrow & 5 \ S\bullet(\) & \Rightarrow & ...
\end{array}
\]

\[\begin{array}{c}
\vdash
\\ \ \ \ \ (\)
\end{array}\]

\[\begin{array}{c}
\vdash
\ \ \ A
\end{array}\]

\[\begin{array}{c}
\vdash
\ \ \ (\)
\end{array}\]

\[\vdash \text{ NFA } N \text{ accepts}\]
NFA acceptance condition

\[
S \rightarrow SA \mid A \\
A \rightarrow (S) \mid ()
\]

A rule \(B \rightarrow \beta \) has just been completed if

Case 1 input/buffer so far is exactly \(\beta \)

Examples: 3 ()\(\bullet \)() and 4 \(A\bullet \)()

Case 2 Or buffer so far is \(\alpha \beta \) and there is another rule \(C \rightarrow \alpha B \gamma \)

Example: 7 \(S(\bullet \) \\
\[\begin{array}{c}
A \\
\hline \\
()
\end{array} \]

This case can be chained
Designing NFA for Case 1

Design an NFA N' to accept the right hand side of some rule $B \rightarrow \beta$
Designing NFA for Case 1

Design an NFA N' to accept the right hand side of some rule $B \to \beta$
Designing NFA for Cases 1 & 2

Design an NFA N to accept $\alpha \beta$ for some rules $C \rightarrow \alpha B\gamma$, $B \rightarrow \beta$
and for longer chains

$S \rightarrow SA \mid A$
$A \rightarrow (S) \mid ()$

All blue \rightarrow are ϵ-transitions
Designing NFA for Cases 1 & 2

\[S \rightarrow SA \mid A \]
\[A \rightarrow (S) \mid () \]

Design an NFA \(N \) to accept \(\alpha \beta \) for some rules
\[C \rightarrow \alpha B \gamma, \quad B \rightarrow \beta \]
and for longer chains

For every rule \(C \rightarrow \alpha B \gamma, B \rightarrow \beta \), add
\[C \rightarrow \alpha \bullet B \gamma \]
\[B \rightarrow \bullet \beta \]

\[S \rightarrow \bullet SA \]
\[S \rightarrow S \bullet A \]
\[A \rightarrow (S) \]
\[A \rightarrow (\bullet) \]

\[S \rightarrow \bullet A \quad A \rightarrow \bullet (S) \]
\[A \rightarrow \bullet (\bullet) \]
\[A \rightarrow \bullet () \quad A \rightarrow (S \bullet) \]
\[A \rightarrow (S) \bullet \]
\[A \rightarrow () \bullet \]

All blue \(\longrightarrow \) are \(\varepsilon \)-transitions
Summary of the NFA

For every rule $B \rightarrow \beta$, add

$$\rightarrow q_0 \xrightarrow{\varepsilon} B \rightarrow \bullet \beta$$

For every rule $B \rightarrow \alpha X \beta$ (X may be terminal or variable), add

$$B \rightarrow \alpha \bullet X \beta \xrightarrow{X} B \rightarrow \alpha X \bullet \beta$$

Every completed rule $B \rightarrow \beta$ is accepting

$$B \rightarrow \beta \bullet$$

For every rule $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$, add

$$C \rightarrow \alpha \bullet B \gamma \xrightarrow{\varepsilon} B \rightarrow \bullet \beta$$

The NFA \mathcal{N} will accept whenever a rule has just been completed
Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

Observation: every accepting state contains only one rule: a completed rule $B \rightarrow \beta \bullet$, and such rules appear only in accepting states
LR(0) grammars

A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state contains only one rule:
 - a completed rule of the form $B \to \beta \bullet$
 - and completed rules appear only in accepting states

Shift state:
- no completed rule

\[
\begin{align*}
S & \to S \bullet A \\
A & \to \bullet (S) \\
A & \to \bullet ()
\end{align*}
\]

Reduce state:
- has (unique) completed rule

\[
A \to (S) \bullet
\]
Simulating DFA \(D \)

Our parser \(P \) simulates state transitions in DFA \(D \)

\[
((())\bullet) \quad \Rightarrow \quad (A\bullet)
\]

After reducing \(() \) to \(A \), what is the new state?

Solution: keep track of previous states in a stack
go back to the correct state by looking at the stack
Let’s label D’s states
LR(0) parser: a “PDA” P simulating DFA D

P’s stack contains labels of D’s states to remember progress of partially completed rules

At D’s non-accepting state q_i
1. P simulates D’s transition upon reading terminal or variable X
2. P pushes current state label q_i onto its stack

At D’s accepting state with completed rule $B \rightarrow X_1 \ldots X_k$
1. P pops k labels q_k, \ldots, q_1 from its stack
2. constructs part of the parse tree
3. P goes to state q_1 (last label popped earlier), pretend next input symbol is B
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>State</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>•(()())</td>
<td>1</td>
<td>•(()())</td>
</tr>
<tr>
<td>2</td>
<td>(())</td>
<td>5</td>
<td>S •()</td>
</tr>
<tr>
<td>3</td>
<td>()•()</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>A •()</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>S •()</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>S •()</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$S(\cdot)\bullet$</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(</td>
</tr>
<tr>
<td></td>
<td>$S\cdot A$</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(</td>
</tr>
<tr>
<td>8</td>
<td>$S\cdot A\bullet$</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(</td>
</tr>
</tbody>
</table>

Parser's output is the parse tree
Another LR(0) grammar

\[L = \{ w#w^R \mid w \in \{a, b\}^* \} \]

\[C \rightarrow aCa \mid bCb \mid \# \]

NFA \(N \):

\[q_0 \]

\[C \rightarrow \bullet aCa \]

\[C \rightarrow a \bullet Ca \]

\[C \rightarrow aC \bullet a \]

\[C \rightarrow aCa\bullet \]

\[C \rightarrow \bullet bCb \]

\[C \rightarrow b \bullet Cb \]

\[C \rightarrow bC \bullet b \]

\[C \rightarrow bCb\bullet \]
Another LR(0) grammar

\[C \rightarrow aC_a \mid bC_b \mid \# \]
Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as

\[L = \{ ww^R \mid w \in \{a, b\}^* \} \]

What goes wrong when we do LR(0) parsing on \(L \)?
Example 2

\[L = \{ ww^R \mid w \in \{a, b\}^*\} \]

\[C \rightarrow aCa \mid bCb \mid \varepsilon \]

NFA \(N \):
Example 2

\[
\begin{align*}
C &\rightarrow \bullet a C_a \\
C &\rightarrow \bullet b C_b \\
C &\rightarrow \bullet \quad \\
\end{align*}
\]

\[
\begin{align*}
C &\rightarrow a \bullet C_a \\
C &\rightarrow \bullet a C_a \\
C &\rightarrow \bullet b C_b \\
C &\rightarrow \bullet \quad \\
\end{align*}
\]

\[
\begin{align*}
C &\rightarrow b \bullet C_b \\
C &\rightarrow \bullet a C_a \\
C &\rightarrow \bullet b C_b \\
C &\rightarrow \bullet \quad \\
\end{align*}
\]

\[
\begin{align*}
C &\rightarrow \bullet a C_a \quad | \quad \bullet b C_b \quad | \quad \varepsilon
\end{align*}
\]

shift-reduce conflicts
Parser generator

G = parser generator

if G is not LR(0)

Motivation: Fast parsing for programming languages
LR(1) Grammar: A few words
LR(0) grammar revisited

LR(0) parser: **Left-to-right read, Rightmost derivation, 0 lookahead symbol**

Grammar

\[
S \rightarrow SA | A \\
A \rightarrow (S) | ()
\]

Derivation

\[
S \Rightarrow SA \Rightarrow S() \Rightarrow A() \Rightarrow ()()
\]

Reduction (derivation in reverse)

\[
()() \rightarrow A() \rightarrow S() \rightarrow SA \rightarrow S
\]

LR(0) parser looks for rightmost derivation

Rightmost derivation = **Leftmost** reduction
Parsing computer programs

```java
if (n == 0) { return x; }
```

```
if (ParExpression) Statement
|      | Statement
|      | Expression
|      |
```
Parsing computer programs

```c
if (n == 0) { return x; }
else { return x + 1; }
```

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart
if ... then from if ... then ... else
LR(1) grammar

LR(1) grammars resolve such conflicts by **one symbol lookahead**

States in NFA N

- LR(0):
 - $A \rightarrow \alpha \cdot \beta$

- LR(1):
 - $[A \rightarrow \alpha \cdot \beta, a]$

States in DFA D

- LR(0):
 - no shift-reduce conflicts
 - no reduce-reduce conflicts

- LR(1):
 - some shift-reduce conflicts allowed
 - some reduce-reduce conflicts allowed
 - as long as can be resolved with lookahead symbol a

We won’t cover LR(1) parser in this class; take CSCI 3180 for details