LR(0) Parsers

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong
First phase of `javac` compiler: lexical analysis

The alphabet of Java CFG consists of tokens like

\[\Sigma = \{ \text{if}, \text{return}, (,), {, }, ;, ==, \text{ID}, \text{INT}_LIT, \ldots \} \]
Parsing computer programs

```
if (n == 0) { return x; }
```

Parse tree of a Java statement
CFG of the java programming language

Identifier:
 IdentifierChars but not a Keyword or BooleanLiteral or
 NullLiteral
Literal:
 IntegerLiteral
 FloatingPointLiteral
 BooleanLiteral
 CharacterLiteral
 StringLiteral
 NullLiteral
Expression:
 LambdaExpression
 AssignmentExpression
AssignmentOperator:
 (one of) = *= /= %= += -= <<= >>= >>>= &= ^= |=

class Point2d {
 /* The X and Y coordinates of the point--instance variables */
 private double x;
 private double y;
 private boolean debug; // A trick to help with debugging

 public Point2d (double px, double py) { // Constructor
 x = px;
 y = py;

 debug = false; // turn off debugging
 }

 public Point2d () { // Default constructor
 this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
 }

 // Note that a this() invocation must be the BEGINNING of
 // statement body of constructor

 public Point2d (Point2d pt) { // Another constructor
 x = pt.getX();
 y = pt.getY();
 }
 ...
}

Simple Java program: about 1000 tokens
Parsing algorithms

How long would it take to parse this program?

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>try all parse trees</td>
<td>$\geq 10^{80}$ years</td>
</tr>
<tr>
<td>CYK algorithm</td>
<td>hours</td>
</tr>
</tbody>
</table>

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!
Hierarchy of context-free grammars

context-free grammars

LR(\infty) grammars

LR(1) grammars

LR(0) grammars

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm

A grammar is LR(0) if LR(0) parser works correctly for it
LR(0) parser: overview

\[S \rightarrow SA \mid A \]
\[A \rightarrow (S) \mid () \]

input: ()()
LR(0) parser: overview

Features of LR(0) parser:

- Greedily reduce the recently completed rule into a variable
- Unique choice of reduction at any time

input: () ()

\[
S \rightarrow SA \mid A \\
A \rightarrow (S') \mid ()
\]
LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA P

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule $B \rightarrow \beta$ has just been completed
and the PDA will reduce β to B

... \Rightarrow 2 (●) () \Rightarrow 3 ()●() \Rightarrow 4 A●() \Rightarrow 5 S●() \Rightarrow ...

✓: NFA N accepts
A rule $B \rightarrow \beta$ has just been completed if

Case 1 input/buffer so far is exactly β
 Examples: $3(\)\bullet(\)$ and $4A\bullet(\)$

Case 2 Or buffer so far is $\alpha\beta$ and there is another rule $C \rightarrow \alpha B\gamma$
 Example: $7S(\)\bullet$

This case can be chained
Designing NFA for Case 1

Design an NFA N' to accept the right hand side of some rule $B \rightarrow \beta$

\[
S \rightarrow SA \mid A \\
A \rightarrow (S) \mid ()
\]
Designing NFA for Case 1

Design an NFA N' to accept the right hand side of some rule $B \rightarrow \beta$
Designing NFA for Cases 1 & 2

Design an NFA N to accept $\alpha\beta$ for some rules $C \rightarrow \alpha B\gamma$, $B \rightarrow \beta$
and for longer chains

\[
\begin{align*}
S &\rightarrow SA | A \\
A &\rightarrow (S) | ()
\end{align*}
\]
Designing NFA for Cases 1 & 2

Design an NFA N to accept $\alpha\beta$ for some rules $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$ and for longer chains.

For every rule $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$, add $C \rightarrow \alpha \bullet B \gamma$.

All blue \longrightarrow are ε-transitions.
Summary of the NFA

For every rule $B \rightarrow \beta$, add

![Transition Diagram]

For every rule $B \rightarrow \alpha X \beta$ (X may be terminal or variable), add

![Transition Diagram]

Every completed rule $B \rightarrow \beta$ is accepting

![Graph]

For every rule $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$, add

![Transition Diagram]

The NFA N will accept whenever a rule has just been completed
Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

Observation: every accepting state contains only one rule: a completed rule $B \rightarrow \beta \bullet$, and such rules appear only in accepting states
A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state contains only one rule:
- a completed rule of the form $B \rightarrow \beta \cdot$
- and completed rules appear only in accepting states

Shift state:
no completed rule

- $S \rightarrow S \cdot A$
- $A \rightarrow \cdot(S')$
- $A \rightarrow \cdot()$

Reduce state:
has (unique) completed rule

- $A \rightarrow (S)\cdot$
Simulating DFA D

Our parser P simulates state transitions in DFA D

\[
\text{(()•) } \quad \Rightarrow \quad \text{(()))}
\]

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack
go back to the correct state by looking at the stack
Let’s label D’s states
LR(0) parser: a “PDA” \(P \) simulating DFA \(D \)

\(P \)'s stack contains labels of \(D \)'s states to remember progress of partially completed rules

At \(D \)'s non-accepting state \(q_i \)

1. \(P \) simulates \(D \)'s transition upon reading terminal or variable \(X \)
2. \(P \) pushes current state label \(q_i \) onto its stack

At \(D \)'s accepting state with completed rule \(B \to X_1 \ldots X_k \)

1. \(P \) pops \(k \) labels \(q_k, \ldots, q_1 \) from its stack
2. constructs part of the parse tree
 \[
 \begin{array}{c}
 B \\
 \leftarrow / \\
 X_1 \quad X_2 \quad \ldots \quad X_k
 \end{array}
 \]
3. \(P \) goes to state \(q_1 \) (last label popped earlier), pretend next input symbol is \(B \)
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$</td>
<td>()()()</td>
</tr>
<tr>
<td>2</td>
<td>$1</td>
<td>(())</td>
</tr>
<tr>
<td>3</td>
<td>$15</td>
<td>()•()</td>
</tr>
<tr>
<td>4</td>
<td>$1</td>
<td>A(())</td>
</tr>
</tbody>
</table>

Stack Diagram

```
S
A
( )

state stack

5  S •( ) q2 $1

6  S (•) q5 $12
```
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>State</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$S(\)\bullet$</td>
<td>q_8</td>
<td>$$125$</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$S \bullet A$</td>
<td>q_2</td>
<td>$$1$</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$S \bullet A$</td>
<td>q_3</td>
<td>$$12$</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

parser’s output is the parse tree
Another LR(0) grammar

\[L = \{ w#w^R \mid w \in \{a, b\}^* \} \]

\[C \rightarrow aCa \mid bCb \mid \# \]

NFA \(N\):

\(C \rightarrow \bullet aCa\)
\(C \rightarrow a \bullet Ca\)
\(C \rightarrow a C \bullet a\)
\(C \rightarrow aC\bullet a\)
\(C \rightarrow \bullet bCb\)
\(C \rightarrow b \bullet Cb\)
\(C \rightarrow bC \bullet b\)
\(C \rightarrow bCb\bullet\)

\(q_0\)
Another LR(0) grammar

\[C \rightarrow aCa | bCb | \# \]

Input: \(ba\#ab \)

<table>
<thead>
<tr>
<th>Stack</th>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>$1</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>$14</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>$143</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>$1435</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>$14</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>$146</td>
<td>8</td>
<td>R</td>
</tr>
</tbody>
</table>
PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as

$L = \{ww^R \mid w \in \{a, b\}^*\}$

What goes wrong when we do LR(0) parsing on L?
Example 2

\[L = \{ ww^R \mid w \in \{a, b\}^* \} \]

\[C \rightarrow aCa \mid bCb \mid \varepsilon \]

NFA \(N \):
Example 2

$C \rightarrow \bullet a Ca$
$C \rightarrow \bullet b Cb$
$C \rightarrow \bullet$

$C \rightarrow a \bullet Ca$
$C \rightarrow \bullet a Ca$
$C \rightarrow \bullet b Cb$
$C \rightarrow \bullet$

$C \rightarrow b \bullet Cb$
$C \rightarrow \bullet a Ca$
$C \rightarrow \bullet b Cb$
$C \rightarrow \bullet$

$C \rightarrow a Ca | b Cb | \varepsilon$

shift-reduce conflicts
Motivation: Fast parsing for programming languages
LR(1) Grammar: A few words
LR(0) grammar revisited

LR(0) parser: **Left-to-right read**, **Rightmost derivation**, **0 lookahead symbol**

\[
S \rightarrow SA | A \\
A \rightarrow (S) | ()
\]

Derivation
\[
S \Rightarrow SA \Rightarrow S() \Rightarrow A() \Rightarrow ()()
\]

Reduction (derivation in reverse)
\[
()() \Rightarrow A() \Rightarrow S() \Rightarrow SA \Rightarrow S
\]

LR(0) parser looks for rightmost derivation

Rightmost derivation = **Leftmost** reduction
if (n == 0) { return x; }

```
if (n == 0) {
    return x;
}
```

CFGs of most programming languages are not LR(0). LR(0) parser cannot tell apart if … then from if … then … else.
Parsing computer programs

```java
if (n == 0) { return x; }
else { return x + 1; }
```

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

```java
if ...then from if ...then ...else
```
LR(1) grammars resolve such conflicts by **one symbol lookahead**

States in NFA N

- LR(0):
 - $A \rightarrow \alpha \cdot \beta$
 - [[$A \rightarrow \alpha \cdot \beta, a$]

States in DFA D

- LR(0):
 - no shift-reduce conflicts
 - no reduce-reduce conflicts
- LR(1):
 - some shift-reduce conflicts allowed
 - some reduce-reduce conflicts allowed
 - as long as can be resolved with lookahead symbol a

We won’t cover LR(1) parser in this class; take CSCI 3180 for details