LR(0) Parsers

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong
if (n == 0) { return x; }

First phase of javac compiler: lexical analysis

if (ID == INT_LIT) { return ID; }

The alphabet of Java CFG consists of tokens like

\[\Sigma = \{ \text{if}, \text{return}, (,), {, }, ;, ==, \text{ID}, \text{INT_LIT}, \ldots \} \]
Parsing computer programs

if (n == 0) { return x; }

Parse tree of a Java statement
Identifier:
 IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral
Literal:
 IntegerLiteral
 FloatingPointLiteral
 BooleanLiteral
 CharacterLiteral
 StringLiteral
 NullLiteral
Expression:
 LambdaExpression
 AssignmentExpression
AssignmentOperator:
 (one of) = *= /= %= += -= <<= >>= >>>= &= ^= |=

class Point2d {
 /* The X and Y coordinates of the point--instance variables */
 private double x;
 private double y;
 private boolean debug; // A trick to help with debugging

 public Point2d (double px, double py) { // Constructor
 x = px;
 y = py;
 debug = false; // turn off debugging
 }

 public Point2d () { // Default constructor
 this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
 }
 // Note that a this() invocation must be the BEGINNING of
 // statement body of constructor

 public Point2d (Point2d pt) { // Another constructor
 x = pt.getX();
 y = pt.getY();
 }
 ...
}

Simple Java program: about 1000 tokens
Parsing algorithms

How long would it take to parse this program?

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>try all parse trees</td>
<td>$\geq 10^{80}$ years</td>
</tr>
<tr>
<td>CYK algorithm</td>
<td>hours</td>
</tr>
</tbody>
</table>

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs.

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!
Hierarchy of context-free grammars

context-free grammars

LR(∞) grammars

LR(1) grammars

LR(0) grammars

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm
A grammar is LR(0) if LR(0) parser works correctly for it
LR(0) parser: overview

\[S \rightarrow SA \mid A \]
\[A \rightarrow (S) \mid () \]

Input: \((())()\)

1. \(\bullet((())())\)
2. \((⊙)(())\)
3. \((())⊙()\)
4. \(A⊙()\)
5. \(S⊙()\)
6. \(S(⊙)\)
7. \(S(⊙)⊙()\)
8. \(S(⊙)A⊙()\)
9. \(S⊙()\)

8/31
LR(0) parser: overview

Features of LR(0) parser:

• Greedily reduce the recently completed rule into a variable
• Unique choice of reduction at any time

```
S → SA | A
A → (S) | ( )
```

input: () ()
To speed up parsing, keep track of partially completed rules in a PDA P.

In fact, the PDA will be a simple modification of an NFA N.

The NFA accepts if a rule $B \rightarrow \beta$ has just been completed and the PDA will reduce β to B.

\[... \Rightarrow 2 \ (\bullet) \ (\) \Rightarrow 3 \ (\) \ (\bullet) \ (\) \Rightarrow 4 \ A \ (\bullet) \ (\) \Rightarrow 5 \ S \ (\bullet) \ (\) \Rightarrow ... \]

\[
\begin{array}{c}
(\) \\
A \\
(\)
\end{array}
\]

\[\checkmark: \ NFA \ N \ accepts\]
A rule $B \rightarrow \beta$ has just been completed if

Case 1 input/buffer so far is exactly β

Examples: 3 $(\)\bullet(\)$ and 4 $A\bullet(\)$

Case 2 Or buffer so far is $\alpha\beta$ and there is another rule $C \rightarrow \alpha B\gamma$

Example: 7 $S(\)\bullet$

$\quad A$

$\quad \quad \quad (\)$

This case can be chained
Designing NFA for Case 1

\[
\begin{align*}
S & \rightarrow SA \mid A \\
A & \rightarrow (S) \mid ()
\end{align*}
\]

Design an NFA \(N' \) to accept the right hand side of some rule \(B \rightarrow \beta \)
Designing NFA for Case 1

Design an NFA \(N' \) to accept the right hand side of some rule \(B \rightarrow \beta \)

\[
S \rightarrow SA | A \\
A \rightarrow (S) | ()
\]
Designing NFA for Cases 1 & 2

Design an NFA N to accept $\alpha\beta$ for some rules $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$ and for longer chains

$$S \rightarrow SA \mid A$$

$$A \rightarrow (S) \mid ()$$
Design an NFA N to accept $\alpha\beta$ for some rules $C \to \alpha B \gamma, \quad B \to \beta$
and for longer chains

For every rule $C \to \alpha B \gamma, \quad B \to \beta$, add $C \to \alpha \bullet B \gamma$

All blue arrows are ε-transitions.
Summary of the NFA

For every rule $B \rightarrow \beta$, add

$$
\begin{array}{c}
\text{q0} \\
\leftarrow \varepsilon \\
\rightarrow B \rightarrow \bullet \beta
\end{array}
$$

For every rule $B \rightarrow \alpha X \beta$ (X may be terminal or variable), add

$$
\begin{array}{c}
B \rightarrow \alpha \bullet X \beta \\
\rightarrow X \\
\rightarrow B \rightarrow \alpha X \bullet \beta
\end{array}
$$

Every completed rule $B \rightarrow \beta$ is accepting

$$
\begin{array}{c}
B \rightarrow \beta \bullet
\end{array}
$$

For every rule $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$, add

$$
\begin{array}{c}
C \rightarrow \alpha \bullet B \gamma \\
\leftarrow \varepsilon \\
\rightarrow B \rightarrow \bullet \beta
\end{array}
$$

The NFA N will accept whenever a rule has just been completed
Equivalent DFA \(D \) for the NFA \(N \)

Observation: every accepting state contains only one rule: a completed rule \(B \rightarrow \beta \bullet \), and such rules appear only in accepting states.
A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state contains only one rule:
- a completed rule of the form $B \rightarrow \beta \cdot$
- and completed rules appear only in accepting states

Shift state:
- no completed rule

$S \rightarrow S \cdot A$
$A \rightarrow \bullet (S)$
$A \rightarrow \bullet ()$

Reduce state:
- has (unique) completed rule

$A \rightarrow (S) \bullet$
Simulating DFA D

Our parser P simulates state transitions in DFA D

$((())\bullet) \Rightarrow (A\bullet)\
(())$

After reducing $(())$ to A, what is the new state?

Solution: keep track of previous states in a stack
go back to the correct state by looking at the stack
Let's label D's states
LR(0) parser: a “PDA” P simulating DFA D

P’s stack contains labels of D’s states to remember progress of partially completed rules

At D’s non-accepting state q_i

1. P simulates D’s transition upon reading terminal or variable X
2. P pushes current state label q_i onto its stack

At D’s accepting state with completed rule $B \rightarrow X_1 \ldots X_k$

1. P pops k labels q_k, \ldots, q_1 from its stack
2. constructs part of the parse tree

3. P goes to state q_1 (last label popped earlier), pretend next input symbol is B
<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>Push/Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q1 $</td>
<td>$(()()$</td>
</tr>
<tr>
<td>2</td>
<td>q5 $1</td>
<td>1(()()$</td>
</tr>
<tr>
<td>3</td>
<td>q8 $15</td>
<td>15(()()$</td>
</tr>
<tr>
<td>4</td>
<td>q4 $1</td>
<td>1(()$</td>
</tr>
<tr>
<td>5</td>
<td>q2 $1</td>
<td>1S$(())$</td>
</tr>
<tr>
<td>6</td>
<td>q5 $12</td>
<td>12S$(())$</td>
</tr>
</tbody>
</table>

The diagram on the right shows a parse tree for the string $(()()$.
Example

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
<th>state</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>S ()</td>
<td>q_8</td>
<td>$125</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>A</td>
<td>q_2</td>
<td>$1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S</td>
<td>q_3</td>
<td>$12</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parser’s output is the parse tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Another LR(0) grammar

\[L = \{ w\# w^R \mid w \in \{a, b\}^* \} \]

\[C \rightarrow a Ca \mid bCb \mid \# \]

NFA \(N \):

- \(q_0 \)
- \(C \rightarrow \bullet a Ca \)
- \(C \rightarrow a \bullet Ca \)
- \(C \rightarrow a C \bullet a \)
- \(C \rightarrow a Ca \bullet \)
- \(C \rightarrow \bullet b Cb \)
- \(C \rightarrow b \bullet Cb \)
- \(C \rightarrow b C \bullet b \)
- \(C \rightarrow b Cb \bullet \)

Transitions:

- \(\varepsilon \) transitions:
 - \(q_0 \) to \(C \rightarrow \bullet a Ca \)
 - \(C \rightarrow \bullet a Ca \) to \(C \rightarrow a \bullet Ca \)
 - \(C \rightarrow \bullet a Ca \) to \(C \rightarrow a C \bullet a \)
 - \(C \rightarrow \bullet a Ca \) to \(C \rightarrow a Ca \bullet \)
 - \(q_0 \) to \(C \rightarrow \bullet b Cb \)
 - \(C \rightarrow \bullet b Cb \) to \(C \rightarrow b \bullet Cb \)
 - \(C \rightarrow \bullet b Cb \) to \(C \rightarrow b C \bullet b \)
 - \(C \rightarrow \bullet b Cb \) to \(C \rightarrow b Cb \bullet \)

- \(a \) transitions:
 - \(C \rightarrow a \bullet Ca \) to \(C \rightarrow a C \bullet a \)
 - \(C \rightarrow a Ca \) to \(C \rightarrow a Ca \bullet \)
 - \(C \rightarrow a C \bullet a \) to \(C \rightarrow a Ca \bullet \)
 - \(C \rightarrow a Ca \bullet \) to \(C \rightarrow a Ca \bullet \)

- \(b \) transitions:
 - \(C \rightarrow b \bullet Cb \) to \(C \rightarrow b C \bullet b \)
 - \(C \rightarrow b C \bullet b \) to \(C \rightarrow b Cb \bullet \)

- \(\# \) transitions:
 - \(C \rightarrow \bullet \# \) to \(C \rightarrow \# \bullet \)
 - \(C \rightarrow \# \bullet \) to \(C \rightarrow \# \bullet \)

Start state: \(q_0 \)

Accept state: \(C \rightarrow a Ca \bullet \)

Transition: \(a \rightarrow A \)

Transition: \(b \rightarrow B \)
Another LR(0) grammar

\[C \rightarrow aCa \mid bCb \mid \# \]

Input: \(ba\#ab \)

```
stack  state  action
$      1      S
$1     4      S
$14    3      S
$143   2      R
$143   5      S
$1435  7      R
$14    6      S
$146   8      R
```

Diagram showing the LR(0) parsing process.
PDA for LR(0) parsing is **deterministic**

Some CFLs require non-deterministic PDAs, such as

\[L = \{ww^R \mid w \in \{a, b\}^*\} \]

What goes wrong when we do LR(0) parsing on \(L \)?
Example 2

\[L = \{ww^R \mid w \in \{a, b\}^*\} \]

\[C \rightarrow aCa \mid bCb \mid \varepsilon \]

NFA \(N \):

\[C \rightarrow \bullet aCa \]

\[C \rightarrow a\bullet Ca \]

\[C \rightarrow aCa \]

\[C \rightarrow b\bullet Cb \]

\[C \rightarrow bCb \]

\[C \rightarrow a \]

\[C \rightarrow b \]
Example 2

\[
C \rightarrow \bullet \text{a} \text{C} \text{a}
\]

\[
C \rightarrow \bullet \text{b} \text{C} \text{b}
\]

\[
C \rightarrow \bullet
\]

\[
C \rightarrow \bullet \text{a} C \text{a}
\]

\[
C \rightarrow \bullet \text{a} C' \text{a}
\]

\[
C \rightarrow \bullet \text{b} C' \text{b}
\]

\[
C \rightarrow \bullet \text{b} C' \text{b}
\]

\[
C \rightarrow \bullet
\]

\[
C \rightarrow \bullet \text{a} \text{C} \text{a}
\]

\[
C \rightarrow \bullet \text{a} \text{C} \text{a}
\]

\[
C \rightarrow \bullet \text{b} \text{C} \text{b}
\]

\[
C \rightarrow \bullet \text{b} \text{C} \text{b}
\]

\[
C \rightarrow \bullet
\]

\[
C \rightarrow \bullet \text{a} \text{C} \text{a} \
C \rightarrow \bullet \text{b} \text{C} \text{b} \
C \rightarrow \varepsilon
\]

\[
C \rightarrow \text{a} \text{C} \text{a} | \text{b} \text{C'} \text{b} | \varepsilon
\]

shift-reduce conflicts
Motivation: Fast parsing for programming languages
LR(1) Grammar: A few words
LR(0) grammar revisited

LR(1) grammars
LR(0) grammars

LR(0) parser: Left-to-right read, Rightmost derivation, 0 lookahead symbol

Derivation
\[S \rightarrow SA \rightarrow S() \rightarrow A() \rightarrow ()() \]

Reduction (derivation in reverse)
\[()() \rightarrow A() \rightarrow S() \rightarrow SA \rightarrow S \]

LR(0) parser looks for rightmost derivation

Rightmost derivation = Leftmost reduction
if (n == 0) { return x; }

if (ParExpression | Statement) | (Expression | Statement):

CFGs of most programming languages are not LR(0). LR(0) parser cannot tell apart if… then from if… then… else.
Parsing computer programs

if (n == 0) { return x; } else { return x + 1; }

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

if ...then from if ...then ...else
LR(1) grammars resolve such conflicts by **one symbol lookahead**

States in NFA N

- LR(0):
 \[A \rightarrow \alpha \cdot \beta \]
- LR(1):
 \[[A \rightarrow \alpha \cdot \beta, a] \]

States in DFA D

- LR(0):
 no shift-reduce conflicts
 no reduce-reduce conflicts
- LR(1):
 some shift-reduce conflicts allowed
 some reduce-reduce conflicts allowed
 as long as can be resolved with lookahead symbol a

We won’t cover LR(1) parser in this class; take CSCI 3180 for details