Equivalence of DFA and Regular Expressions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong
Three ways of doing it

\[L = \{ x \in \Sigma^* \mid x \text{ ends in } 01 \}, \quad \Sigma = \{0, 1\} \]
They are equally powerful

DFA NFA regular expressions

regular languages
Examples: regular expression \rightarrow NFA

$R_1 = 0$

$R_2 = 01$
Examples: regular expression \rightarrow NFA

$$R_3 = 0+01$$

$$R_4 = (0+01)^*$$
Regular expressions

In general, how do we convert a regular expression to an NFA?

A regular expression over Σ is an expression formed by the following rules

- The symbols \emptyset and ε are regular expressions.
- Every symbol in Σ is a regular expression.
 - If $\Sigma = \{0, 1\}$, then 0 and 1 are both regular expressions.
- If R and S are regular expressions, so are $R + S$, RS and R^*.
General method when $\Sigma = \{0, 1\}$

<table>
<thead>
<tr>
<th>Regular expression</th>
<th>NFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>q_0</td>
</tr>
<tr>
<td>ε</td>
<td>q_0</td>
</tr>
<tr>
<td>0</td>
<td>$q_0 \xrightarrow{0} q_1$</td>
</tr>
<tr>
<td>1</td>
<td>$q_0 \xrightarrow{1} q_1$</td>
</tr>
</tbody>
</table>
General method

Regular expression \Rightarrow NFA

- RS
 - $q_0 \xrightarrow{\varepsilon} NFA_R \xrightarrow{\varepsilon} NFA_S \xrightarrow{\varepsilon} q_1$

- $R + S$
 - $q_0 \xrightarrow{\varepsilon} NFA_R \xrightarrow{\varepsilon} q_1$
 - $q_0 \xrightarrow{\varepsilon} NFA_S \xrightarrow{\varepsilon} q_1$

- R^*
 - $q_0 \xrightarrow{\varepsilon} NFA_R \xrightarrow{\varepsilon} q_1$
Roadmap

- Regular expressions
- 2-state GNFA
- GNFA
- NFA
First we simplify the NFA so that

- It has **exactly one** accepting state
- No arrows come into the start state
- No arrows go out of the accepting state
First we simplify the NFA so that

- It has **exactly one** accepting state
- No arrows come into the start state
- No arrows go out of the accepting state
Simplify the NFA

- It has exactly one accepting state
- No arrows come into the start state
- No arrows go out of the accepting state
Simplify the NFA

- It has **exactly one** accepting state ✓
- No arrows come into the start state ✓
- No arrows go out of the accepting state ✓
A **generalized NFA** is an NFA whose transitions are labeled by **regular expressions**, like

![Diagram of a generalized NFA](attachment:image.png)
We will **eliminate** every state but the start and accepting states.
State elimination

\[
\begin{align*}
q_0 & \xrightarrow{\varepsilon + 10^*} q_1 \\
q_1 & \xrightarrow{01} q_2 \\
q_0 & \xrightarrow{0^*11} q_2 \\
q_0 & \xrightarrow{(\varepsilon + 10^*) (0^*1)^* 0^*11} q_2 \\
q_0 & \xrightarrow{(\varepsilon + 10^*) (0^*1)^* 0^*11 + 01} q_2
\end{align*}
\]
To **eliminate** state q, for every pair of states (u, v) such that

$$u \rightarrow q \rightarrow v$$

Replace uqv by

$$uR_1R^*_2R_3R_4v$$

Remember to do this **even when** $u = v$
A 2-state GNFA is the same as a regular expression R.
After eliminating q_1:
Conversion example

After eliminating q_1:

After eliminating q_2:
Conversion example

After eliminating q_1:

After eliminating q_2:

Check:

$$0^*1(00^*1 + 1)^*$$

$$0^*1(00^*1 + 1)^* \equiv$$
All strings ending in 1

$(0+1)^*1$
All strings ending in 1
\((0+1)^*1\)

\[0^*1(00^*1 + 1)^* = 0^*1(0^*1)^*\]

Always ends in 1
Does every string ending in 1 have this form?
Yes