NFA to DFA conversion and regular expressions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017
DFAs and NFAs are equally powerful

NFA can do everything a DFA can do
How about the other way?

Every NFA is equivalent to some DFA for the same language
NFA → DFA algorithm

Given an NFA, figure out

1. the initial active states
2. how the set of active states changes upon reading an input symbol
NFA → DFA example

Initial active states (before reading any input)?
NFA → DFA example

Initial active states (before reading any input)?

How does the set of active states change?
NFA → DFA example

NFA:

Initial active states (before reading any input)?

partial DFA:

How does the set of active states change?
NFA \rightarrow DFA example

Initial active states (before reading any input)?

How does the set of active states change?
NFA \rightarrow DFA example

Initial active states (before reading any input)?

How does the set of active states change?
NFA → DFA summary

Every DFA state corresponds to a subset of NFA states
A DFA state is accepting if it contains an accepting NFA state
Regular expressions
Regular expressions

Powerful string matching feature in advanced editors (e.g. Vim, Emacs) and modern programming languages (e.g. PERL, Python)

PERL regex examples:
- `colou?r` matches “color”/“colour”
- `[A-Za-z]*ing` matches any word ending in “ing”

We will learn to parse complicated regex recursively by building up from simpler ones. Also construct the language matched by the expression recursively.

Will focus on regular expressions in formal language theory (notations differ from PERL/Python/POSIX regex)
String concatenation

\[s = \text{abb}, \quad t = \text{bab} \]

\[st = \text{abbbab} \]

\[ts = \text{bababb} \]

\[ss = \text{abbabb} \]

\[sst = \text{abbbabbab} \]

\[s = x_1 \ldots x_n, \quad t = y_1 \ldots y_m \]

\[\downarrow \]

\[st = x_1 \ldots x_n y_1 \ldots y_m \]
Operations on languages

- **Concatenation** of languages L_1 and L_2

 $$L_1 L_2 = \{st : s \in L_1, t \in L_2\}$$

- **n-th power** of language L

 $$L^n = \{s_1 s_2 \ldots s_n \mid s_1, s_2, \ldots, s_n \in L\}$$

- **Union** of L_1 and L_2

 $$L_1 \cup L_2 = \{s \mid s \in L_1 \text{ or } s \in L_2\}$$
Example

\[
L_1 = \{0, 01\} \quad L_2 = \{\varepsilon, 1, 11, 111, \ldots\}
\]

\[
L_1 L_2 = \{0, 01, 011, 0111, \ldots\} \cup \{01, 011, 0111, 01111, \ldots\}
\]
\[
= \{0, 01, 011, 0111, \ldots\}
\]

0 followed by any number of 1s

\[
L_1^2 = \{00, 001, 010, 0101\} \quad L_2^2 = L_2
\]
\[
L_2^n = L_2 \quad \text{for any } n \geq 1
\]

\[
L_1 \cup L_2 = \{0, 01, \varepsilon, 1, 11, 111, \ldots\}
\]
Operations on languages

The star of L are contains strings made up of zero or more chunks from L

$$L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$$

Example: $L_1 = \{0, 01\}$ and $L_2 = \{\varepsilon, 1, 11, 111, \ldots \}$

What is L_1^*? L_2^*?
Example

$L_1 = \{0, 01\}$

$L_1^0 = \{\varepsilon\}$

$L_1^1 = \{0, 01\}$

$L_1^2 = \{00, 001, 010, 0101\}$

$L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\}$

Which of the following are in L_1^*?

00100001 00110001 10010001
Example

$L_1 = \{0, 01\}$

$L_1^0 = \{\varepsilon\}$

$L_1^1 = \{0, 01\}$

$L_1^2 = \{00, 001, 010, 0101\}$

$L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\}$

Which of the following are in L_1^*?

- 00100001: Yes
- 00110001: No
- 10010001: No

00100001
00110001
10010001
Example

$L_1 = \{0, 01\}$

$L_1^0 = \{\varepsilon\}$
$L_1^1 = \{0, 01\}$
$L_1^2 = \{00, 001, 010, 0101\}$
$L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\}$

Which of the following are in L_1^*?

<table>
<thead>
<tr>
<th>String</th>
<th>L_1^*?</th>
</tr>
</thead>
<tbody>
<tr>
<td>00100001</td>
<td>Yes</td>
</tr>
<tr>
<td>00110001</td>
<td>No</td>
</tr>
<tr>
<td>10010001</td>
<td>No</td>
</tr>
</tbody>
</table>

L_1^* contains all strings such that any 1 is preceded by a 0
Example

$L_2 = \{ \varepsilon, 1, 11, 111, \ldots \}$

any number of 1s

$L_2^0 = \{ \varepsilon \}$

$L_2^1 = L_2$

$L_2^2 = L_2$

$L_2^n = L_2 \ (n \geq 1)$
Example

$L_2 = \{\varepsilon, 1, 11, 111, \ldots \}$

any number of 1s

$L_2^0 = \{\varepsilon\}$

$L_2^1 = L_2$

$L_2^2 = L_2$

$L_2^n = L_2 \quad (n \geq 1)$

$L_2^* = L_2^0 \cup L_2^1 \cup L_2^2 \cup \ldots$

$= \{\varepsilon\} \cup L_2 \cup L_2 \cup \ldots$

$= L_2$

$L_2^* = L_2$
Combining languages

We can construct languages by starting with simple ones, like \(\{0\} \) and \(\{1\} \), and combining them

\[
\{0\}(\{0\} \cup \{1\})^* \quad \Rightarrow \quad 0(0 + 1)^*
\]

all strings that start with 0
Combining languages

We can construct languages by starting with simple ones, like \(\{0\} \) and \(\{1\} \), and combining them

\[
\{0\}(\{0\} \cup \{1\})^* \quad \Rightarrow \quad 0(0 + 1)^*
\]

all strings that start with 0

\[
(\{0\}\{1\}^*) \cup (\{1\}\{0\}^*) \quad \Rightarrow \quad 01^* + 10^*
\]

0 followed by any number of 1s, or 1 followed by any number of 0s
Combining languages

We can construct languages by starting with simple ones, like \{0\} and \{1\}, and combining them

\[
\{0\}(\{0\} \cup \{1\})^* \quad \Rightarrow \quad 0(0 + 1)^*
\]

all strings that start with 0

\[
(\{0\}\{1\}^*) \cup (\{1\}\{0\}^*) \quad \Rightarrow \quad 01^* + 10^*
\]

0 followed by any number of 1s, or 1 followed by any number of 0s

\[0(0 + 1)^* \quad \text{and} \quad 01^* + 10^* \quad \text{are regular expressions}\]

Blueprints for combining simpler languages into complex ones
Syntax of regular expressions

A regular expression over Σ is an expression formed by the following rules:

- The symbols \emptyset and ε are regular expressions.
- Every symbol a in Σ is a regular expression.
- If R and S are regular expressions, so are $R + S$, RS and R^*.

Examples:

$$
\begin{align*}
\emptyset & \\
0(0 + 1)^* & \\
01^* + 10^* & \\
\varepsilon & \\
1^*(\varepsilon + 0) & \\
(0 + 1)^*01(0 + 1)^* &
\end{align*}
$$

A language is regular if it is represented by a regular expression.
Understanding regular expressions

\[\Sigma = \{0, 1\} \]

\[01^* = 0(1)^* \text{ represents } \{0, 01, 011, 0111, \ldots \} \]

0 followed by any number of 1s

\[01^* \text{ is not } (01)^* \]
Understanding regular expressions

$0 + 1$ yields $\{0, 1\}$

$(0 + 1)^*$ yields $\{\varepsilon, 0, 1, 00, 01, 10, 11, \ldots \}$

$(0 + 1)^*010$ any string that ends in 010

$(0 + 1)^*01(0 + 1)^*$ any string containing 01
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^* \]
What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^* \]
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^* \]

\[((0 + 1)(0 + 1))^* \]
\[((0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) \]
\[(0 + 1)(0 + 1)(0 + 1) \]
Understanding regular expressions

What language does the following represent?

\(((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^*\)

\(((0 + 1)(0 + 1))^*\) strings of length 2

\(((0 + 1)(0 + 1)(0 + 1))^*\) strings of length 3

strings whose length is even or a multiple of 3 = strings of length 0, 2, 3, 4, 6, 8, 9, 10, ...
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^*\]

- \[((0 + 1)(0 + 1))^*\]
 - strings of even length

- \[(0 + 1)(0 + 1)\]
 - strings of length 2

- \[((0 + 1)(0 + 1)(0 + 1))^*\]
 - strings whose length is a multiple of 3

- \[(0 + 1)(0 + 1)(0 + 1)\]
 - strings of length 3
Understanding regular expressions

What language does the following represent?

\[(0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^*\]

strings whose length is **even or a multiple of 3**

= strings of length \(0, 2, 3, 4, 6, 8, 9, 10, 12, \ldots\)

\[(0 + 1)(0 + 1))^*\]

strings of **even length**

\[(0 + 1)(0 + 1)(0 + 1))^*\]

strings whose length is a **multiple of 3**

\[(0 + 1)(0 + 1)\]

strings of length 2

\[(0 + 1)(0 + 1)(0 + 1)\]

strings of length 3
What language does the following represent?

\[((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*\]
Understanding regular expressions

What language does the following represent?
\(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*\)

\((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)\)
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1) \]

\[(0 + 1)(0 + 1) \quad (0 + 1)(0 + 1)(0 + 1) \]
Understanding regular expressions

What language does the following represent?

$$(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*$$

$$(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)$$

$$(0 + 1)(0 + 1)$$ strings of length 2

$$(0 + 1)(0 + 1)(0 + 1)$$ strings of length 3
Understanding regular expressions

What language does the following represent?

\[((\text{0 }+ \text{1})(\text{0 }+ \text{1}) + (\text{0 }+ \text{1})(\text{0 }+ \text{1})(\text{0 }+ \text{1}))\]^*\

\[(\text{0 }+ \text{1})(\text{0 }+ \text{1}) + (\text{0 }+ \text{1})(\text{0 }+ \text{1})(\text{0 }+ \text{1})\]

strings of length 2 or 3

\[(\text{0 }+ \text{1})(\text{0 }+ \text{1})\]

strings of length 2

\[(\text{0 }+ \text{1})(\text{0 }+ \text{1})(\text{0 }+ \text{1})\]

strings of length 3
Understanding regular expressions

What language does the following represent?

$$(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*$$

strings that can be **broken into blocks**, where each block has **length 2 or 3**

$$((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)$$

strings of **length 2 or 3**

$$(0 + 1)(0 + 1)$$

strings of length 2

$$(0 + 1)(0 + 1)(0 + 1)$$

strings of length 3
Understanding regular expressions

What language does the following represent?

$$(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*)$$

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

$$\varepsilon \quad 1 \quad 01 \quad 011 \quad 00110 \quad 011010110$$
Understanding regular expressions

What language does the following represent?

\(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))\)^\ast

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>01</th>
<th>011</th>
<th>00110</th>
<th>011010110</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

The regular expression represents all strings except 0 and 1
Understanding regular expressions

What language does the following represent?

\[(1 + 01 + 001)^* (\varepsilon + 0 + 00)\]
Understanding regular expressions

What language does the following represent?

ends in at most two 0s

\[(1 + 01 + 001)^* (\varepsilon + 0 + 00)\]
Understanding regular expressions

What language does the following represent?

\[(1 + 01 + 001)^* (\varepsilon + 0 + 00)\]

at most two 0s between two consecutive 1s

ends in at most two 0s

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

\(\varepsilon\) 00 0110010110 0010010
Writing regular expressions

Write a regular expression for all strings with two consecutive 0s.
Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0 + 1)*00(0 + 1)*