CSCI 3130: Formal Languages and Automata Theory
The Chinese University of Hong Kong, Fall 2019
due 11:59pm Monday December 16

Collaborating on homework is encouraged, but you must write your own solutions in your own
words and list your collaborators. Copying someone else’s solution will be considered plagiarism
and may result in failing the whole course.

Please answer clearly and concisely. Explain your answers. Unexplained answers will get lower
scores or even no credits.

(1) (30 points) For each of the following problems, show that it is NP-complete (namely,
(1) it is in NP and (2) some NP-complete language reduces to it.) When showing NP-
completeness, you can start from any language that was shown NP-complete in class or
tutorial.

(a) \( L_1 = \{ \langle G, k \rangle \mid G \text{ is a graph that contains (at least) two cliques, each of size } k \} \)

(b) \( L_2 = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable } \leq 3\text{CNF formula where each literal appears in at most 3 places} \} \).
   (In a \( \leq 3\text{CNF formula}, \) each clause contains at most 3 literals.)
   **Hint:** Reduce from 3SAT. Make several copies of each variable in the 3SAT formula,
   and write clauses that require all copies of the same variable to be equal.

(2) (20 points) For each of the following languages, suppose some polynomial-time algorithm
\( A \) decides the corresponding decision problem. Using \( A \), give a polynomial-time algorithm
to search for a solution, whenever such a solution exists.

   Explain why your algorithm works. Insufficient explanation will get zero points.

(a) \( VC = \{ \langle G, k \rangle \mid \text{Graph } G \text{ contains a vertex cover of size } k \} \)

(b) \( IM = \{ \langle G, k \rangle \mid \text{Graph } G \text{ contains an independent set of size } k \} \)

(3) (25 points) Throughout the semester, we looked at various models of computation and we
came up with the following “hierarchy” of classes of languages:

\[
\text{regular} \subseteq \text{context-free} \subseteq P \subseteq NP \subseteq \text{decidable} \subseteq \text{recognizable}
\]

We also gave examples showing that the containments are strict (e.g., a context-free
language that is not regular), except for the containment \( P \subseteq NP \), which is not known to
be strict.

There is one gap in this picture between NP languages and decidable languages. In this
problem you will fill this gap.

(a) Show that 3SAT is decidable, and the decider has running time \( 2^{O(n^c)} \). (Unlike
   a verifier for 3SAT which is given a 3CNF formula \( \varphi \) together with a potential
   satisfying assignment for \( \varphi \), a decider for 3SAT is only given a 3CNF formula but
   not an assignment for it.)

(b) Argue that for every NP-language \( L \) there is a constant \( c \) such that \( L \) is decidable in
time \( 2^{O(n^c)} \). (Use the Cook–Levin Theorem.)
(c) Let $L'$ be the following language:

$$L' = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ does not accept input } \langle M, w \rangle \text{ within } 2^{2^{|w|}} \text{ steps} \}.$$ 

It is not hard to see that $L'$ can be decided in time $O(2^{2^n})$.

Show that $L'$ cannot be decided in time $2^{O(n^c)}$ for any constant $c$, and therefore it is not in NP.

**Hint:** Assume that $L'$ can be decided by a Turing machine $D$ in time $2^{O(n^c)}$. What happens when $D$ is given input $\langle D, w \rangle$, where $w$ is a sufficiently long string?

(4) (25 points) A **heuristic** is an algorithm that often works well in practice, but it may not always produce the correct answer. In this problem, we will consider a heuristic for CLIQUE.

Recall that the *degree* of a vertex is the number of edges incident to it. In the following, we assume the vertices in the input graph $G$ are labelled from 1 to $n$. Consider the following heuristic $A$ for CLIQUE:

**Algorithm 1 GreedyClique($G, k$)**

**Require:** $G$ is a graph, $k$ is a nonnegative integer

1. Let $v$ be the vertex of maximum degree  
   $\triangleright$ if there are more than one choice for $v$, break ties by choosing the smallest label
2. Set $S = \{v\}$
3. Let $N = \{u \in V \setminus S \mid (u, v') \in E \text{ for all } v' \in S\}$ be the set of vertices outside $S$ that are adjacent to all vertices in $S$
4. **while** $N$ is not empty **do**
5. Let $v$ be the vertex in $N$ of maximum degree  
   $\triangleright$ breaking ties by choosing the smallest label
6. Update $S$ as $S \cup \{v\}$
7. Let $N = \{u \in V \setminus S \mid (u, v') \in E \text{ for all } v' \in S\}$ be the set of vertices outside $S$ that are adjacent to all vertices in $S$
8. **end while**
9. **accept** if and only if $|S| \geq k$

(a) Show that $A$ runs in polynomial time.

(b) Show, using a loop invariant, that $S$ is guaranteed to be a clique of $G$ at the end of the while loop.

(Note: As a result, if $A$ accepts $\langle G, k \rangle$, then $\langle G, k \rangle \in \text{CLIQUE}$)

(c) Show that it is possible that $A$ rejects $\langle G, k \rangle$, even though $\langle G, k \rangle \in \text{CLIQUE}$.

Give such an instance $\langle G, k \rangle$ where the graph $G$ contains at most 5 vertices.