Collaborating on homework is encouraged, but you must write your own solutions in your own words and list your collaborators. Copying someone else’s solution will be considered plagiarism and may result in failing the whole course.

Please answer clearly and concisely. Explain your answers. Unexplained answers will get lower scores or even no credits.

(1) (30 points) Consider the following context-free grammar G:

$$T \rightarrow () \mid (T) \mid (TT)$$

It generates expressions like $(())$, $((()))$, and so on.

(a) Every partially completed rule of the form $A \rightarrow \alpha \cdot \beta$ is known as an item. Write all items in the grammar G and construct an NFA for the valid item updates.

(b) Convert the NFA to a DFA. Which of the states are shift states and which are reduce states? Are there any conflicts?

(c) Using the DFA, show an execution of the LR(0) parsing algorithm on the input $(())()$.

(d) Now consider the following context-free grammar G':

$$T \rightarrow \varepsilon \mid (T)$$

Show that G' is not an LR(0) grammar by giving the DFA of valid item updates.

(2) (25 points) In this problem, you will design a Turing machine for the following language. Briefly explain how your Turing machine works (insufficient explanation may get zero points).

$$L = \{a^i b^j c^k \mid i \geq j \geq k \geq 1\}.$$

The input alphabet is $\Sigma = \{a, b, c\}$. Give both a high-level description and a state diagram of your Turing machine.

(3) (30 points) A Turing machine with left reset is similar to an ordinary Turing machine, but the transition function has the form

$$\sigma: Q \times \Gamma \rightarrow Q \times \Gamma \times \{R, \text{RESET}\}.$$

If $\sigma(q, a) = (r, b, \text{RESET})$, when the machine is in state q reading an a, the machine first writes b on the tape at the current location, then its head jumps to the left-hand end of the tape and enters state r. Note that these machines do not have the usual ability to move the head one symbol left. You will argue that a Turing machine with left reset is equivalent to a Turing Machine: Every Turing machine with left reset can be simulated on a Turing Machine, and vice versa.
(a) Write a formal definition of Turing machine with left reset. Describe what is the effect of the RESET transition on the current configuration. A formal definition of an automaton will look like page 17 of Lecture 14 or page 9/slide 7 of Lecture 10.

(b) Show how to simulate a Turing machine with left reset on a Turing Machine. For this, you need to specify

- how the tape of the Turing Machine will be used to represent the Turning machine with left reset;
- how the Turing Machine tape should be set up initially;
- what the Turing Machine should do when the Turing machine with left reset performs an R or RESET transition;
- what the Turing Machine should do when the Turing machine with left reset accepts/rejects.

(c) Show how to simulate a Turing Machine on a Turing machine with left reset. Since most of the answers are similar to those in part (b), you only need to specify

- how the tape of the Turing Machine with left reset will be used to represent the (usual) Turning machine;
- how the Turing Machine with left reset’s tape should be set up initially;
- what the Turing machine with left reset should do when the (usual) Turing machine performs an L transition.

(4) (15 points) The Church–Turing Thesis is often quoted as the claim that Turing machines are a universal model of computation: Any computation that can be performed on any computer we will ever build can also be done on a Turing machine. Here are some possible objections to the Church–Turing Thesis. For each of these objections, say if you think it is reasonable or not, and explain why. You only need to answer three out of four objections below; you can choose any three to answer.

You won’t be graded based on whether your answer is “right” or “wrong”, but based on how well you explain your answer. We expect your answer to each objection to be about 5–10 sentences long, but feel free to elaborate more if necessary. For this question, you are encouraged to research on the Internet for supporting arguments, and cite appropriately.

(a) Suppose I want to know what is the smallest country in the world. In real life, I would use Google, type in “smallest country”, and I find out the answer after a few clicks. But I cannot do this on a Turing Machine. How do I even connect a Turing Machine to the Internet? Since there are computations we can do in real life but not on a Turing Machine, the Church–Turing thesis is false.

(b) Modern machines may be equipped with sensors that receive analog signals, such as object detectors on a self-driving car. Analog signals and computation about them are not captured by a Turing machine.

(c) Some programming languages can handle infinite objects, such as infinite list in Lisp or Haskell. But every object in a Turing machine is finite. How could a Turing machine represent these infinite objects?

(d) Humans can also be modeled as computers: We take inputs from the environment (by seeing, hearing, touching) and produce outputs (via speaking and gestures). If the Church–Turing thesis is true, then any task that humans can do can also be done on a Turing Machine, and so on any machine. But there are tasks that humans are better at than machines: Learning foreign languages, identifying objects in images,
winning basketball games, and so on. Therefore the Church–Turing Thesis cannot be true.