NFA to DFA conversion and regular expressions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2016
DFAs and NFAs are equally powerful

NFA can do everything a DFA can do
How about the other way?

Every NFA is equivalent to some DFA for the same language
NFA \rightarrow DFA in two easy steps

1. Eliminate ϵ-transitions
2. Convert simplified NFA to DFA

 We will do this first
NFA → DFA: intuition
NFA → DFA: intuition
NFA → DFA: states

DFA has a state for every subset of NFA states
NFA → DFA: transitions

DFA has a state for every subset of NFA states
NFA \rightarrow DFA: accepting states

DFA accepts if it contains an NFA accepting state
NFA \rightarrow DFA: eliminate unreachable states

At the end, you may eliminate unreachable states
General conversion

<table>
<thead>
<tr>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>states</td>
<td>q_0, q_1, \ldots, q_n</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>initial state</td>
<td>q_0</td>
</tr>
<tr>
<td>transitions</td>
<td>δ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>accepting states</td>
<td>$F \subseteq Q$</td>
</tr>
</tbody>
</table>
NFA \rightarrow DFA in two easy steps

1. **Eliminate ε-transitions**
2. Convert simplified NFA to DFA ✔
Eliminating ε-transitions

How to transform the above NFA into one without ε’s?

New (equivalent) transitions

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>${q_0, q_1, q_2}$</td>
<td>${q_1, q_2}$</td>
</tr>
<tr>
<td>q_1</td>
<td>${q_0, q_1, q_2}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

New accepting states: q_2, q_1, q_0
Eliminating ε-transitions

original NFA:

new transition:

new NFA:
Eliminating \(\varepsilon\)-transitions: general rules

Paths with \(\varepsilon\)'s are replaced with a single transition

States that can reach accepting state by \(\varepsilon\) are all accepting
Regular expressions
Regular expressions

Advanced editors (e.g. Vim, Emacs) and modern programming languages (e.g. PERL, Python) support powerful string matching using regular expressions (regex)

Example:
PERL regex `colou?r` matches “color”/“colour”
PERL regex `[A-Za-z]*ing` matches any word ending in “ing”

We will learn to parse complicated regex recursively by building up from simpler ones
Also construct the language matched by the expression recursively
Will focus on regular expressions in formal language theory (notations differ from PERL/Python/POSIX regex)
String concatenation

\[
\begin{align*}
 s &= \text{abb} \\
 t &= \text{bab} \\
 st &= \text{abbbab} \\
 ts &= \text{bababb} \\
 ss &= \text{abbabb} \\
 sst &= \text{abbabbbab}
\end{align*}
\]

\[
\begin{align*}
 s &= x_1 \ldots x_n, & t &= y_1 \ldots y_m \\
 \downarrow & & \\
 st &= x_1 \ldots x_n y_1 \ldots y_m
\end{align*}
\]
Operations on languages

- **Concatenation** of languages L_1 and L_2

 $$L_1 L_2 = \{st : s \in L_1, t \in L_2\}$$

- **n-th power** of language L

 $$L^n = \{s_1 s_2 \ldots s_n : s_1, s_2, \ldots, s_n \in L\}$$

- **Union** of L_1 and L_2

 $$L_1 \cup L_2 = \{s : s \in L_1 \text{ or } s \in L_2\}$$
Example

$L_1 = \{0, 01\}$ \quad $L_2 = \{\varepsilon, 1, 11, 111, \ldots \}$

$L_1 L_2 = \{0, 01, 011, 0111, \ldots \} \cup \{01, 011, 0111, 01111, \ldots \}$

$= \{0, 01, 011, 0111, \ldots \}$

0 followed by any number of 1s

$L_1^2 = \{00, 001, 010, 0101\}$ \quad $L_2^2 = L_2$

$L_2^n = L_2$ for any $n \geq 1$

$L_1 \cup L_2 = \{0, 01, \varepsilon, 1, 11, 111, \ldots \}$
Operations on languages

The star of L are contains strings made up of zero or more chunks from L

\[L^* = L^0 \cup L^1 \cup L^2 \cup \ldots \]

Example: $L_1 = \{0, 01\}$ and $L_2 = \{\varepsilon, 1, 11, 111, \ldots \}$

What is L_1^*? L_2^*?
Example

\[L_1 = \{0, 01\} \]

\[L_1^0 = \{\varepsilon\} \]
\[L_1^1 = \{0, 01\} \]
\[L_1^2 = \{00, 001, 010, 0101\} \]
\[L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\} \]

Which of the following are in \(L_1^* \)?

\[\begin{array}{ccc}
00100001 & 00110001 & 10010001 \\
\end{array} \]
Example

$L_1 = \{0, 01\}$

$L_1^0 = \{\varepsilon\}$

$L_1^1 = \{0, 01\}$

$L_1^2 = \{00, 001, 010, 0101\}$

$L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\}$

Which of the following are in L_1^*?

- 00100001: Yes
- 00110001: No
- 10010001: No
Example

\[L_1 = \{0, 01\} \]

\[L_1^0 = \{\varepsilon\} \]
\[L_1^1 = \{0, 01\} \]
\[L_1^2 = \{00, 001, 010, 0101\} \]
\[L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 010101\} \]

Which of the following are in \(L_1^* \)?

<table>
<thead>
<tr>
<th>String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>00100001</td>
<td>Yes</td>
</tr>
<tr>
<td>00110001</td>
<td>No</td>
</tr>
<tr>
<td>10010001</td>
<td>No</td>
</tr>
</tbody>
</table>

\(L_1^* \) contains all strings such that any 1 is preceded by a 0.
Example

$L_2 = \{\varepsilon, 1, 11, 111, \ldots \}$

any number of 1s

$L_2^0 = \{\varepsilon\}$

$L_2^1 = L_2$

$L_2^2 = L_2$

$L_2^n = L_2 \ (n \geq 1)$
Example

\[L_2 = \{ \varepsilon, 1, 11, 111, \ldots \} \]

any number of 1s

\[L^0_2 = \{ \varepsilon \} \]
\[L^1_2 = L_2 \]
\[L^2_2 = L_2 \]
\[L^n_2 = L_2 \quad (n \geq 1) \]

\[L^*_2 = L^0_2 \cup L^1_2 \cup L^2_2 \cup \ldots \]
\[= \{ \varepsilon \} \cup L_2 \cup L_2 \cup \ldots \]
\[= L_2 \]

\[L^*_2 = L_2 \]
Combining languages

We can construct languages by starting with simple ones, like \{0\} and \{1\}, and combining them

\[
\{0\}(\{0\} \cup \{1\})^* \quad \Rightarrow \quad 0(0 + 1)^*
\]

all strings that start with 0
Combining languages

We can construct languages by starting with simple ones, like \{0\} and \{1\}, and combining them

\[
\{0\}(\{0\} \cup \{1\})^* \quad \Rightarrow \quad 0(0 + 1)^*
\]

all strings that start with 0

\[
(\{0\}\{1\}^*) \cup (\{1\}\{0\}^*) \quad \Rightarrow \quad 01^* + 10^*
\]

0 followed by any number of 1s, or 1 followed by any number of 0s
Combining languages

We can construct languages by starting with simple ones, like \{0\} and \{1\}, and combining them

\[
\{0\}(\{0\} \cup \{1\})^* \quad \Rightarrow \quad 0(0 + 1)^*
\]

all strings that start with 0

\[
(\{0\}\{1\}^*) \cup (\{1\}\{0\}^*) \quad \Rightarrow \quad 01^* + 10^*
\]

0 followed by any number of 1s, or
1 followed by any number of 0s

\(0(0 + 1)^*\) and \(01^* + 10^*\) are regular expressions

Blueprints for combining simpler languages into complex ones
Syntax of regular expressions

A regular expression over Σ is an expression formed by the following rules:

- The symbols \emptyset and ε are regular expressions.
- Every symbol a in Σ is a regular expression.
- If R and S are regular expressions, so are $R + S$, RS and R^*.

Examples:

\[
\begin{align*}
\emptyset \\
0(0 + 1)^* \\
01^* + 10^* \\
\varepsilon \\
1^*(\varepsilon + 0) \\
(0 + 1)^*01(0 + 1)^*
\end{align*}
\]

A language is regular if it is represented by a regular expression.
Understanding regular expressions

\[\Sigma = \{0, 1\} \]

\[01^* = 0(1)^* \text{ represents } \{0, 01, 011, 0111, \ldots \} \]
0 followed by any number of 1s

\[01^* \text{ is not } (01)^* \]
Understanding regular expressions

0 + 1 yields \{0, 1\}
strings of length 1

(0 + 1)* yields \{\varepsilon, 0, 1, 00, 01, 10, 11, \ldots\\}
any string

(0 + 1)*010
any string that ends in 010

(0 + 1)*01(0 + 1)*
any string containing 01
Understanding regular expressions

What language does the following represent?

\(((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^*\)
What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^*\]

\[((0 + 1)(0 + 1))^*\] \[\text{strings of even length}\]

\[\text{strings whose length is a multiple of 3}\]

\[((0 + 1)(0 + 1)(0 + 1))^*\]
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^* \]

\[((0 + 1)(0 + 1))^* \] \[((0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) \] \[(0 + 1)(0 + 1)(0 + 1) \]
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^* \]

\[((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) \]
strings of length 2

\[(0 + 1)(0 + 1)(0 + 1) \]
strings of length 3
Understanding regular expressions

What language does the following represent?

$$(((0+1)(0+1))^* + (((0+1)(0+1)(0+1))^*)$$

$$(0+1)(0+1)$$
strings of length 2

$$(0+1)(0+1)(0+1)$$
strings of length 3

strings of even length

strings whose length is a multiple of 3
Understanding regular expressions

What language does the following represent?

$$((0 + 1)(0 + 1))^* + ((0 + 1)(0 + 1)(0 + 1))^*$$

strings whose length is **even or a multiple of 3**

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, …

$$((0 + 1)(0 + 1))^*$$

strings of **even** length

$$((0 + 1)(0 + 1)(0 + 1))^*$$

strings whose length is a **multiple of 3**

$$(0 + 1)(0 + 1)$$

strings of length 2

$$(0 + 1)(0 + 1)(0 + 1)$$

strings of length 3
Understanding regular expressions

What language does the following represent?

\(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*\)
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1) \]
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1) \]

\[(0 + 1)(0 + 1) \quad (0 + 1)(0 + 1)(0 + 1) \]
Understanding regular expressions

What language does the following represent?

\[((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^* \]

\[(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1) \]

- (0 + 1)(0 + 1) strings of length 2
- (0 + 1)(0 + 1)(0 + 1) strings of length 3
Understanding regular expressions

What language does the following represent?

\(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))\)^*

\((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)\)

strings of length 2 or 3

\((0 + 1)(0 + 1)\)

strings of length 2

\((0 + 1)(0 + 1)(0 + 1)\)

strings of length 3
Understanding regular expressions

What language does the following represent?
\(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^* \)

strings that can be broken into blocks, where each block has length 2 or 3

\((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)\)
strings of length 2 or 3

\((0 + 1)(0 + 1)\)
strings of length 2

\((0 + 1)(0 + 1)(0 + 1)\)
strings of length 3
What language does the following represent?

$$(((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*$$

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

$$\varepsilon \quad 1 \quad 01 \quad 011 \quad 00110 \quad 011010110$$
Understanding regular expressions

What language does the following represent?

$$((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))^*$$

strings that can be broken into blocks, where each block has length 2 or 3

Which are in the language?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>01</th>
<th>011</th>
<th>00110</th>
<th>011010110</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

The regular expression represents all strings except 0 and 1.
What language does the following represent?

\[(1 + 01 + 001)^* (\varepsilon + 0 + 00)\]
What language does the following represent?

```
(1 + 01 + 001)* \( \varepsilon + 0 + 00 \)
```

ends in at most two 0s

Examples:

```
00
001
0110
1001
0010
```
Understanding regular expressions

What language does the following represent?

\[(1 + 01 + 001)^* (\varepsilon + 0 + 00) \]

- at most two 0s between two consecutive 1s
- ends in at most two 0s
- Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

\[\varepsilon \quad 00 \quad 0110010110 \quad 0010010 \]
Writing regular expressions

Write a regular expression for all strings with two consecutive 0s
Writing regular expressions

Write a regular expression for all strings with **two consecutive 0s**

\[(\text{anything})00(\text{anything})\]

\[(0 + 1)^*00(0 + 1)^*\]