Week 3 Tutorial Session

1. (a) Write down a regular expression for the following NFA. For this problem, you do not have to go through the procedure described in class.
(b) Convert the following NFA into a DFA.

2. (a) Write down the definition of regular expressions over an alphabet Σ.
(b) Given a string \(w \), define \(w^R \) as the string \(w \) in reverse order. That is, if \(w = w_1w_2 \ldots w_n \), then \(w^R = w_nw_{n-1} \ldots w_1 \). For example, if \(w = \text{live} \), then \(w^R = \text{evil} \).
 Given a language \(L \), define its reversal \(L^R \) as the set of strings in \(L \) in reverse. More precisely, \(L^R = \{ w^R \mid w \in L \} \). For example, if \(L = \{ \text{live, raw, level} \} \), then \(L^R = \{ \text{evil, war, level} \} \).
 If \(L \) is a regular language, prove that \(L^R \) as also regular.

3. Let \(L \) be any language. We say that two strings \(x \) and \(y \) are indistinguishable by \(L \) if for every string \(z \), we have \(xz \in L \) if and only if \(yz \in L \).
 (a) For concreteness, consider \(L_1 = \{ x \in \{0, 1\}^* \mid \text{the number of } 1\text{'s in } x \text{ is divisible by 3} \} \). Prove that \(1 \) and \(1111 \) are indistinguishable by \(L_1 \).
 (b) Continuing with (a), which strings are indistinguishable from the string \(1 \) by \(L_1 \)? The set of all such strings is the equivalence class of the string \(1 \) and will be denoted by \([1] \).
 (c) Find a string \(s \) not in \([1] \). What is the equivalence class of \(s \)? (We will denote this equivalence class by \([s] \))
 (d) Can you find another string \(t \) not in \([1] \) or \([s] \)? What is the equivalence class of \(t \)?
 (e) Can you find yet another string \(u \) not in these equivalence classes?
 (f) Design a DFA for the language \(L_1 \). How are states in your DFA related to the equivalence classes?