Undecidable Problems for CFGs
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015
<table>
<thead>
<tr>
<th>Decidable</th>
<th>Undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA D accepts w</td>
<td>TM M accepts w</td>
</tr>
<tr>
<td>CFG G generates w</td>
<td>TM M halts on w</td>
</tr>
<tr>
<td>DFAs D and D' accept same inputs</td>
<td>TM M accepts some input</td>
</tr>
<tr>
<td></td>
<td>TM M and M' accept the same inputs</td>
</tr>
</tbody>
</table>

CFG G generates all inputs?
CFG G is ambiguous?
Representing computations

\[L_1 = \{ w%w \mid w \in \{a, b\}^* \} \]
A configuration consists of current state, head position, and tape contents.

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>□</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>□</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>□</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>□</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
```

Configuration (abbreviation)

ab q_1 a

abb q_{acc}
Computation histories

- q_0 abb%abb
- a q_2 bb%abb
- : ...
- abb q_2 %abb
- abb% q_3 abb
- abb q_2 %xbb
- : ...
- xxx%xxx q_1
- xxx%xx q_a x

computation history
Computation histories as strings

If M halts on w, the computation history of (M, w) is the sequence of configurations C_1, \ldots, C_k that M goes through on input w.

The computation history can be written as a string h over alphabet $\Gamma \cup Q \cup \{\#\}$.

accepting history: M accepts w \iff q_{acc} appears in h

rejecting history: M rejects w \iff q_{rej} appears in h
Undecidable problems for CFGs

\[\text{ALL}_{\text{CFG}} = \left\{ \langle G \rangle \mid G \text{ is a CFG that generates all strings} \right\} \]

The language ALL\(_{\text{CFG}}\) is undecidable.

We will argue that

If \(\text{ALL}_{\text{CFG}} \) can be decided, so can \(\overline{A_{\text{TM}}} \)

\[\overline{A_{\text{TM}}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM that rejects or loops on } w \right\} \]
Undecidable problems for CFGs

Proof by contradiction

Suppose some Turing machine A decides ALL_{CFG}

$\langle G \rangle \rightarrow A$ accept if G generates all strings

We want to construct a Turing machine S that decides $\overline{A_{TM}}$

$\langle M, w \rangle \rightarrow \text{Convert to } G \rightarrow \langle G \rangle \rightarrow A$ accept if M rejects or loops on w

reject if M accepts w

G generates all strings if M rejects or loops on w

G fails to generate some string if M accepts w
Undecidable problems for CFGs

$\langle M, w \rangle \xrightarrow{\text{Convert to } G} \langle G \rangle$

G fails to generate some string

\uparrow

M accepts w

The alphabet of G will be $\Gamma \cup Q \cup \{\#\}$

G will generate all strings except accepting computation histories of (M, w)

First we construct a PDA P, then convert it to CFG G
Undecidability via computation histories

candidate computation history h of (M, w)

$P = \text{on input } h \quad \text{(try to spot a mistake in } h\text{)}$

- If h is not of the form $\# w_1 \# w_2 \# \ldots \# w_k \#$, accept
- If $w_1 \neq q_0 \# w$ or w_k does not contain q_a, accept
- If two consecutive blocks $w_i \# w_{i+1}$ do not follow from the transitions of M, accept

Otherwise, h must be an accepting history, reject

$\Rightarrow \text{Reject}$

$\# q_0 a b \# x q_1 b \# a b \# \ldots \# x x \% x q_a \# x$
Computation is local

Changes between configurations always occur around the head
Legal and illegal transitions windows

Legal windows

⋯ abx ⋯
⋯ abx ⋯
⋯ aq₃a ⋯
⋯ q₆ax ⋯
⋯ aba ⋯
⋯ abq₆ ⋯
⋯ aa □ ⋯
⋯ xa □ ⋯

Illegal windows

⋯ q₃ab ⋯
⋯ abq₃ ⋯
⋯ q₃q₆a ⋯
⋯ q₃q₆x ⋯
⋯ aq₃a ⋯
⋯ q₆ab ⋯
⋯ aq₃a ⋯
⋯ aq₆x ⋯

\[q₃ \quad a/xL \quad q₆ \]
Implementing P

If two consecutive blocks $w_i # w_{i+1}$ do not follow from the transitions of M, accept

For every position of w_i:
- Remember offset from # in w_i on stack
- Remember first row of window in state

After reaching the next #:
- Pop offset from # from stack as you consume input
- Remember second row of window in state

If window is illegal, accept; Otherwise reject
The computation history method

\[\text{ALL}_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates all strings} \} \]

If \(\text{ALL}_{\text{CFG}} \) can be decided, so can \(\overline{A_{\text{TM}}} \)

\[\langle M, w \rangle \xrightarrow{\text{Convert to } G} \langle G \rangle \]

\(G \) accepts all strings except accepting computation histories of \((M, w) \)

We first construct a PDA \(P \), then convert it to CFG \(G \)
Post Correspondence Problem

Input: A fixed set of tiles, each containing a pair of strings

\[
\begin{array}{ccccccc}
 \text{bab} & \text{c} & \text{a} & \text{baa} & \text{a} & \text{bab} & \text{ε} \\
 \text{cc} & \text{ab} & \text{ab} & \text{a} & \text{baba} & \varepsilon &
\end{array}
\]

Given an infinite supply of tiles from a particular set, can you match top and bottom?

\[
\begin{array}{cccccccc}
 \text{a} & \text{baa} & \text{bab} & \text{c} & \text{ab} & \text{bab} & \text{a} & \text{baba} \\
 \text{ab} & \text{a} & \varepsilon & \text{ab} & \text{ab} & \text{cc} & \text{baba} &
\end{array}
\]

Top and bottom are both abaababcccbaba
Undecidability of PCP

PCP = \{ \langle T \rangle \mid T \text{ is a collection of tiles that contains a top-bottom match} \}

The language PCP is undecidable
Ambiguity of CFGs

\[\text{AMB} = \{ \langle G \rangle \mid G \text{ is an ambiguous CFG} \} \]

The language AMB is undecidable

We will argue that

If AMB can be decided, then so can PCP
Ambiguity of CFGs

\[T \text{ (collection of tiles)} \quad \mapsto \quad G \text{ (CFG)} \]

If \(T \) can be matched, then \(G \) is ambiguous
If \(T \) cannot be matched, then \(G \) is unambiguous

First, let’s number the tiles

1. bab
 cc
2. c
 ab
3. a
 ab
Ambiguity of CFGs

\[T \text{ (collection of tiles)} \quad \rightarrow \quad G \text{ (CFG)} \]

\begin{itemize}
 \item \text{1} \quad \text{bab}
 \item \text{2} \quad \text{c}
 \item \text{3} \quad \text{a}
\end{itemize}

\begin{itemize}
 \item \text{1} \quad \text{cc}
 \item \text{2} \quad \text{ab}
 \item \text{3} \quad \text{ab}
\end{itemize}

Terminals: a, b, c, 1, 2, 3

Variables: S, T, B

Productions:

- \(S \rightarrow T \mid B \)
- \(T \rightarrow \text{bab}T1 \)
- \(T \rightarrow \text{c}T2 \)
- \(T \rightarrow \text{a}T3 \)
- \(B \rightarrow \text{cc}B1 \)
- \(B \rightarrow \text{ab}B2 \)
- \(B \rightarrow \text{ab}B3 \)
- \(T \rightarrow \text{bab}1 \)
- \(T \rightarrow \text{c}2 \)
- \(T \rightarrow \text{a}3 \)
- \(B \rightarrow \text{cc}1 \)
- \(B \rightarrow \text{ab}2 \)
- \(B \rightarrow \text{ab}3 \)
Ambiguity of CFGs

\[
T \text{ (collection of tiles)} \quad \leftrightarrow \quad G \text{ (CFG)}
\]

Terminals: a, b, c, 1, 2, 3

Variables: S, T, B

Productions:

\[
S \rightarrow T \mid B
\]

\[
T \rightarrow \text{bab} T1 \quad T \rightarrow \text{c} T2 \quad T \rightarrow \text{a} T3
\]

\[
B \rightarrow \text{cc} B1 \quad B \rightarrow \text{ab} B2 \quad B \rightarrow \text{ab} B3
\]

\[
T \rightarrow \text{bab1} \quad T \rightarrow \text{c}2 \quad T \rightarrow \text{a}3
\]

\[
B \rightarrow \text{cc1} \quad B \rightarrow \text{ab}2 \quad B \rightarrow \text{ab}3
\]
Ambiguity of CFGs

Each sequence of tiles gives a pair of derivations

\[S \Rightarrow T \Rightarrow \text{bab} \quad T_1 \Rightarrow \text{babc} \quad T_2 \Rightarrow \text{babcc} \]

\[S \Rightarrow B \Rightarrow \text{cc} \quad B_1 \Rightarrow \text{ccab} \quad B_2 \Rightarrow \text{ccabab} \]

If the tiles match, these two derive the same string (with different parse trees)
Ambiguity of CFGs

\[T \text{ (collection of tiles)} \quad \mapsto \quad G \text{ (CFG)} \]

If \(T \) can be matched, then \(G \) is ambiguous ✓
If \(T \) cannot be matched, then \(G \) is unambiguous ✓

If \(G \) is ambiguous, then the two parse trees will look like

\[
\begin{align*}
S & \quad | \\
T & \quad | \\
a_1 & \quad T \\
a_2 & \quad \ldots \quad n_1 \\
T & \quad | \\
a_i & \quad \quad n_i
\end{align*}
\]

\[
\begin{align*}
S & \quad | \\
B & \quad | \\
b_1 & \quad B \quad m_1 \\
b_2 & \quad \ldots \quad m_2 \\
B & \quad | \\
b_j & \quad m_j
\end{align*}
\]

Therefore \(n_1 n_2 \ldots n_i = m_1 m_2 \ldots m_j \), and there is a match