Undecidability and Reductions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015
Undecidability

\[A_{TM} = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ accepts input } w \} \]

Turing’s Theorem

The language \(A_{TM} \) is undecidable

Note that a Turing machine \(M \) may take as input its own description \(\langle M \rangle \)
Proof of Turing’s Theorem

Proof by contradiction:

Suppose \(A_{TM} \) is decidable, then some TM \(H \) decides \(A_{TM} \):

\[
\langle M, w \rangle \quad \rightarrow \quad H \quad \rightarrow \quad \text{accept if } M \text{ accepts } w \\
\quad \quad \quad \quad \rightarrow \quad \text{reject if } M \text{ rejects or loops on } w
\]
Proof of Turing’s Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM}:

\[
\langle M, w \rangle \rightarrow H \rightarrow \begin{cases}
\text{accept if } M \text{ accepts } w \\
\text{reject if } M \text{ rejects or loops on } w
\end{cases}
\]

If $w = \langle M \rangle$,

\[
\langle M, \langle M \rangle \rangle \rightarrow H \rightarrow \begin{cases}
\text{accept if } M \text{ accepts } \langle M \rangle \\
\text{reject if } M \text{ rejects or loops on } \langle M \rangle
\end{cases}
\]
Proof of Turing’s theorem

\[\langle M, \langle M \rangle \rangle \rightarrow H \rightarrow \text{accept if } M \text{ accepts } \langle M \rangle \]

\[\rightarrow \text{reject if } M \text{ rejects or loops on } \langle M \rangle \]

Let \(H' \) be a TM that does the opposite of \(H \)
accept states in \(H \) becomes reject states in \(H' \), and vice versa

\[\langle M, \langle M \rangle \rangle \rightarrow H' \rightarrow \text{accept if } M \text{ rejects or loops on } \langle M \rangle \]

\[\rightarrow \text{reject if } M \text{ accepts } \langle M \rangle \]
Proof of Turing’s theorem

Let D be the following TM:

$\langle M \rangle$ \rightarrow \text{copy} \rightarrow \langle M, \langle M \rangle \rangle \rightarrow H'$

H' accepts if M rejects or loops on $\langle M \rangle$

H' rejects if M accepts $\langle M \rangle$
Proof of Turing’s theorem

What happens when $M = D$?

- $\langle M \rangle$ → accept if M rejects or loops on $\langle M \rangle$
- $\langle M \rangle$ → reject if M accepts $\langle M \rangle$

- $\langle D \rangle$ → accept if D rejects or loops on $\langle D \rangle$
- $\langle D \rangle$ → reject if D accepts $\langle D \rangle$

Contradiction! D cannot exist! H cannot exist!
Proof of Turing’s theorem

What happens when \(M = D \)?

- If \(D \) rejects \(\langle D \rangle \), then \(D \) accepts \(\langle D \rangle \)
- If \(D \) accepts \(\langle D \rangle \), then \(D \) rejects \(\langle D \rangle \)

Contradiction! \(D \) cannot exist! \(H \) cannot exist!
Proof of Turing’s theorem: conclusion

Proof by contradiction

Assume A_{TM} is decidable
Then there are TM H, H' and D
But D cannot exist!

Conclusion

The language A_{TM} is undecidable
Diagonalization

Write an infinite table for the pairs \((M, w)\)

(Entries in this table are all made up for illustration)
Diagonalization

<table>
<thead>
<tr>
<th>all possible Turing machines</th>
<th>inputs w</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>$\langle M_1 \rangle$</td>
</tr>
<tr>
<td>M_2</td>
<td>$\langle M_2 \rangle$</td>
</tr>
<tr>
<td>M_3</td>
<td>$\langle M_3 \rangle$</td>
</tr>
<tr>
<td>M_4</td>
<td>$\langle M_4 \rangle$</td>
</tr>
</tbody>
</table>

Only look at those w that describe Turing machines
Diagonalization

<table>
<thead>
<tr>
<th>all possible Turing machines</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>loop</td>
<td>rej</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
<td>acc</td>
<td>acc</td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td></td>
</tr>
</tbody>
</table>

If A_{TM} is decidable, then TM D is in the table
Diagonalization

<table>
<thead>
<tr>
<th>all possible Turing machines</th>
<th>inputs w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\langle M_1 \rangle$</td>
</tr>
<tr>
<td>M_1</td>
<td>acc</td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ...

D does the opposite of the diagonal entries

D on $\langle M_i \rangle = $ opposite of M_i on $\langle M_i \rangle$

$\langle D \rangle$ → accept if D rejects or loops on $\langle D \rangle$

$\langle D \rangle$ → reject if D accepts $\langle D \rangle$
Diagonalization

<table>
<thead>
<tr>
<th>Turing machines</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
<th>$\langle D \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>acc</td>
<td>loop</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
</tr>
<tr>
<td>M_2</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td>acc</td>
</tr>
<tr>
<td>M_3</td>
<td>loop</td>
<td>acc</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
</tr>
<tr>
<td>D</td>
<td>rej</td>
<td>acc</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
<td>rej</td>
</tr>
</tbody>
</table>

We run into trouble when we look at $(D, \langle D \rangle)$
Unrecognizable languages

The language \overline{A}_{TM} is recognizable but not decidable

How about languages that are not recognizable?

$$\overline{A}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$$

$$= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$$

Claim

The language \overline{A}_{TM} is not recognizable
Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know A_{TM} is recognizable

if A_{TM} were also, then A_{TM} would be decidable

But Turing’s Theorem says A_{TM} is not decidable
Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \text{TM recognizing } L, M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

1. Simulate M on input w. If M accepts, N accepts.
2. Simulate M' on input w. If M' accepts, N rejects.
Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

1. Simulate M on input w. If M accepts, N accepts.
2. Simulate M' on input w. If M' accepts, N rejects.

Problem: If M loops on w, we will never go to step 2
Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M = \text{TM recognizing } L$, $M' = \text{TM recognizing } \overline{L}$

The following Turing machine N decides L:

On input w,

For $t = 0, 1, 2, 3, \ldots$

Simulate first t transitions of M on input w.

If M accepts, N accepts.

Simulate first t transitions of M' on input w.

If M' accepts, N rejects.
Reductions
Another undecidable language

\[
\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}\]

We’ll show:

\[
\text{HALT}_{\text{TM}} \text{ is an undecidable language}
\]

We will argue that

If \(\text{HALT}_{\text{TM}}\) is decidable, then so is \(A_{\text{TM}}\)

…but by Turing’s theorem, \(A_{\text{TM}}\) is not
Undecidability of halting

If HALT_{TM} can be decided, so can A_{TM}

Suppose H decides HALT_{TM}

$\langle M, w \rangle \rightarrow H$

accept if M halts on w
reject if M loops on w

We want to construct a TM S that decides A_{TM}

$\langle M, w \rangle \rightarrow ?$
accept if M accepts w
reject if M rejects or loops on w
Undecidability of halting

\[
\text{HALT}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \\
\text{A}_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}
\]

Suppose \(\text{HALT}_{\text{TM}} \) is decidable
Let \(H \) be a TM that decides \(\text{HALT}_{\text{TM}} \)
The following TM \(S \) decides \(\text{A}_{\text{TM}} \)
On input \(\langle M, w \rangle \):

Run \(H \) on input \(\langle M, w \rangle \)
If \(H \) rejects, reject
If \(H \) accepts, run \(U \) on input \(\langle M, w \rangle \)
 If \(U \) accepts, accept; else reject
Steps for showing that a language L is undecidable:

1. If some TM R decides L
2. Using R, build another TM S that decides A_{TM}

But A_{TM} is undecidable, so R cannot exist
Example 1

\[A'_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{TM} \) decidable? Why?
Example 1

\[A'_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]

Is \(A'_{\text{TM}} \) decidable? Why?

Undecidable!

Intuitive reason:
To know whether \(M \) accepts \(\varepsilon \) seems to require simulating \(M \)
But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 1: Figuring out the reduction

Suppose A'_TM can be decided by a TM R

$\langle M' \rangle \xrightarrow{R} \begin{cases} \text{accept if } M' \text{ accepts } \varepsilon \\ \text{reject otherwise} \end{cases}$

We want to build a TM S'

$\langle M, w \rangle \xrightarrow{?} \langle M' \rangle \xrightarrow{R} \begin{cases} \text{accept if } M \text{ accepts } w \\ \text{reject otherwise} \end{cases}$

M' should be a Turing machine such that M' on input $\varepsilon = M$ on input w
Example 1: Implementing the reduction

\[\langle M, w \rangle \rightarrow ? \rightarrow \langle M' \rangle \]

\(M'\) should be a Turing machine such that
\(M'\) on input \(\varepsilon = M\) on input \(w\)

Description of the machine \(M'\):
On input \(z\)

1. Simulate \(M\) on input \(w\)
2. If \(M\) accepts \(w\), accept
3. If \(M\) rejects \(w\), reject
Description of S':
On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

 $M' = a$ TM such that on input z,
 Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R
Example 1: The formal proof

\[A_{TM}' = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \]
\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \]

Suppose \(A_{TM}' \) is decidable by a TM \(R \).
Consider the TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\[M' = \text{a TM such that on input } z, \]
\[\text{Simulate } M \text{ on input } w \text{ and accept/reject according to } M \]

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)
So \(S \) decides \(A_{TM} \), which is impossible
Example 2

\[A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A''_{\text{TM}} \) decidable? Why?
Example 2

\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]

Is \(A''_{TM} \) decidable? Why?

Undecidable!

Intuitive reason:
To know whether \(M \) accepts some strings seems to require simulating \(M \)
But then we need to know whether \(M \) halts

Let’s justify this intuition
Example 2: Figuring out the reduction

Suppose A''_{TM} can be decided by a TM R

$\langle M' \rangle \xrightarrow{R} \text{accept if } M' \text{ accepts some strings}$

We want to build a TM S'

$\langle M, w \rangle \xrightarrow{?} \langle M' \rangle \xrightarrow{R} \text{accept if } M \text{ accepts } w$

M' should be a Turing machine such that M' accepts some strings if and only if M accepts input w
Implementing the reduction

Task: Given $\langle M, w \rangle$, construct M' so that
If M accepts w, then M' accepts some input
If M does not accept w, then M' accepts no inputs

$$M' = \text{a TM such that on input } z,$$

1. Simulate M on input w
2. If M accepts, accept
3. Otherwise, reject
Example 2: The formal proof

\[
A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}
\]
\[
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}
\]

Suppose \(A''_{TM} \) is decidable by a TM \(R \).
Consider the TM \(S \): On input \(\langle M, w \rangle \) where \(M \) is a TM

1. Construct the following TM \(M' \):

\[
M' = \text{a TM such that on input } z,
\]
\[
\text{Simulate } M \text{ on input } w \text{ and accept/reject according to } M
\]

2. Run \(R \) on input \(\langle M' \rangle \) and accept/reject according to \(R \)

Then \(S \) accepts \(\langle M, w \rangle \) if and only if \(M \) accepts \(w \)
So \(S \) decides \(A_{TM} \), which is impossible
Example 3

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Is \(E_{\text{TM}} \) decidable?
Example 3

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]

Is \(E_{\text{TM}} \) decidable?

Undecidable! We will show:

If \(E_{\text{TM}} \) can be decided by some TM \(R \),

Then \(A''_{\text{TM}} \) can be decided by another TM \(S \)

\[A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \} \]
Example 3

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \]
\[A''_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \} \]

Note that \(E_{TM} \) and \(A''_{TM} \) are complement of each other (except ill-formatted strings, which we will ignore)

Suppose \(E_{TM} \) can be decided by some TM \(R \)

Consider the following TM \(S \):

On input \(\langle M \rangle \) where \(M \) is a TM

1. Run \(R \) on input \(\langle M \rangle \)
2. If \(R \) accepts, reject
3. If \(R \) rejects, accept

Then \(S \) decides \(A''_{TM} \), a contradiction
Example 4

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

Is \(EQ_{TM} \) decidable?
Example 4

\[\mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \]

Is \(\mathsf{EQ}_{\mathsf{TM}} \) decidable?

Undecidable!

We will show that \(\mathsf{EQ}_{\mathsf{TM}} \) can be decided by some TM \(R \)
then \(\mathsf{ET}_{\mathsf{TM}} \) can be decided by another TM \(S \)
Example 4: Setting up the reduction

\[
\begin{align*}
\mathrm{EQ}_{\text{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\
\mathrm{ETM} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}
\end{align*}
\]

Given \(\langle M \rangle \), we need to construct \(\langle M_1, M_2 \rangle \) so that

- If \(M \) accepts no input, then \(M_1 \) and \(M_2 \) accept same set of inputs
- If \(M \) accepts some input, then \(M_1 \) and \(M_2 \) do not accept same set of inputs

Idea: Make \(M_1 = M \)

Make \(M_2 \) accept nothing
Example 4: The formal proof

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \}$$

$$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$$

Suppose EQ_{TM} is decidable and R decides it
Consider the following TM S:
On input $\langle M \rangle$ where M is a TM

1. Construct a TM M_2 that rejects every input z
2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R

Then S accepts $\langle M \rangle$ if and only if M accepts no input
So S decides E_{TM} which is impossible