Decidability
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015
Problems about automata

Does $q_0 \xrightarrow{ab} q_1$ accept input abb?

We can formulate this question as a language

$$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$$

Is A_{DFA} decidable?

One possible way to encode a DFA $D = (Q, \Sigma, \delta, q_0, F)$ and input w

$$((q_0, q_1)(a, b)(q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1)) (q_0)(q_1)(abb)$$
Problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Pseudocode:
On input \(\langle D, w \rangle \), where
\[D = (Q, \Sigma, \delta, q_0, F) \]

Set \(q \leftarrow q_0 \)
For \(i \leftarrow 1 \) to length\((w)\)
\[q \leftarrow \delta(q, w_i) \]
If \(q \in F \) accept, else reject

TM description:
On input \(\langle D, w \rangle \), where \(D \) is a DFA, \(w \) is a string

Simulate \(D \) on input \(w \)
If simulation ends in an accept state, accept; else reject
Problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Turing machine details:

Check input is in correct format
 (Transition function is complete, no duplicate transitions)

Perform simulation:

\[
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{\text{abb}}) \\
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\dot{\text{bb}}) \\
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\text{abb}) \\
((q_0, q_1)(a, b)((q_0, a, q_0)(q_0, b, q_1)(q_1, a, q_0)(q_1, b, q_1))(q_0)(q_1))(\text{abb})
\]
Problems about automata

\[A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]

Turing machine details:

Check input is in correct format
(Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of \(D \) and first symbol of \(w \)
Until marker for \(w \) reaches last symbol:
 Update both markers
If state marker is on accepting state, accept; else reject

Conclusion: \(A_{DFA} \) is decidable
Acceptance problems about automata

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \} \]
\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]
\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

Which of these is decidable?
Acceptance problems about automata

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \} \]

The following TM decides \(A_{\text{NFA}} \):
On input \(\langle N, w \rangle \) where \(N \) is an NFA and \(w \) is a string

Convert \(N \) to a DFA \(D \) using the conversion procedure from Lecture 3
Run TM \(M \) for \(A_{\text{DFA}} \) on input \(\langle D, w \rangle \)
If \(M \) accepts, accept; else reject

Conclusion: \(A_{\text{NFA}} \) is decidable
Acceptance problems about automata

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

The following TM decides \(A_{\text{REX}} \)

On input \(\langle R, w \rangle \), where \(R \) is a regular expression and \(w \) is a string

Convert \(R \) to an NFA \(N \) using the conversion procedure from Lecture 4
Run the TM for \(A_{\text{NFA}} \) on input \(\langle N, w \rangle \)
If \(N \) accepts, accept; else reject

\textbf{Conclusion:} \(A_{\text{REX}} \) is decidable ✔️
Other problems about automata

\[\text{MIN}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \} \]

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \} \]

Which of the above is decidable?
Other problems about automata

\[
\text{MIN}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}
\]

The following TM decides MIN\textsubscript{DFA}
On input \langle D \rangle, where \(R \) is a DFA

Run the DFA minimization algorithm from Lecture 7
If every pair of states is distinguishable, accept; else reject

Conclusion: MIN\textsubscript{DFA} is decidable
Other problems about automata

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

The following TM decides \(\text{EQ}_{\text{DFA}} \)
On input \(\langle D_1, D_2 \rangle \), where \(D_1 \) and \(D_2 \) are DFAs

Run the DFA minimization algorithm from Lecture 7 on \(D_1 \) to obtain a minimal DFA \(D'_1 \)
Run the DFA minimization algorithm from Lecture 7 on \(D_2 \) to obtain a minimal DFA \(D'_2 \)
If \(D'_1 = D'_2 \), accept; else reject

Conclusion: \(\text{EQ}_{\text{DFA}} \) is decidable

✓
Other problems about automata

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \} \]

The following TM \(T \) decides \(E_{\text{DFA}} \)
On input \(\langle D \rangle \), where \(D \) is a DFA

Run the TM \(S \) for \(\text{EQ}_{\text{DFA}} \) on input \(\langle D, \rightharpoonup \circ \rangle \)
If \(S \) accepts, \(T \) accepts; else \(T \) rejects

Conclusion: \(E_{\text{DFA}} \) is decidable

\[\checkmark \]
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

\[L \text{ where } L \text{ is a context-free language} \]

\[\text{EQ}_{\text{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

Which of the above is decidable?
Problems about context-free grammars

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

The following TM \(V \) decides \(A_{\text{CFG}} \)
On input \(\langle G, w \rangle \), where \(G \) is a CFG and \(w \) is a string

Eliminate the \(\varepsilon \)- and unit productions from \(G \)
Convert \(G \) into Chomsky Normal Form \(G' \)
Run Cocke–Younger–Kasami algorithm on \(\langle G', w \rangle \)
If the CYK algorithm finds a parse tree, \(V \) accepts; else \(V \) rejects

Conclusion: \(A_{\text{CFG}} \) is decidable \(\checkmark \)
Problems about context-free grammars

Where L is a context-free language

Let L be a context-free language
There is a CFG G for L

The following TM decides L
On input w

Run TM V from the previous slide on input $\langle G, w \rangle$
If V accepts, accept; else reject

Conclusion: every context-free language L is decidable
Problems about context-free grammars

\[\text{EQ}_{\text{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \]

is not decidable \(\times \)

What’s the difference between \(\text{EQ}_{\text{DFA}} \) and \(\text{EQ}_{\text{CFG}} \)?

To decide \(\text{EQ}_{\text{DFA}} \) we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA
Universal Turing Machine and Undecidability
Turing Machines versus computers

A computer is a machine that manipulates data according to a list of instructions.

How does a Turing machine take a program as part of its input?
The universal Turing machine

The universal TM U takes as inputs a program M and a string x, and simulates M on w.

The program M itself is specified as a TM.
Turing machines as strings

A Turing machine is
\((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})\)

This Turing machine can be described by the string

\[
\langle M \rangle = (q, qa,qr)(\theta,1)(\theta,1,\square)
\]

\[
((q,q,\square/\square R)(q,qa,\theta/0R)(q,qr,1/1R))
\]

\[(q)(qa)(qr)\]
The universal Turing machine

U on input $\langle M, w \rangle$:

Simulate M on input w

If M enters accept state, U accepts

If M enters reject state, U rejects
Acceptance of Turing machines

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \]

U on input \(\langle M, w \rangle \) simulates \(M \) on input \(w \)

\[
\begin{align*}
M \text{ accepts } w & \quad \Downarrow & \quad M \text{ rejects } w & \quad \Downarrow & \quad M \text{ loops on } w & \quad \Downarrow \\
U \text{ accepts } \langle M, w \rangle & & U \text{ rejects } \langle M, w \rangle & & U \text{ loops on } \langle M, w \rangle & \\
\end{align*}
\]

TM \(U \) recognizes \(A_{\text{TM}} \) but does not decide \(A_{\text{TM}} \)
Recognizing versus deciding

Accept

Reject

Infinite loop

The language **recognized** by a TM M is the set of all inputs that M accepts

A TM **decides** language L if it recognizes L and halts on every input

A language L is **decidable** if some TM decides L