Nondeterministic Finite Automata
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2015
Example from last lecture with a simpler solution

Construct a DFA over alphabet \{0, 1\} that accepts all strings ending in 01

Three weeks later: DFA minimization
Another example from last lecture

Construct a DFA over alphabet \(\{0, 1\} \) that accepts all strings ending in 101

![DFA diagram]

or

![Simplified DFA diagram]
String matching DFAs

Ending in 01

Ending in 101

Fast string matching algorithms to turn a pattern into a string matching DFA and execute the DFA:
Boyer–Moore (BM) and Knuth–Morris–Pratt (KMP)
(won’t cover in class)
Nondeterminism
Even easier with guesses

Suppose we could guess when the input string has only 3 symbols left

Accept strings ending in 101:

This is not a DFA!
Nondeterministic finite automata

A machine that allows us to make guesses

Each state can have zero, one, or more outgoing transitions labeled by the same symbol.
Choosing where to go

State q_0 has two transitions labeled 1
Upon reading 1, we have the choice of staying at q_0 or moving to q_1
Ability to choose

State q_1 has **no transition labeled 1**
Upon reading 1 at q_1, die; upon reading 0, continue to q_2
Ability to choose

State q_1 has **no transition** going out

Upon reading 0 or 1 at q_3, die
Meaning of NFA

Guess if we are 3 symbols away from end of input
If so, guess we will see the pattern 101
Check that we are at the end of input
How to run an NFA

The NFA can have several active states at the same time. NFA accepts if at the end, one of its active states is accepting.
Example

Construct an NFA over alphabet \{0, 1\} that accepts all strings containing the pattern 001 somewhere

11001010, 001001, 111001 should be accepted
\epsilon, 000, 010101 should not
Example

Construct an NFA over alphabet \(\{0, 1\} \) that accepts all strings containing the pattern 001 somewhere.
Definition

A **nondeterministic finite automaton** (NFA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

- \(Q\) is a finite set of states
- \(\Sigma\) is an alphabet
- \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \to \text{subsets of } Q\) is a transition function
- \(q_0 \in Q\) is the initial state
- \(F \subseteq Q\) is a set of accepting states

Differences from DFA:

- transition function \(\delta\) can go into several states
- allows \(\varepsilon\)-transitions
Language of an NFA

The NFA accepts string x if there is some path that, starting from q_0, ends at an accepting state as x is read from left to right.

The language of an NFA is the set of all strings accepted by the NFA.
\(\varepsilon\)-transitions can be taken for free:

accepts
a, b, aab, bab, aabab, ...

rejects
\(\varepsilon\), aa, ba, bb, ...
alphabet $\Sigma = \{0, 1\}$
states $Q = \{q_0, q_1, q_2\}$
initial state q_0
accepting states $F = \{q_2\}$

<table>
<thead>
<tr>
<th>states</th>
<th>0</th>
<th>1</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>\emptyset</td>
<td>${q_1}$</td>
<td>${q_1}$</td>
</tr>
<tr>
<td>q_1</td>
<td>${q_0, q_1}$</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>q_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Running NFA

\[\varepsilon, 1 \]

00

\[\varepsilon, 1 \]

0

\[\varepsilon, 1 \]

0
Running NFA

001

101

11
Language of this NFA

What is the language of this NFA?
Example of ε-transitions

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s
Example of ε-transitions

Construct an NFA that accepts all strings with an even number of 0s or an odd number of 1s.