
Towards Automatic 3D Reconstruction from 2D Floorplan Image

S. H. Or

Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

fshor@cse.cuhk.edu.hkg

Abstract

Reconstruction of 3D model representation

from a 2D image(s) is proven to be a di�-

cult task. In this paper, we present a simple

solution to the restricted case of generating

model description of a building solely from its

2D oorplan. The motivation of this research

is that i) a lot of existing buildings has only

the oorplans remained, ii) In general a lot of

e�orts i.e human labor work, have to be made in

order to build the 3D model. We proposed two

approaches with di�erent degree of automation:

The �rst approach operates by an user analyzes

and breaks down the oorplan into a number of

building primitives. The coordinate information

are then manually recorded and input to a

program which will generates the 3D model

descriptions i.e. a popular 3D model �le such

as 3D Studio etc. Another approach applies

image processing techniques in which the user

selects and changes the lines in the oorplan into

di�erent color coded areas. These areas again

represent di�erent 3D primitives similar to the

�rst approach. A raster to vector program then

converts these primitives into 3D format. The

latter approach involves only minimal human

e�ort. Using our approaches, an ordinary user

can produce a 3D model of a building in a matter

of seconds. We present some of the results and

discuss the relative merits of the two approaches.

The presented algorithms are well suited for data

generation in architectural walkthrough on old

buildings and 3D games development.

keyword : 3D modeling, block-based approach,

raster to vector conversion, color-coded blocks

1 Introduction

Given the rapid advances in modeling technolo-

gies in recent years, it is relatively easy for an av-

erage user to build a 3D model of a building using

any popular modeling tools such as Maya or 3D

Studio. However for buildings that exist years

ago, what we got are only their oorplans, which

is in general a 2D representation of the building

under varying assumptions. A lot of such build-

ings are of historic as well as educational impor-

tance if one can navigate and examine its struc-

ture [1]. To \recover" such buildings in the virtual

space, tedious modeling procedures are usually

required.

A oorplan has the feature of abstracting a lot

of spacial information in a 2D postulation. In

general a oorplan consists of a number of lines

of various widths postulating the top view of a

building examined. The lines designate walls of

di�erent thickness. In actual buildings, especially

those used for residential purpose, it happens that

openings on the walls, i.e. windows, are needed.

In order to cater for the above situation, a special

signature, say a pair of thin lines is used to denote

that an opening should be placed there. Depends

on the building nature, usually a set of rules or

signatures is used to represent the deviation from

the normal simple wall cases.

With the aid of current modelling package, one

have to trace the lines on the oorplan, which

represents the walls and instruct the package to

build the corresponding 3D representations. A

typical way is to use a graphic-tablet-and-probe

approach to manually trace the lines on the draw-

1



Figure 1: A typical oorplan of a building

ing so as to enter the coordinate information into

the computer. During this process, the modeller

has to take care of the various aspects of the plan

by noting attributes, such as height, thickness,

of the lines and tell the package such informa-

tion. The result is that much time is needed for

converting a oorplan into its 3D representation.

Not to mention the more additional e�orts to fur-

ther re�ne the 3D models such as texturing and

lighting. Another disadvantage is that a skilled

personnel is required in order to convert the em-

bedded spacial signature into corresponding 3D

information.

2 Our Approach

In examining the layout of a oorplan, a line

segment on a oorplan denotes a block oriented

vertically in the 3D space. A simple approach is

therefore to register the coordinates of the four

points de�ning each line on a oorplan and gen-

erate the 3D representation using a normal in y-

axis. By recursively processing all the lines in a

oorplan, we should be able to generate the 3D

description of the whole building.

This approach su�ers from the following draw-

backs. Firstly there are various line signatures in-

side a typical oorplan which designate di�erent

constructs in 3D space, for example a windowed

block. Decomposing a oorplan solely into ver-

tical blocks cannot faithfully reproduce the cor-

rect 3D representation. In addition, each verti-

cal block generated typically will have faces that

never be seen, for example, the base of a vertical

block as well as part of the faces in a L-shaped

lines which are being occluded by its orthogonally

aligned neighbor. These faces will a�ect both

the memory required during program execution

and the rendering performance. Finally these re-

dundant faces also create visual artifacts on most

modern rendering engines.

2.1 Block Based Approach

It is inevitable that the vertical block based

approach mentioned in previous section, in spite

of the number of drawbacks, is feasible and easy

to start with. We extend the idea of building

blocks and come up with an approach which has

the simplicity advantage but avoiding the draw-

backs mentioned.

By examining extensively the di�erent line sig-

natures in a oorplan as in �g.1, we derive sev-

eral basic building blocks encountered in a usual

building. In our example, the target is the interior

of a at. We emphasize here what we presented

is a framework and in practice more basic build-

ing blocks can be designed given the appropriate

application arena. Moreover we believed that the

blocks we are going to present include most of the

elements required in a oorplan.

In the following discussions, we assumed that

a oorplan denotes the top view of the building,

which is the x-z plane and the vertical axis is the

y-axis.

� The simplest elementary block is the vertical

block, we termed it \Box". A Box can be

fully described by 6 parameters(�g. 2):

2



Figure 2: Various building blocks

The position of the reference point(3),

The dimensions, or size of the box in three

axis(3).

� To cater for boxes rotated at an angle about

the y-axis, we add a generalized box notion

and termed it \G-Box". A G-Box is fully

represented by 10 parameters (�g. 2):

X-, & Z-coordinates for the four vertices(8),

lower and upper Y-coordinates.

� Windows, or related structures, are popu-

lar in man-made building. To represent a

window, we introduce the \donut" block. A

donut is a block with an opening in its inte-

rior and is modeled by 10 parameters(�g. 2):

The outer lower left coordinates(3) of the

whole block,

The dimensions of the whole block(3),

The coordinates of the lower left corner of

inner block(2),

The dimensions of inner block(2) fSee �g.2g.

� Door structures are also frequently seen in a

oorplan. We introduce an \Ann" block (See

�g.2) to model this. Ann block has fewer

parameters (8) than donut:

The lower left coordinates(3) of the whole

block,

The dimensions of the whole block(3),

The dimensions of inner block(2).

� A simple extension of Ann is the \You"

block, which is basically an inverted

Ann (See �g.2):

� A combination of Box which is popu-

lar in oorplan construct is the L-shaped

block (�g.2). An L-block is basically a sub-

traction of a smaller box from a larger one.

We use 8 parameters for this block:

The lower left coordinates(3) of the whole

block,

The dimensions of the whole block(3),

The position of inner corner of L(2).

� As in G-Box, we have the generalized ver-

sions of all the above blocks which need more

parameters to specify. As these are trivial ex-

tensions, we will not detail their implemen-

tations here.

The operations in utilizing the above building

blocks to parameterize a oorplan involves treat-

ing the line complex of the whole oorplan as a

combinations of the block types and decomposing

them and recording the parameters. The detail

algorithm works as follow:

Block Based Algorithm for building the 3D rep-

resentation from a oorplan

1. Overlay a uniform grid on the oorplan im-

age. The spacing of the grid can conveniently

be chosen the same as the scale noted on the

plan. In this case, the recovered 3D represen-

tation will thus have exactly the same scale

as in human world.

2. Select a point on the grid as the origin. Man-

ually record the coordinates of vertices of all

lines in the plan.

3



Figure 3: Breakdown of a portion of oorplan into

blocks

3. Based on the di�erent line signatures in the

plan, map a suitable block type to the lines.

4. All the block information are then entered

into a program which will generate the cor-

responding 3D data �le.

5. The user can then perform an interactive

walkthrough on the resulting data �le so as

to re�ne the model. This iterative re�nement

process can be performed on the data �le

generated by the program in step 4. Addi-

tonal touch can also be done by various more

sophisticated package such as 3D Studio or

Maya.

A typical result of applying the algorithm to

a oorplan is shown in �g.3. In this �gure, a L-

block is �rst setted for the upper left lines. Sub-

jected to this choice, the lower left block can be

chosen as another L or a Box. But since the line

on the lower right has a door on it, which called

for an Ann there, thus a single Box is selected.

For the upper right portion, here we found a line

on which there should be an opening on it (the

air conditioner 's position). thus a donut is cho-

sen. As can be seen in this example, the setting

of blocks' choices can be varied during the appli-

cation of the algorithm and there is no unique so-

lution to it. The best result can only be achieved

through experiments and the understanding of

the relative merits of the blocks.

2.2 Color-coded Polylines Approach

The block-based approach provides a fast

method to recover the 3D representation from a

oorplan image. The drawback is that it still re-

quires a labor intensive stage of collecting coordi-

nates of the lines in the plan. To further reduce

the time needed, we devise a more automated ap-

proach. In this approach, the di�erent signatures

in a oorplan are coded as various unique colors.

The algorithm is shown as below.

Color-coded Polylines algorithm: Convert a

oorplan image into 3D representation

1. The oorplan image, which is assumed to be

in gray scale, is properly thresholded into a

binary image so that only the lines represent-

ing the construct are left. It is also better to

remove any textual patterns reside.

2. Di�erent structural signatures in the result-

ing image are colored according to their

codes, for example, a line segment which has

an opening is selected and the whole segment

is colored into blue.

3. A program read the colored image, and based

on the di�erent color, \parse" the image into

several binary versions of the image. Each of

these images contains only the portion which

belongs to that particular construct, for ex-

ample a windowed one.

4. Another program reads these images in turn,

and converts the binary image into a vec-

tored one, i.e. a polyline description of the

outlines of the colored region.

5. A �nal program is then used to generate the

3D description i.e. the 3D formatted �le,

from the polyline �les generated in previous

stage. The programwill take care of di�erent

constructs and their corresponding descrip-

tions in 3D space.

4



Figure 4: FlatEd { the program to build a block-

based 3D �le

As one can readily observe, minimal human ef-

fort (stage 1) is involved in the above algorithm.

The user only needed to i) properly control the

thresholding process to minimize the unneeded

polylines from noise in image, ii) Color the image

according to the signature of di�erent constructs.

The color-coded algorithm has various advan-

tages over the block-based one. The most im-

portant one is that the user now no longer has

to go through the tedious stage of measurement

of vertex coordinates. This results in signi�cant

speedup of the coversion process. In addition, the

usage of color code guaranteed more exibility in

de�ning one's oorplan requirement. Finally the

color-coded algorithm does not require the user

to be pro�cient in di�erent oorplan constructs

i.e. the breakdown process.

A little drawback of the color-coded algorithm

is that the parameters of di�erent constructs have

to be �xed prior to processing, thus limiting the

freedom of the user to modify the outlook of the

generated 3D �les. However, this problem can

easily be solved by using more sophisticated mod-

eling package such as AutoCad or Maya.

3 Implementation and Discussion

We implemented both approaches and tested

the generated 3D �les on Crystal Space, which is

a free 3D engine written by Jorrit [6] and oth-

ers. The engine allows interactive walkthrough

Figure 5: FlatEd allows the user to �ne tune the

generated models.

of the generated �le so that one can immediately

inspect the model generated. In principle, given

that the polygonal description of most 3D �le for-

mats are basically the same, it is relatively easy

for one to modify the program to generate �le in

other 3D formats. We briey describe below our

implementation and discuss possible extensions.

3.1 Block-based Approach

The parameters of every block appeared in

the oorplan is recorded and entered into a pro-

gram (�g. 4) which we called \FlatEd". This pro-

gram is written in Visual Basic due to its support

in various data entry widgets. The program also

allows the user to �ne tune the blocks such as tex-

turing parameters (�g.5). FlatEd interfaces with

a COM server which is written in Python [5]. The

Python server will generate the needed world �le

i.e. 3D representation in Crystal Space format.

A screen shot of one of the generated scenes is

shown in �g. 7.

3.2 Color-coded Polylines Approach

The output after thresholding and colorization

is shown in �g. 8. In this �gure, a black line repre-

sents an ordinary wall, green blocks correspond to

bay windows, a yellow block denotes the position

of light sources, whereas blue one is the windowed

portion. The fact that light sources are explicitly

represented is solely an advantage arised from the

5



Figure 6: A typical oorplan converted into a col-

lection of blocks.

Figure 7: View of �g. 6 with texture and lighting.

use of color code.

During stage 2, we need to convert the binary

image into a vectored format, i.e. the polylines.

We use Ras2Vec (Raster to vector conversion)

program which is written by Davide [4]. The

polylines generated is shown in �g. 9.

The conversion of di�erent polylines into a sin-

gle 3D �le is performed by a program in Python

Figure 8: A oorplan in color coded format.

scripts. A point to note is that the polygons gen-

erated are in general required to be convex form,

which is a basic requirement of most 3D render-

ing engines. However it is clear that sometimes

the polygons generated from our approach are

not necessarily convex. As noted in �g. 8, the

bay window area on upper right is a concave one.

We use the polygon decomposition algorithm by

[3]. The algorithm will break down a complex,

concave polygons into a number of convex poly-

gons. We adopt the program written by Ofer [2]

into a Python version which is integrated into our

Python COM server mentioned in block-based ap-

proach. The resulting polygons are added to the

3D representation.

An application of the color-coded approach to

oorplans representing larger area is shown in

�g. 10. Fig. 10 is a rendered view of a develop-

ment project in which several buildings as well as

the roads and trees are placed using the di�erent

colors in the plan.

6



Figure 9: Floorplan converted to polyline by

ras2Vec.

Figure 10: Another application of color-coded ap-

proach to oorplan.

3.3 Discussion

In this paper, we present two di�erent ap-

proaches to generating 3D data from a oorplan

image. Both approaches aimed at quickly gener-

ating a 3D model from a oorplan image, which is

a �rst step in interactive 3D applications such as

games and architectural walkthrough for ancient

buildings. Usually for such applications, beside

lowering the cost of model data generation, one

would also want to modify as well as �ne tune the

results so that more eye-candies can be provided

for �nal applications.

In our experiments, both approaches can gen-

erate 3D models which have high precision with

respect to original oorplan. However from our

experiences, the two approaches each have their

own relative merits and drawbacks as well.

The block-based approach has the drawback of

tedious labor in vertices information preparation.

In addition, it requires the user to have quite in-

depth knowledge on di�erent block types so as to

build a model of seamless joints between blocks.

On the other hand, block based approach allows

its user to perform more �ne-tuning operations

to the resulting models such as adding furnitures,

or even adding special features on a particular

polygon(�g. 11). An even more attractive fea-

ture is that it allow the user to easily dive into

the generated data �le to �ne tune the model for

special e�ect such as performance tuning by re-

moving unused polygons. A typical oorplan as

in �g. 8, which results in 637 polygons requires

approximately 2 hours to generate the 3D model

�le.

For the color-coded approach, relatively little

knowledge is required for a user to generate a

3D model. This opens up more avenues for this

approach. One interesting application is an in-

tegrated environment where the user just has to

draw with di�erent colored pens and the program

will build a model for interactive tour. The appli-

cation should be well suited as a creativity tool for

children, etc. In addition, the time used to build

a 3D model is signi�cantly reduced, for example,

the 3D model is generated in half an hour, includ-

ing the image processing time and color coding.

The drawbacks of the color-coded approach are

that lesser �ne-tune operations as well as exibil-

ity in modeling is allowed. In addition, the gen-

erated �le is di�cult to edit. However we noted

that the user can still edit the resulting data �le

in more sophisticated modeling packages.

In view of the goal of minimizing the time in

construction of model from a oorplan, we con-

7



Figure 11: Block based approach allows easy

modi�cations as well as analytical placement of

other items.

cluded that we are successful in signi�cantly re-

ducing the time needed. As a simple benchmark

of the performance of our algorithm, we noted

that the oorplan presented in �g. 1 originally

need a time of approximately two to three work-

ing days to build the resulting model using plain

estimation and hand editing of data �le, in con-

trast with the time reported above. One may

argue that using sophisticated modeling package,

one can signi�cantly reduce the modeling time.

But as the modeling package nowaday are writ-

ten with generic purposes in mind, it would need

quite extensive work in order to build the same

model. Our algorithm takes advantages of the or-

thogonal feature of oorplan, and the redundant

constructs in man-made building. The resulting

algorithm can thus save more times in comparison

to more general modeling approaches.

4 Conclusion

Two e�cient approaches to construct a 3D

model from a oorplan image are discussed. The

�rst approach operates by �tting a set of build-

ing blocks to the oorplan image. The second

approach used di�erent colors to represent vari-

ous constructs inside a oorplan image and then

convert the raster image into a number of poly-

lines. Each polyline is then used to generate a set

of polygons which represent that particular block.

Figure 12: Some screen shots of the buildings cre-

ated.

Relative merits and drawbacks of each algorithm

are discussed and various results are presented.

5 Acknowledgement

The author would like to thank Francis Lee for

suggesting the idea of blocks based approach and

valuable helps throughout the project.

8



References

[1] Historical oorplan emporium. http://www.b-

ware.com/hive/fplans/index.htm.

[2] Ofer Belinsky. Minimal con-

vex polygon decomposition demo.

http://www.math.tau.ac.il/ sariel/TA/wcg98b-

/convex decomp/Default.html.

[3] J.M. Keil. Decomposing a polygon into sim-

pler components. SIAM JC, 14:799{817, 1985.

[4] Davide Libenzi. Raster to vector conversion

program. http://www.maticad.it/davide/.

[5] Andy Robinson. Embedding python in

visual basic / delphi / powerbuilder apps.

http://www.robanal.demon.co.uk/demos/pyvb/index.html.

[6] Jorrit Tyberghein. Crystal space: a free 3d

engine. http://crystal.linuxgames.com/.

9


