
Highly Automatic Approach to Architectural Floorplan Image
Understanding & Model Generation

Siu-hang Or, Kin-Hong Wong, Ying-kin Yu, Michael Ming-yuan Chang*

Department of Computer Science & Engineering Department of Information Engineering*
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Email: shor,khwong,ykyu@cse.cuhk.edu.hk mchang@ie.cuhk.edu.hk

Abstract

Authoring of a 3D model using computers typically
involves tedious manual efforts. In this paper, we
propose a highly automated approach to generate
the 3D model of a building from its 2D floorplan
image. The proposed system treats the floorplan
as a vector image in that the lines in the plan
are converted into vector outlines. Building wall
identification is thus reduced to a matching problem
of the outlines in the plan. A number of advantages
are resulted from using this approach. For example,
special constructs such as doors can be recognized
through the geometric characteristics of the line
signatures. The concept of interior space can also
be explored through examining the line loop within
the plan. Our system allows the generation of
building interior as well as the exterior model. The
presented algorithm is useful for data generation in
architectural walkthrough of city scenes as well as
3D games development.

1 Introduction

An architectural floorplan has the feature of ab-
stracting much spacial information in a 2D postula-
tion. However, authoring of the corresponding 3D
model using computer would involve tedious man-
ual efforts. Much work therefore focus on speeding
up the construction process by using the floorplan
document as input, and try to generate the corre-
sponding 3D model. The primary challenge here
is the problem of symbol recognition [3], in which
an automatic way is sought to identify the various
special constructs inside the floorplan such as doors
and windows. A number of researchers [4, 2, 7, 6]
had investigated the problem and impressive results

have been established. However to our understand-
ing, most existing algorithms focused solely on the
symbol recognition task [2, 6] and did not provide
a complete solution for the reconstruction problem.
In our opinion, the reconstructed 3D model should
be easily edited by an ordinary user so that addi-
tional modeling efforts can be made.

In this paper, we present a complete system to
tackle the problem of generating 3D model descrip-
tion of a building solely from its 2D floorplan.
Our contribution primarily lies in the 3D model
authoring process, which is important in architec-
tural walkthrough as well as computer game de-
velopment. Using our approach, an ordinary user
can produce a 3D model of a building in relatively
short time. Our proposed approach has three im-
portant features which contribute to the state-of-art
techniques in producing the 3D models of a build-
ing: 1) The reconstruction result retains the origi-
nal volumetric attributes inside the floorplan, such
as walls, windows and doors; 2) the model gener-
ated matches with the original floorplan with a pre-
cision up to pixel level; 3) Finally the reconstruction
process is very fast that it can save lots of manual
efforts to produce a model of the same complex-
ity, and that the results are best suited for further
artistic editing such as texturing and adding fine de-
tails. The presented framework will be useful for
content generation in architectural walkthrough on
old buildings as well as 3D games development.

2 Previous work

Symbol recognition is a well developed discipline
inside the field of pattern recognition [3]. Symbols
on a paper drawing in applications such as circuit
diagrams, geographic map and engineering draw-
ings are recognized and provide to the user for fur-

VMV 2005 Erlangen, Germany, November 16–18, 2005



ther usages. Among these applications, architec-
tural drawing is a relatively unexplored field [2]. [6]
proposed a string based method to recognize both
the symbols and texture inside a floorplan by con-
structing a Region Adjaceny Graph (RAG) from the
raster image. Graph matching technique is applied
to extract the symbols represented in the plan. [2]
proposed a neural network based solution to iden-
tify the symbols, essentially the doors and windows
of the target floorplan. A 3D elevation is use to il-
lustrated the result, which is quite impressive. In
[4], a complete system for analyzing architectural
drawing is presented.

All the above approaches focused primarily on
the problem of symbol recognition inside the floor-
plan, which is essentially a hard problem and is rec-
ognized as requiring problem dependent solution.
However, from the computer graphics point of view,
the problem is only solved partially. The remaining
problem, which is also of importance, is the format
of reconstructed 3D model. As most of the mod-
ern graphics application is polygon based, a user
would expect the reconstructed model to be also of
polygon ingredient. Polygons, as a planar structure,
needed to be grouped together as a mesh for fur-
ther manipulation. This intermediate representation
is crucial to all the subsequent modeling work onto
the final product.

[7] proposed an algorithm to interactively recon-
struct the exterior of a building from an aerial im-
ages. A fitting algorithm is proposed to identify a
building within an aerial images. The problem be-
ing addressed is basically different from what we
are going to tackle, namely to reconstruct the inte-
rior of a building, i.e. the constructs inside an archi-
tectural floorplan.

3 Our Approach

Fig. 1 shows part of a typical floorplan of a building.
A readily observation is that a floorplan consists of
a number of lines of varying width postulating the
top view of a building. The lines designate walls
of different thickness. To represent openings on the
walls, e.g. doors, windows etc., special signatures
such as a pair of thin lines is used to denote that
an opening should be placed there. Depending on
the nature of the building, usually a set of rules or
signatures is used to represent the deviation from
the case of simple wall.

Figure 1: Input to our proposed system. left: origi-
nal floorplan image, right: preprocessed result.

To automatically convert a floorplan into the cor-
responding 3D description, we propose to parse the
floor plan image into a number of connected seg-
ments and analyze their relationship to generate the
3D models accordingly. The proposed system is
shown in fig. 2 and we will describe in details each
step in below.

3.1 Preprocessing of input floorplan im-
age

Our assumption about the floorplan to be recon-
structed is that they are in hard copy format, raster
input is thus needed to digitize them into bitmap
images for further processing. The scanned image
is properly thresholded into a binary image so that

666



Figure 2: Block diagram of the proposed system

only the lines representing the construct are left.
Textual patterns as well as other irrelevant symbols
also need be removed. Statistical techniques are
employed to extract the textual/symbol blocks in-
side the image and segmenting them out. In addi-
tion, sampling noise during scanning of the floor-
plan document should also be removed as they will
affect the correct interpretation during later algo-
rithm application. Bottom of fig.1 shows the result
after the preprocessing stage. As our proposed sys-
tem focused on the generation of the 3D model of
the building, some symbols which are not intended
to be reconstructed, for example the cupboard and
sink in the kitchen, are therefore have to be removed
from the image through human effort. And this is
the only manual intervention needed for our system.
An example of the result of this stage can be seen in
fig. 3.

3.2 Raster conversion

The output from the previous stage is fed into a
raster to vector conversion and the outlines are ex-
tracted. Typical implementation will apply thinning
to the input image to extract the skeleton of the plan.
However in our system only double lines i.e the
outline of the floorplan are extracted. In addition,
straight lines and arcs are also classified as arcs usu-
ally corresponds to special constructs such as doors
in a floorplan. We also record the change in angle
of each arc during this process since they are useful
in later recognition stage. The result obtained after

Figure 3: Preprocessed floorplan image for input to
vector conversion and vectorized result. Top: final
preprocessed image for vectorization, bottom: vec-
torized result.

vectorization can be seen in fig. 3.

3.3 Recognition & Generation

The core of our algorithm lies in converting the
polylines from the previous stage into 3D descrip-
tions. Owing to the nature of the raster conversion,
there is a built-in relationship for the direction of the
polyline and the structures inside the floorplan: the
building wall must be on the right of the propagat-
ing direction of a polyline and open space should be
on its left.

Moreover two polylines with opposite propagat-
ing directions and with some distance apart should

666



Figure 4: Example in polylines matching. Input im-
age is on the left and converted polylines are shown
on the right. The matching result is shown at bot-
tom.

correspond to a wall, as can be seen from fig. 4. In
fig. 4, the line I and J should be matched together
and form a solid wall, which we called a block. By
noting the coordinates of the four points, we can
generate a block and thus representing the corre-
sponding wall. However this simple criterion would
break down in real cases.

In fig. 4, consider line J and K. There is part of
line K that matched with J which takes account of
the horizontal wall. A simple comparison would re-
ject line K in favor of line I. In that case, the corner
portion cannot be recovered.

To solve the problem of multiple matching and
the problem above, we propose a concept of span
list. For each line in the floorplan, a list of span
length is maintained. The span list contains spans of
all other possible candidates to this line. A span is
defined as the length of the vertical projection made
by another line. The idea is that during span list
construction, those segments that have overlapping
i.e. interesecting spans, should resolve for the cor-
rect span and finally lines with multiple matching
can generate the correct blocks based on the spans
calculated. It is possible that a line can have have
more than one spans/projections e.g. in fig. 4, line J
has projections (spans) with both line I and K. The
algorithm for matching two lines is thus shown as
below.

To extract the segments that match each other, the
following criteria must be fullfilled

• The two lines have opposite directions,
• The two lines have overlapping(s) on one of

the x- or z-axis at least,

• The two lines have the matching line on its
right, those not satisfying this criterion might
be the windows or doors;

• In addition, do the following for each pair of
lines, I and J, to be matched :
1. Determine the span of

of line I on J. For the
calculated span, check
whether there are any
intersection with existing
spans in line J.

2. For each span that have
intersections with existing
span on J do:
if distance of line I from
line J> intersecting span
distance

// intersecting span is
closer

// this span is being
rejected

remove this span from
our line span

else

// our line is closer

remove the span length
of our line from the
intersecting span

register this span and
the new span distance

Note that in the above, step (2) is applied to both
lines I and J i.e. span of I with J and J with I.

After execution of the above algorithm, we ob-
tain a number of square blocks which represent
walls of different thickness of the floorplan.The
matching results for the previous U-shape example
are also shown in fig. 4.

3.4 Symbol Recognition

To recognize other special constructs inside a floor-
plan, we consider the geometric characteristics of
the symbols. In a floorplan, the frequently encoun-
tered symbols are doors and windows. The recog-
nition of such symbols is not a simple task as it in-
volves analyzing complicated structures including
arcs. In our presented framework, we made a sim-
plifying assumption that all arcs involved only cor-
responds to special symbols i.e walls with curvature

666



Figure 5: Construct of a door after vectorizing. The
segments forming a door undergo several changes
in angle and these are the matching charactertistics
for the proposed system to identify the symbol.

are not allowed, we use the following procedure to
extract an arc. Firstly the angles of all the segments
extracted from the vector map are recorded. A com-
parison of the angle differences between any seg-
ment and its previous and next one is made, and the
segment is said to be part of an arc if the differ-
ences are significant e.g. large than 0.1 radian. The
start and end of an arc is then recorded and the in
between segments will not take part in further pro-
cessing so as to prevent it from creating any block.
The angle change from a start to the end segment of
an arc is also recorded for that arc.

3.4.1 Door

The construction of a door symbol is shown in fig. 5.
The features of a door include:

1. It consists of an arc being connected to a line.
The arc should have an angle change of 90
or 180 degree with respect to the line (as in-
dicated by the change in arrow direction in
fig. 5).

2. The line has a length roughly equal to the dis-
tance between the starting point of the line and
the ending point of the arc.

3. Both the arc and the line are connected with
two lines with the same orientation.

The above features uniquely identify a door in-
side a floorplan and we can use it as a recognition
function which will be performed after the match-
ing of blocks has been performed. In fact, the oc-
curence of an arc is such an salient characters of the
symbol inside the floorplan that can easily help the
recognition.

3.4.2 Window

For the detection of window, noting that the win-
dow symbol usually result in one or more thin boxes
with the same orientation being placed very close
together within a small space. An opening i.e. win-
dow, can thus be identified at that area.

3.5 Room Identifcation

An advantage of using the vectored double-line rep-
resentation in our approach is that the notion of en-
closed space can be readily identified. It can be
observed from the vectorized plan that when trac-
ing along a particular polyline, a closed area will
be resulted. This enclosed area corresponds to ei-
ther windows, bay windows, or rooms. By convert-
ing into actual scale in human world, a room can
be identified easily from the vectored description.
Recognition of rooms will provide many useful in-
formation for the floorplan analysis. In fig. 6 we
illustrate a simple usage in automatically generat-
ing a light source and placed it at the centroid of the
room polyline.

3.6 Building Outlook Generation

Another usage of the enclosed space identification
is to detect the polyline enclosing the exterior of the
whole floorplan. The reconstruction of the exterior
of a building is not as simple as one might expect.
The main problem here is to identify those blocks
which do not belong to exterior and skip their gen-
eration. Moreover the exterior look of windows or
bay windows would also call for different generat-
ing process from their interior correspondents.

To identify the outerhull of the floorplan, the sim-
ple notion of longest polyline is not valid as the plan
may have a structure which produces a complex in-
terior polyline with a total length greater than that
of the true outerhull. To locate the correct outer-
hull, we based our application on the observation
that the outerhull of a floorplan should enclose the
maximum area within the image. For a polyline de-
scription, the area being enclosed is given by

1

2

N∑

i=1

(xiyi+1 − xi+1yi), (1)

where N is the total number of points in the poly-
line, (xi, yi) is the coordinates of the point i where

666



i=1,2,. . . N within the sequence of points forming
the polyline.

To locate the polyline corresponding to the outer-
hull is thus reduced to finding the polyline enclos-
ing the largest area withint the image. This line
will then be used to match with the neighboring
polylines to further identified the structure it cor-
responds to, say a wall or window. The process is
essentially the same as that described in section 3.3.

4 Implementation and Discussion

We implemented the proposed approach and tested
the generated 3D files on Genesis3D [1], which is a
3D game engine available freely. The engine allows
interactive walkthrough of the generated model so
that one can immediately inspect the model gener-
ated. In principle, given that the polygonal descrip-
tion of most 3D file formats are basically the same,
it is relatively easy for one to modify the program
to generate files in other 3D formats.

For the preprocessing step, we used the QGAR
tools [8] to implement the the steps described. In
particular, we threshold the input image by the bi-
narization technique described by Trier [9]. Textual
symbols are identified by grouping the image data
into blocks and computing the distribution of di-
mensions of the bounding box associated. By mak-
ing assumptions about the typical textual informa-
tion within the plan, those blocks belong to textual
data can be segmented out, leaving the structural
image intact. Further image closing operations are
performed to remove the salt-and-pepper noise in
the scanned image. The above steps being imple-
mented as separate modules, are invoked together
in a script file which further simplifies the prepro-
cessing procedures.

During the raster conversion stage, we need to
convert the binary image into a vectored format,
i.e. the polylines. We use Ras2Vec (Raster to
vector conversion) program which is written by
Libenzi [5]. The polylines generated are then stored
in a text file for the application of our algorithm.

The conversion of the polylines into block de-
scriptions is performed by a Python program which
carries out the algorithm described above. The
Python program also directly generates the data file
suitable for use by Genesis3D. For the 3D model
generation, typical parameters are used to construct
the model. For example, the height of each building

Figure 6: Floorplan in fig. 1 being converted into
3D model. Top: Converted model at top view with
lights being inserted at centroid of each room, the
lights are represented as a symbol ’x’ in the layout.
bottom: 3Dwireframe view which illustrate the var-
ious blocks forming the model

block is set to be 2.5 units, with each unit corre-
sponds to one meter in human world. Each win-
dow is assigned a value of 1 unit tall at 1 unit height
above the floor. A user can thus perform a walk-
through on the data file, which is very convenient
for further refinement. A screenshot of the gener-
ated 3D model of fig. 1 is shown in fig. 8.

4.1 Discussion

In this paper, we present an efficient approach
to quickly generate 3D data from a floorplan im-
age. The generated model can then be used in vir-
tual reality or computer game application. Usually
for these applications, beside lowering the cost of
model generation, one would also want to modify
as well as fine tune the results so that more interest-
ing effects can be provided for final applications.

In our experiments, the proposed approach gen-

666



erates 3D models which have high precision with
respect to original floorplan. Moreover relatively
little knowledge is required for a user to generate a
3D model from the floorplan. This opens up more
avenues for this approach. One interesting applica-
tion is an integrated environment where the user just
has to draw lines and place special symbols denot-
ing corresponding structures on an image and the
program will build a model for an interactive tour.
The application should be well suited as a creativity
tool for children, etc. Another advantage is that the
time used to build a 3D model is significantly re-
duced, for example, the 3D model in fig. 10, which
presents a complicated floorplan, is generated in
less than 4 hours, including the image processing
time. In addition, our system can generate both the
interior and exterior model at the same time, which
is an added advantage. Finally, by specifying the
number of levels of the resulting building, the user
can conveniently obtain the 3D model of a multi-
storey building in just a command only, this can be
seen from the result in fig. 10.

The drawbacks of the proposed approach is that
sometimes a few mismatches will be generated dur-
ing the recognition and generation stage. Fig. 7
shows the mismatch results of data set in fig. 10.
The mismatches are highlighted using the ellipses
circling around them. These blocks when viewed in
the 3D engine would correspond to extra or trans-
parent(due to reverse vertex orders) blocks. How-
ever we noted that the number of mismatches is very
few comparing with the correct blocks generated.

In addition, the recognition rate of door is not
perfect. For example, there is all together 5 doors
in the floorplan in fig. 1. Our current system is able
to detect four of them with one door missing. The
reason seem to be that the matching result for an
arc will have a direct impact on later stage of door
extraction as door symbol recognition involves a
number of constraints to be satisfied. Too loose the
matching rule will lead to many false matching. On
the other hand a tight bound on the criteria will have
the result of missing symbols. Tuning of the match-
ing parameters is a major step for the proposed sys-
tem to be of industrial usage.

Finally the speed up of model building is spec-
tacular. Consider fig. 10 and 9, which shows com-
plicated floorplans together with the reconstructed
models. Both models are of approximately eight
times more complicated than the previous exam-

Figure 7: The effect of matching errors in block
generation process will produce extra blocks, which
are highlighted by the ellipses.

ple(c.f. 8 flats together in same plan). The au-
tomatic algorithm can successfully reconstruct the
entire model as seen with only a few mismatched
block which can be easily removed with the aid of
level editor.

5 Future directions

As modern buildings are mostly of multi-storey
type, our proposed system will produce more in-
teresting results if the system can generate the 3D
model of a building with many floors. In fact, our
system can immediately produce a 3D mesh with
more than one floor with little changes e.g. adding
a ceiling to each floor and repeat the generation with
increasing parameters. Another important addition
that we have to work on is the extraction of stair-
ways in a floorplan. In general, a floorplan of a
building usually include the designation of stairway
which lead to both up or down stairs. The problem
then is to locate and extract the symbol and its ori-
entation e.g. how to lead up and connecting the two
floors seamlessly.

Another possible future direction is to further au-
tomate the rasterizing step. In our proposed sys-
tem, the preprocessing step is important in that it in-
volves human interactions to remove noises as well
as smooth out the outlines for subsequent vectoriz-
ing step. More intelligent drawing adjustment rou-
tines should be developed to help in further reduc-
ing the manual work.

666



We conclude that using image processing and
symbol recognition techniques, we are successful
in substantially reducing the time needed to con-
struct a 3D model from a floorplan. As a simple
benchmark of the performance of our algorithm, we
noted that the floorplan presented in fig. 1 originally
need a time of approximately one to two working
days to build the resulting model using plain esti-
mation and hand editing of data file, in contrast with
the time reported above. One may argue that us-
ing sophisticated modeling package, one can signif-
icantly reduce the modeling time. But as the model-
ing package nowaday are written with generic pur-
poses in mind, it would need extensive configura-
tion work in order to build the same model. An
added requirement in this case is an experienced
user of the particular package is needed, which will
also add to the cost of construction. Our algorithm
takes advantages of the orthogonal feature of archi-
tectural floorplan, and the redundant constructs in
man-made building, and that our system can gener-
ate both the interior as well as outlook of the build-
ing. The resulting algorithm can thus save more
times in comparison to more general modeling ap-
proaches.

6 Conclusion

An efficient algorithm to construct a 3Dmodel from
a floorplan image is presented. The method adopts
a recognition approach to extract various constructs
inside a floorplan image by analyzing the polylines
generated from the raster image. Each polyline is
used to generate a set of polygons which represent
that particular block. The proposed system can gen-
erate both the interior model as well as the build-
ing’s outlook. Both merits and drawbacks of the
algorithm are discussed and a number of results are
presented.

7 Acknowledgement

This work was supported by the Research Grant
Council of Hong Kong Special Administrative Re-
gion. (Project No. CUHK4204/04E) The author
would also like to thank the anonymous reviewer
for helpful comments on the paper.

References

[1] Genesis 3D. Genesis 3d: An open
source 3d game development engine.
http://www.genesis3d.com.

[2] Christian Ah-Soon. A constraint network
for symbol detection in architectural draw-
ings. Lecture Notes in Computer Science:
Graphics Recognition–Algorithms and Sys-
tems, 1389:80–90, 1997.

[3] Atul K. Chhabra. Graphic symbol recognition:
An overview. Lecture Notes in Computer Sci-
ence: Graphics Recognition–Algorithms and
Systems, 1389:68–79, 1997.

[4] Ph. Dosch, K. Tombre, C. Ah-Soon, and
G. Masini. A complete system for analysis
of architectural drawings. International Jour-
nal on Document Analysis and Recognition,
3(2):102–116, December 2000.

[5] Davide Libenzi. Raster to
vector conversion program.
http://www.xmailserver.org/davide.html.

[6] Josep Llados, Gemma Suchez, and Enric
Mart. A string based method to recognize
symbols and structural textures in architec-
tural plans. Lecture Notes in Computer Sci-
ence: Graphics Recognition–Algorithms and
Systems, 1389:91–103, 1997.

[7] F. Rottensteiner. Semi-automatic building re-
construction integrated in strict bundle block
adjustment. Proceedings of the XIXth ISPRS
Congress at Amsterdam, XXXIII-B3:461–468,
2001.

[8] QGAR Software. Qgar software.
http://www.qgar.org.

[9] S. Due Trier and T. Taxt. Improvement of “in-
tegrated function algorithm” for binarization of
document images. Pattern Recognition Letters,
16:277–283, March 1995.

666



Figure 8: View of fig. 6 with additional work such
as texture and lighting.

Figure 9: More example. Top: Original floor plan
image; bottom: rendered view of output of our al-
gorithm with a light source placed at the top

Figure 10: More challenging example. Top left:
input floorplan, top right: preprocessed plan; mid-
dle: reconstructed interior model, bottom : exterior
model obtained by specifying 4-storey building out-
put.

666


