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ABSTRACT 

An innovative extended Kalman filter (EKF) algorithm for 

pose tracking has been proposed in this paper. It has the 

advantages of both structure and motion-based (SAM-based) 

and traditional model-based pose estimation algorithms. 

With no prior information about the scene, the pose 

sequence can be computed directly from images while the 

updating of the 3-D structure is not necessary. To achieve 

the goal, a constant velocity motion model is used as the 

dynamic system and the trifocal tensor point transfer 

function is applied to the measurement model of the filter. 

The resulting algorithm is stable, accurate and efficient. An 

empirical comparison with existing EKFs which deal with 

the same problem has been made and shows that our 

approach outperformed the others. The proposed method 

has been tested with various video sequences to demonstrate 

its performance in real situations. 

Index Terms— Image motion analysis, machine vision, 

Kalman filtering. 

1. INTRODUCTION 

A fast and robust pose acquisition algorithm is crucial to 

interactive applications such as augmented reality and robot 

navigation. An accurate pose estimation method is also 

important for the recovery of the 3-D structure, since a high 

precision depth map can be constructed with an optimal 

pose sequence.  

Traditional pose acquisition methods require known 3-D 

structure of the scene [15] [16]. More general approaches, 

which require no prior information on the 3-D model, are 

based on the techniques in structure and motion (SAM) such 

as multiple view geometry [10] [11], factorization [1] and 

bundle adjustment [3] [13]. To deal with the problem 

recursively, Kalman filtering can be applied [4] [5] [6] [7] 

[8] [9] [17] [18]. The work in [6], which uses an iterated 

extended Kalman filter to achieve the task, is the seminal 

work. Azarbayejani and Pentland [5] proposed an 

improvement of [6] by making an extension in recovering 

the camera focal length and the representation of the 3-D 

model. In [8], Yu et. al. decoupled the full covariance 

extended Kalman filter (EKF) such that the computation 

efficiency is increased as a tradeoff in accuracy. An 

extension of their work can be found in [9], in which the 

Interacting Multiple Model (IMM) was added to the original 

formulation. Soatto et. al. [12] applied the essential 

constraint to pose estimation but this constraint is 

susceptible to degeneracy in some real situations [10]. 

This paper describes an innovative EKF-based algorithm 

that tackles the pose tracking problem. With no prior 

information about the 3-D structure of the scene, the pose 

information can be recovered from a monocular image 

sequence directly and recursively with the trifocal tensor. 

The major contribution of our approach is the incorporation 

of the trifocal tensor into the Kalman filtering formulation. 

In the algorithm, the trifocal tensor point transfer function is 

used in the measurement model of the EKF. That is apart 

from the dynamic system constraint on the motion of the 

camera, the trifocal constraint has also been employed in the 

filtering cycle, resulting in an enhancement on the accuracy 

of the algorithm. 

In our formulation, the recovery of pose sequence is 

independent of the 3-D structure. Traditional recursive 

SAM-based algorithms require the update of both the 3-D 

model points and pose parameters either simultaneously [5] 

or in an interleaved manner [8]. As no computation of the 3-

D model coordinates are involved in our approach, the total 

number of parameters required to be estimated is reduced 

from N+6, where N is number of available point features, to 

12. In this way, both the stability and computation 

efficiency of our filter can be improved. 

An empirical comparison with existing recursive SAM-

based pose tracking approaches [5] [8] has been made. 

Experimental results show that our algorithm had a better 

overall performance than the others. In addition, the 

proposed approach has been tested using real video 

sequences. Its accuracy has been verified by re-projecting 

the corner features in the 1st image to the succeeding frames 

with the recovered pose. 

2. PROBLEM MODELING 

The relationship between a point O

mX  of the 3-D structure in 

the world coordinate frame and its 2-D projection 
tmp ,
 on 

the image plane can be related as: 
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tm zyxX ],,[ ,,,,
denotes the coordinates of 

O

mX  in the camera coordinate frame and the subscript t

denotes the time when the measurement is being made. f’

represents the focal length of the camera. T

tttt zyxT  is 

a 13  translation vector and 
tR  is a 33  rotation matrix 

parameterized by the Yaw )( t
, Pitch )( t

 and Roll )( t

angle. The objective of the proposed algorithm is to recover 

the pose information 
tR  and 

tT  at each time-step recursively 

given only the image measurements 
tmp ,
.

3. SUMMARY OF THE ALGORITHM 

Fig. 1 shows the overview of the proposed pose tracking 

algorithm. The Kanade-Lucas-Tomasi (KLT) tracker 

described in [2] is used to extract feature points and track 

them in the images. It is assumed that the point features 

extracted by the tracker are contaminated only by Gaussian 

noise. 

Fig. 1. The flowchart of the proposed pose tracking algorithm. 

The algorithm is initialized by estimating the relative 

pose of the first two image frames f1 and f2 using epipolar 

geometry. Specifically, the fundamental matrix is first 

computed using the 8-point algorithm plus a RANSAC 

robust estimator. The pose parameters 
2R  and 

2T , which is 

up to an unknown scale factor, are then extracted from the 

fundamental matrix [10]. This is actually an initial guess of 

the pose of image f2.

Starting from image f3, the measurements are processed 

by an EKF. In each cycle, three images are processed, 

within which two of them are images f1 and f2 in the 

sequence. They compose of the base frames of the filter. 

The third one is the image ft at the current time-step t. The 

EKF computes the pose of image ft and, at the same time, 

refines the initial guess of the pose of image f2. Its state 

vector, denoted by 
tw , is written as: 

T

tttt

ttttttttt

zyx

zzyyxxw

]

...[

222222

 (3) 

ttt zyx ,,  are the translational velocities corresponding to 

ttt zyx ,,  while 
ttt ,,  are the angular velocities 

corresponding to 
ttt ,, . The state transition and 

measurement equation of the filter are formulated as: 

ttt Aww '1
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where 
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t'  and 
t'  are zero mean Gaussian noise. The dynamic 

system models the camera as constant velocity motion with 

the initial guess of the pose 
2R  and 

2T close to the actual 

values. 
t'  is an 1N  column vector representing the 

measurements from images, where N denotes the number of 

point features input to the filter. )( tt wg  is the 1N -output 

trifocal tensor point transfer function. Equation (7) is 

written in the tensor notation, in which 
t
 is known as the 

trifocal tensor [10]. 
t
 encapsulates the geometric relations 

among three views and contains the pose parameters 
2R ,

2T ,

tR  and  
tT . The use of trifocal tensor here makes the 

recovery of pose information directly from 2-D images 

possible. 
tmU ,
is the normalized homogenous form of 

tmp ,

such that T

tmtm

T

tmtmtmtm fvfuwvuU 1'/'/ ,,,,,,
.

2,ml  is a line passing through the point 
2,mp  in image f2. S

represents the sample period of the image measurements. 

The implementation details of the EKF and the construction 

of tensor 
t
 plus line 

2,ml can be found in [14] and [10], 

respectively. The filtering loop ends when all the images are 

processed. 

If the set of available point features is changing in the 

image sequence, the additional procedure to handle the case 

is to find the set of features commonly appeared in all the 

three images being processed in a filtering cycle. If the set 

of available features, say extracted from f1 , f2  and ft,

processed by the filter falls below 7, the algorithm is 

bootstrapped. The process followed is that images ft-o and ft-

o+1 are used to re-initialize the algorithm and become the 

base frames. A new filtering loop is then started from image 

ft-o+2. Here o is the number of image frames to be re-

computed in the new filtering loop. For example, o is set to 

5 in our implementation. In this way, the scale of the 

translation parameters (before and after re-initialization) can 

be aligned. 
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4. EXPERIMENTS AND RESULTS 

4.1. Experiments with synthetic data 

An object with 300 random feature points in 3-D was 

generated. The motion of the object was composed of three 

different segments, a pure translation section, a pure 

rotation section and a mixed motion section. The motion 

parameters were generated randomly from 0.2 to 1.2 

degrees per frame for 
ttt ,,  and 0.005 to 0.015 meters 

per frame for xt, yt and zt. The length of each synthetic 

sequence was 99 frames. A total of 50 independent tests 

were carried out. The proposed algorithm, the EKF by 

Azarbayejani and Pentland [5] and the 2-step EKF by Yu et.

al. [8] were implemented in Matlab and run on a Pentium III 

1GHz machine to estimate the pose information. The results 

were compared and analyzed.  

Fig. 2 shows the average accumulated total rotation and 

translation errors of the three approaches. The line with 

asterisk (*), triangle ( ) and circle ( ) markers are for our 

approach, the EKF by Azarbayejani and Pentland [5] and 

the 2-step EKF by Yu et. al. [8], respectively. Here, the total 

rotation of the camera were calculated using the axis-angle 

representation, with which the Yaw, Pitch, Roll angle was 

reduced into a single angle. The difference between the 

actual and the recovered value is the accumulated error. The 

accumulated total translation error was computed by 

subtracting the recovered translation vector from the actual 

one and the magnitude was taken. From the plots, it is clear 

that the proposed approach had a lower error than the other 

methods.  

Fig. 2. The average accumulated total rotation error (top, in 
degrees) and accumulated total translation error (bottom, in 
meters) versus frame number of the 3 algorithms. 

Table I shows the time needed to recover the pose when 

new image measurements were sequentially fed to the 

algorithms. Our algorithm outperformed the full covariance 

EKF by Azarbayejani and Pentland. However, the 2-step 

EKF took the shortest time to achieve the task. The reason 

is that their EKF is decoupled, which is actually a tradeoff 

between speed and accuracy. 

4.2. Experiments with real images 

Two real image sequences were used to test the proposed 

approach. The first sequence was taken in the laboratory. 

The images were captured while the camera was translating 

sideway on a rig. The length of the image sequence is 100 

frames. In the second sequence, the Grand Canyon in 

northwestern Arizona was viewed from an airplane. It is 5-

second long and contains 50 images. The proposed 

algorithm was applied to track the changes of the pose. 

Figs. 3 and 4 show the results. To verify whether the 

recovered pose is correct, corner features in the 1st image of 

the sequence were extracted. A set of trifocal tensors was 

computed using the pose parameters recovered. It was used 

to transfer (re-project) the corner features from the 1st image 

to the succeeding frames. We checked the consistency of 

the motion of these corner features with respect to the 

background images. From Figs. 3a and 4a, you can see that 

the features, which are indicated by cross markers, stick to 

the same position relative to the background. We can say 

that the results are accurate and visually acceptable. Figs. 3b 

and 4b illustrate the values of the acquired pose parameters. 

The line with triangle ( ), circle ( ) and square ( )

markers on the left plot are respectively for the translation 

parameters xt, yt and zt while the line with triangle ( ),

circle ( ) and square ( ) markers on the right plot are 

respectively for 
t
 (Yaw), 

t
 (Pitch) and 

t
 (Roll) angle. 

By inspecting the motion in the original videos, the 

recovered pose sequences are reasonable. More results can 

be found at http://www.cse.cuhk.edu.hk/~khwong/demo/ 

5. CONCLUSION 

A high-speed recursive pose tracking algorithm has been 

proposed in this paper. By integrating the trifocal tensor 

with the extended Kalman filter, a significance 

improvement on the accuracy and computation efficiency 

has been achieved. The pose sequence can be recovered 

directly from images without the explicit reconstruction of 

3-D structure. Thus, the procedure to handle the changeable 

set of point features becomes simple. It is shown in the 

experiment that the proposed algorithm is accurate in both 

simulations and real situations. Our novel approach is 

suitable for a wide range of image processing applications 

such as augmented reality and visual servoing. 

TABLE I

TIME REQUIRED TO PROCESS AN EXTRA IMAGE

 Our approach  
Azarbayejani’s 

EKF 

Yu’s 2-step 

EKF

Time required 

(seconds) 

1.56 2.60 0.42 

A table showing the average CPU time for the 3 
algorithms to recover the pose when extra frames were 
added to the image sequence. 
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a. A map of the point features extracted in the 1
st
 image (left) 

and its re-projection on the 50
th

 image (right). 

b. The recovered pose parameters. 
Fig. 3. Results of the laboratory scene sequence.  

a. A map of the point features extracted in the 1
st
 image (left) 

and its re-projection on the 50
th

 image (right). 

b. The recovered pose parameters. 
Fig. 4. Results of the Grand Canyon sequence.  
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