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Abstract
Resolution improvement from several images is typically 

restricted to simple planar rotations and translations. In 

this paper, a super-resolution algorithm that allows 3D

ego-motion of the camera system is proposed. By exploiting

the trifocal tensor constraint of a stereo camera system, the

intermediate step of scene structure recovery is effectively 

skipped. 3D motion is estimated recursively through an 

extended Kalman filter and used by a novel image warping

procedure to perform resolution enhancement. Real image

experiment with comparison to well known Irani-Peleg

approach confirms the validity of the algorithm.

Index Terms --- image enhancement, image registration,

motion analysis, stereo vision, kalman filtering. 

1. Introduction 
Super resolution, which refers to the construction of an 

image with higher resolution from several images of the

same scene, is a topic that receives much attention recently. 

The seminal work by Irani and Peleg[8] described a 

reconstruction based algorithm which iteratively refines a

higher resolution image by re-projecting it to produce

several lower ones. These lower resolution images are

compared with the input samples and the difference is used 

to update the higher resolution image. A number of later

methods are inspired by Irani’s approach[9,11,12,13]. The

idea is also expanded into time axis[14]. However almost

all of these approaches are rather restricted to planar 

features, and assuming that the distance from the scene to 

the camera is large compared with the variation in depth of 

the scene. As a result, almost all the proposed algorithms

are being applied to outdoors distant scene or simple planar

data.

In this paper, we propose an algorithm to incorporate a 

more general motion model, in particular rigid

transformation, into the Irani-Peleg formulation. We

demonstrate the advantage of our approach by applying it

to upgrade a sequence of real images

2. Theory 
In the formulation of Irani and Peleg[8] and other

approaches[11,12,13] thereafter developed, the image

formation process is represented as 

atmcam HFH (1)

where is the captured noisy image, P is original high

resolution image of the scene, Hi is the point spread transfer 

function(psf) which models different effects – subscript

cam represents the camera capture effect and atm models

the atmospheric transfer. Finally F denotes the motion

which the camera undergoes and  is system noise function,

and corresponds to down sampling.

The original formulation requires that the camera

undergoes a rigid planar transform which is modeled as 
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where (x,y)T is the captured image coordinates. (x’,y’)T is 

the original scene point coordinates. (tx, ty)
T represents the 

translational and represents the rotational component of

the planar transformation.
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Figure. 1 System set up for image capture 

During the image capture, we assume the camera

undergoes an ego-motion and use a stereo set up as in

Figure 1. In this case, a scene point with world coordinates

( will project onto the left and right camera plane

as and , respectively: 

Twww zyx )
Tvu ),( Tvu )','(

1

]0[
~

~

~

1333 W

W

W

z

y

x

MIK

w

v

u ,             (3) 

1
'~
'~
'~

W

W

W

z

y

x

KEM

w

v

u

wv

wu

v

u
p ~/~

~/~
,

'~/'~
'~/'~

'

'
'

wv

wu

v

u
p

                (4) 

17331­4244­0481­9/06/$20.00 ©2006 IEEE ICIP 2006



where K is a 3x3 matrix that encodes the intrinsic

parameters, say focal length f , of the camera. It is fixed and 

can be found by the camera calibration process[10]. For

simplicity, the two cameras used in our stereo system are 

assumed to be identical. E is a 3x4 matrix describing the

rigid transformation between the two cameras in the stereo 

system. M is a 4x4 matrix representing the rigid

transformation in . It   transforms the 3-D structure from

the world frame to the reference camera. The relationship

between equation (3) and (1) can be summarized by the

following formula

3

MKEF ' , where E’ equals to [I 0] and

E for left and right camera respectively. In general K can 

assume to be identity matrix for simplicity, or lumped into

Hatm in equation (1). In addition, E is fixed throughout the

capture process and is thus constant. Thus without lost of 

generality, we take F = CM for constant C and focus 

primarily on M hereafter. 

The proposed system set up obtains a pair of image

sequences andntpt ,..2,1, ntp t ,..2,1,' , where t is the

time instant the image taken. To perform resolution

enhancement, the typical process is to take several images

of the same scene at different poses and carry out the

refinement. We use the same reconstruction framework as

that of Irani:
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where L is a normalizing constant, is the reconstructed

version of the captured frame
t

t
from the high resolution

one through the image formation process described in

equation (1), finally is the up-sampling process.

2.1 Image Warping 
The reconstruction process requires the estimation of both

Ft and , which account for the warping of an image to

another due to geometrical transformation. For the relaxed

condition of general 3D motion described by M, the 

estimation process would be more involved since the image

now probably has some occlusions as well as newly

appeared part of the scene. An accurate estimation of these

regions as well as the original correspondences among

scenes are very important as they determine the quality of

the final reconstructed high resolution image.
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On the other hand, applying the approach of planar

motion cannot correctly register the images as the motion

model is unable to handle the warping of image regions

when rotations into the image plane occurs, as shown in the 

result later in Figure 2. To correctly account for the 3D

motion, we propose to first recover the accurate 3D camera

motion by a pose estimation algorithm, and then estimate

the dense warping between reference frame and candidate

frame.

2.2 3D motion Tracking 
3D motion estimation, also called pose tracking, is a well-

studied area in computer vision research. The task can be 

accomplished depending on whether the knowledge about 

the structure of the scene is known beforehand: model-

based[2,15] in which advance knowledge of the scene is

known and structure from motion[3,6] where both structure 

of the scene and motion information are to be extracted 

simultaneously. In most situations, an accurate estimation

of the scene geometry is difficult to achieve. However in 

our problem of resolution enhancement, recovering the

scene structure, i.e. using structure from motion method, to

perform image registration would further complicate the 

devised solution.  To solve the problem, we apply a novel

extended Kalman filter[10,17] algorithm, together with the

trifocal tensor[17], so as to fully exploit the advantages of

the stereo camera system. The significance is that the 3D

motion can now be directly estimated i.e. eliminating the

intermediate step of scene structure recovery. 

Firstly a number of features are being tracked 

throughout the left and the right image sequences 

independently using the Kanade-Lucas-Tomasi (KLT)

tracker[6]. Stereo correspondences among feature points

are setup afterwards by first estimating the fundamental

matrix, followed by correlation using epipolar geometry[5].

For the details of design of the EKF in our implementation,

the readers are referred to [16,17] . 

2.3 Image Warping by Surface Fitting 
The tensor-based Kalman filter approach we used[17] can

accurately estimate the 3D rigid transformation of the

camera. Theoretically given a full correspondences 

between frame p1 and p’1, which are the initial left and right

frame respectively, together with the tensors relating p1 and

p’1 and pn i.e. the left frame at time n, the mapping of every 

pixels from p1 to pn can be uniquely determined. However 

it would thus require an accurate and dense 

correspondences between p1 and p’1. To avoid the tedious

task of dense correspondence estimation, below we propose 

a simple but effective approach.

As we already got a number of features correspondences 

through the KLT tracker, we can use them to compute the 

dense correspondences. The idea is to first compute the

correspondences of those KLT features between p1 and pn

using the trifocal tensor. A scattered fitting is then

performed to reconstruct the estimation for the x- and y-

mapping of other pixels between the two frames. Bicubic

interpolation is used in the fitting. The fitted surface can 

thus provide a dense correspondence for the two frames.

The advantage of using surface fitting is that we are using 

the reliably tracked features to guide the interpolation. The
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correspondence results are thus free from spurious

mismatches that occurred in typical optic flow based dense

reconstruction. The correspondence map will take the role 

of the global image registration step in that of Irani and 

Peleg. To further ensure the correct registration of the two

images, we apply the original image registration step as in 

equation (2).  The image warping parameters thus

consists of both the feature correspondences predicted by

our motion estimation algorithm, together with the planar

rotation and translation parameter in equation (2). Equation

(5) is then applied to perform the super resolution.

1
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3. Experiments and results 
We apply the above procedures to a stereo laboratory

image sequence that consists of a series of rotations in

addition to translations in both x- and z-axis. The testing

images consist of two 115-frame sequences of 640 by 480

pixels captured by both the left and right camera. We first

apply the proposed 3D motion estimation algorithm as

described in section 2.2 to extract the motion information.

Then all the features, (approximately 70 in most cases), 

which are reliably tracked in the selected frames are being

reprojected to the frame pn by the tensor to establish the

scattered set of correspondences. Image warping parameter

estimation described previously are then applied to produce

the full correspondences between pn and p1. This procedure 

is repeated for a few frames centered around the frame that

resolution enhancement is being performed. We found that

usually 4 frames are sufficient to produce good results in

this process. The Irani-Peleg reprojection algorithm is then

performed to iteratively refine the images until no

improvement can be seen.

Selected results are shown in Figure 2. The result of using

the proposed warping method to generate the reconstructed

version of reference frame is shown in Figure 2f. We also

implemented the original Irani-Peleg method using motion

described by equation (2) as a comparison for the selected

frame and the result is also shown in Figure 2e. As can  be 

seen from the result, the original Irani-Peleg 

implementation cannot correctly enhance the zoomed

region due to the rotational camera motion as well as the

movement along the z-axis. For example, significant 

aliasing can be seen in the blow up region, especially at the

interior of the file label with “student” printed on it. On the

contrary, our proposed reconstruction method can correctly

enhance the image quality as shown in the same figure.

The results above illustrate the validity of our 3D

motion-based super resolution algorithm. Although we do 

not show the result for the right camera sequence here, but

the idea of resolution enhancement can equally be applied

to the right camera sequence with just minor changes in

frame reference and the tensor computation. An obvious

advantage is that using the proposed set up, one can 

perform super resolution on both left and right image

sequence and thus produce a stereo sequence with

enhanced resolution.

4. Conclusion 
By relaxing the simple motion model assumed in the

resolution enhancement algorithm by Irani and Peleg[8],

robust performance has been achieved for an image

sequence with more general 3D motion. The key idea is to

exploit the trifocal tensor constraint in stereo vision so that

scene structure recovery is no longer needed. The 3D

motion information is thus used to guide a novel image

warping in the super-resolution process. The effectiveness 

of the algorithm is demonstrated through a real image

sequence.
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a) laboratory image sequence, frame 1 of left and right view
respectively,

b) frame 33 and 46 of left view respectively, 

c) frame 46 being warped back to frame 33, 

d) Box region in left frame 33 of a)  with 10x zoom up 

e) result of Irani (with 5x zoom up) 

f) result of our algorithm (with 5x zoom up). Note the better 
anti-aliasing effect at the interior of white file label. 

Figure 2. Testing image sequence and comparison of results
of our proposed super-resolution algorithm with Irani-Peleg. 
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