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ABSTRACT
Trojan side channels (TSCs) are serious threats to the security of cryp-
tographic systems because they facilitate to leak secret keys to attack-
ers via covert side channels that are unknown to designers. To tackle
this problem, we present a new hardware Trojan detection technique
for TSCs. To be specific, we first investigate general power-based TSC
designs and discuss the tradeoff between their hardware cost and the
complexity of the key cracking process. Next, we present our TSC
identification technique based on the correlation between the key and
the covert physical side channels used by attackers. Experimental
results demonstrate the effectiveness of the proposed solution.

1. INTRODUCTION
With increasing demand for secure computation and communica-

tion in the era of internet of things (IoT), hardware cryptographic
modules are not only widely used in secure applications such as smart-
cards and set-top boxes, but also proliferate in all sorts of “smart” de-
vices connected to the Internet. As cryptographic hardware provides
the “root of trust” in the system, it is essential to ensure its own secu-
rity. However, while the cryptographic algorithms themselves are ex-
tremely difficult (if not impossible) to break mathematically [1], their
implementations suffer from the well-known side-channel attack, i.e.,
secret information may leak through side channels such as power con-
sumption, timing information and even sound, unless carefully de-
signed and implemented. Side-channel attacks thus become serious
industrial concerns and there are significant amount of research ef-
forts spent in designing sophisticated attacks (e.g., differential power
attack [2]) and the corresponding countermeasures [3].

Recently, a new type of hardware security threat namely hardware
Trojan (HT) emerges, which are malicious circuits introduced by ad-
versaries in the design team, third-parties or even foundries to serve
as back-doors in the system [4, 5]. Various types of hardware Trojans
were presented in the literature with different kinds of malicious func-
tionalities [6]. In particular, for cryptographic hardware, Lin et al. [7]
proposed the so-called Trojan side-channel (TSC) concept that facil-
itates to leak secret information via covert Trojan-induced side chan-
nels and showed that Trojans with size of 14 LUTs can reveal secret
keys of an AES core implemented in an FPGA. Liu et al. [8] demon-
strated a silicon implementation of an AES-based wireless crypto-
graphic chip with embedded TSC and showed it could leak secret
keys while passing conventional verification and test procedures.
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In [7, 8], the authors also presented potential TSC identification
techniques for their specific TSC designs. [7] briefly introduced a
potential TSC identification solution for their TSCs, but the details
are missing. At the same time, they admitted that the proposed tech-
nique would not be able to detect sophisticated TSC designs. In [8],
the authors employed existing HT detection techniques based on side
channel analysis, such as [9,10], to differentiate their fabricated TSC-
free chips and TSC-infected chips. In practice, however, side channel
analysis is often quite difficult, if not impossible, to have known TSC-
free chips as golden reference.

The basic idea of TSC design is to embed some circuitries that
are closely related to the on-chip secret key, thereby inducing or am-
plifying the key information leaked via physical side-channels. On
the one hand, more direct TSC-induced correlation between the key
and the physical side-channels facilitates attackers to extract the se-
cret key easily, but it also enables relatively simple side channel anal-
ysis for TSC identification. On the other hand, more sophisticated
TSC-induced correlation is hard to detect (without TSC-free chips
as golden reference), but the cryptosystem becomes more difficult
to break. Consequently, it is interesting and relevant to investigate
TSC design tradeoffs and the corresponding identification techniques,
which is addressed in this paper.

To be specific, the main contributions of this work include:

• We present a general power-based TSC design methodology
and the corresponding key cracking procedure, with arbitrary
combination of key bits, plaintext bits and random bits as key
information leakage source. We then conduct systematic de-
sign tradeoff analysis considering the TSC size, the key crack-
ing complexity via TSC and the TSC stealthiness against the
proposed identification technique.

• Leveraging the correlation between TSCs and secret key, we
propose a novel TSC identification technique that is applicable
to general TSC designs without requiring Trojan-free chips as
golden reference, and discuss its detection capability and limi-
tations.

The remainder of this paper is organized as follows. Section 2
presents preliminaries and surveys related work. In Section 3, we
present the theoretical study on general TSC designs and the corre-
sponding key extraction procedure. Next, we describe the proposed
TSC identification technique in Section 4. Experimental results are
then presented in Section 5. Finally, Section 6 concludes this paper.

2. PRELIMINARIES
In this section, we present existing TSC design and identification

techniques.

2.1 Trojan Side Channel Design
Side channel attack tries to break a cryptosystem based on informa-

tion gained from its physical implementation (e.g., power consump-
tion and timing information). For example, a vulnerable smart card
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Figure 1: An example TSC design: MOLES [12]

has distinct power consumption when operations are performed with
correct secret keys and wrong ones. Differential power attack [2] is
able to exploit this property for key extraction even with noisy power
traces, thanks to its signal processing and error correction proper-
ties. Various types of countermeasures have been proposed to mit-
igate this severe security threat. For instance, designers could use
power analysis-resistant logic (e.g., dual-rail logic) or masking logic
when implementing cryptographic hardware [3].

In recent years, hardware Trojans emerge as a serious security threat
due to the fact that today’s IC designs involve many third-parties dur-
ing the design and manufacturing process. For example, Skoroboga-
tov et al. [11] reported a backdoor found in a military-grade FPGA
device. Considering the fact that cryptographic hardware modules are
often used as the “root of trust” in a system, they are no doubt the fo-
cus of hardware Trojan threats. Lin et al. [7] first introduced the TSC
concept, which facilitates to leak secret information via covert Trojan-
induced side channels. Later, the same authors presented a concrete
TSC design namely MOLES in [12]. Gallais et al. [13] extended TSC
to general-purpose processors on which cryptographic software is ex-
ecuted. Recently, Liu et al. presented a silicon implementation of the
AES-based wireless cryptographic chip with embedded TSC in [8].

Let us take MOLES [12] introduced in an AES design as an ex-
ample to illustrate how TSC works (see Fig 1). In this TSC de-
sign, the secret key bits, K(0) to K(7), are XORed with a random
sequence of R(0) to R(7) generated by a pseudo random number gen-
erator (PRNG1), represented as Xi = K(i)⊕ R(i). Xi then drives a
leakage circuit (LC) to leak the key bit information with additional
power consumption P0−1 whenever Xi has 0-to-1 transition. There-
fore, the total power of MOLES-infected chip, denoted by Ptotal , can
be modeled as the sum of the power consumption of MOLES cir-
cuitries denoted by PMOLES, the power consumption of AES denoted
by PAES and other power consumption that can be modeled as white
Gaussian noise (AWGN) denoted by PAWGN ,

Ptotal = PMOLES +PAES +PAWGN . (1)

PMOLES can be further represented as:

PMOLES =
7

∑
i=0

PK(i)+PPRNG, (2)

where PK(i) and PPRNG represent the power consumption of the LC
connecting K(i) and that of the PRNG.

During the key cracking process, attackers extract one key bit at a
time with differential power analysis (DPA). Let us start by guessing
the value of K(0). With the guessed value of K(0) and known R(0),
attackers can calculate X0 = K(0)⊕R(0). According to the transition
of X0, power traces 2 are grouped into group 0 associated with 0-to-
1 transition and group 1 associated with 1-to-0 transition. Suppose
there are m0 power traces in group 0 and m1 power traces in group 1.

The differential mean power is calculated by the mean power in

1The PRNG is used here to distribute the leakage of key information to multi-
ple clock cycles, and it is only known by attackers.
2Power trace is a sequence of sampled power values.

group 0 minus the mean power in group 1, given by

DP≈ 1
m0

∑
∀ j∈grp0

7

∑
i=0

P( j,K(i))−
1

m1
∑

∀ j∈grp1

7

∑
i=0

P( j,K(i)), (3)

where P( j,K(i)) denotes the power consumption caused by K(i) in the
power trace j. In Eq. 3, PPRNG and PAWGN are canceled with sufficient
power traces, since they are not correlated with key bits; PAES can be
safely ignored as well because designers would minimize the correla-
tion between key bits with normal side-channel signals (otherwise the
key bit can be already cracked even without HTs).

Now, let us first consider the differential mean power caused by
K(0), denoted by DPK(0), given by

DPK(0) ≈
1

m0
∑

∀ j∈grp0
P( j,K(0))−

1
m1

∑
∀ j∈grp1

P( j,K(0)). (4)

If K(0) is correctly guessed, each power trace in group 0 consumes
the power of P0−1 while all power traces in group 1 do not consume
any power. Thus, DPK(0) ≈ P0−1 > 0. If K(0) is wrongly guessed, on
the contrary, all power traces in group 0 do not consume any power
while each power trace in group 1 consume the power of P0−1. Thus,
DPK(0) ≈−P0−1 < 0.

In terms of differential mean power caused by other key bits K(i)
(where i 6= 0), let mi0 and mi1 be the number of power traces associated
with 0-to-1 transition of Xi in group 0 and that in group 1. As a result,
DPK(i) is

DPki =
mi0
m0

P0−1−
mi1
m1

P0−1 = (
mi0
m0
− mi1

m1
)P0−1. (5)

Since grouping based on K(0) is uncorrelated with other key bits, we
would have mi0 ≈ 1

2 m0 and mi0 ≈ 1
2 m1 with sufficient power traces.

As a result, DPK(i) ≈ 0.
With the above, DP = ∑

7
i=0 DPK(i) > 0 if K(0) equals the guessed

value; otherwise, K(0) equals the opposite value of the guessed one.
Other key bits can be extracted similarly with the above procedure.

2.2 Trojan Side Channel Identification
A number of HT detection techniques have been proposed in the lit-

erature and they can be broadly categorized into two categories: trust
verification techniques [14, 15] used to detect HTs inserted at the de-
sign stage and side channel analysis techniques [9, 10] used to detect
HTs inserted during fabrication. Generally speaking, trust verifica-
tion techniques perform HT detection by identifying the rare trigger
signals used in an HT. However, TSC designs are often “always-on”
without any dedicated trigger signals and hence cannot be caught by
these solutions. Liu et al. [8] adopted side channel analysis tech-
nique to successfully differentiate their fabricated TSC-free and TSC-
infected chips. However, in practice, it is often quite difficult to obtain
TSC-free ICs as golden reference.

The above techniques are for general HT detection. In [7], the au-
thors briefly introduced a dedicated TSC identification technique for
their proposed TSC designs, but the details were not presented. While
effective for their specific TSC designs, it was mentioned in [7] that
their method was not applicable for more sophisticated TSC designs
that leak secret information via a complex combination of multiple
key bits, plaintext bits and random bits.

HT design and HT detection are like arms race, wherein attack-
ers constantly update their tactics to intrude a system while defend-
ers respond with more security measures to protect the system. Ex-
isting TSC designs and the corresponding identification techniques
such as [7, 8] are case studies that open the horizon of new security
concerns for cryptographic hardware, and it is essential to investi-
gate whether there are other forms of TSC designs and how to defend
against them, if any. This has motivated the study of general TSC
design methodology and the corresponding TSC identification tech-
nique in this work.



3. GENERAL POWER-BASED TSC DESIGN
In this section, we provide the theoretical study on the general

power-based TSC design methodology as well as the corresponding
key cracking process by using TSC.

Before discussing the details, we have the following symbol defi-
nitions as listed in Table 1. Let K be the key variable, wherein K(i)
is the ith bit of K, and k be the realization of the key variable. Let
K = {0,1}nk be the whole key space where nk is the number of key
bits of K, and hence k ∈K. Let K∗ be the variable of the subkey com-
posed of certain key bits of K, wherein K∗(i) is the ith bit of K∗, and
k∗ be the realization of K∗. Let K∗ = {0,1}nk∗ be the key space of K∗

where nk∗ is the number of key bits of K∗, and hence k∗ ∈K∗. Let R
be the random number, wherein R(i) is the ith bit of R, and r be the
realization of R. Let R = {0,1}nr be the space of R where nr is the
number of bits of R, and hence r ∈ R.

3.1 TSC Architecture

LC LC

(a) (b)

1 1

GC GC

Figure 2: (a) LM used by MOLES; (b) The general LM

Typically, TSC contains multiple leakage modules (LMs) which
are used together to crack the whole key. Each of LM, serving as a
separate channel to leak key bits via power side channel, is composed
of two components, the leakage information generation circuit (GC)
and the physical leakage circuit (LC), as shown in Fig. 2.

To be specific, GC generates the actual logic leakage information
that is the key masked by a random number. In case of the ease pre-
sentation, we model the plaintext bit as a special random bit. Fig. 2 (a)
presents the LM of MOLES that leaks one key bit XORed one ran-
dom bit while Fig. 2 (b) shows the general LM that leaks multiple
key bits masked by multiple random bits. Thus, the actual leakage
information, denoted by X , can be represented by

X = F(K∗,R), where X ∈ {0,1}. (6)

Previous work treated TSC secure based on the fact that only attack-
ers know how to recover the key with knowledge of F and R. Thus,
if LM is driven by multiple key bits and multiple random bits, it be-
comes much more difficult for designers to determine F and R. In
Section 4.3, we discuss the stealthiness of TSC. We assume that LC
can output only one power value, denoted by PLC, and whether it con-
sumes the power is determined by the value or the transition of the
input of LC, represented by X in Eq. 6, given by

P(X) = P(F(K∗,R)). (7)

In case of the ease presentation, in the following, we consider that LC
consuming the power depends on the value of the input, unless other-
wise specified. The proposed general TSC design and corresponding
detection technique are easily extended to TSC whose LC consuming
the power depends on the transition of the input. The design of LC is
out of scope of this paper.

Based on Eq. 6 and Eq. 7, we model LM’s behavior as leakage
power matrix, which is defined as follow:

DEFINITION 1. Leakage power matrix for LM, T P2nk∗×2nr , de-
scribing the leakage power of LM under different values of K∗ and
R. If LM consumes the power under k∗ and r, we set T P(k∗,r) = 1;
otherwise we set T P(k∗,r) = 0.

For a specific key k∗, we use T Pk∗ , defined as the row of T P wherein
K∗ = k∗, to denote its leakage power pattern. A simple example for
leakage power matrix T P can be found in Fig. 3.

Table 1: List of Notation
Symbol Meaning
K The key variable
K(i) The ith bit of K
k The realization of K
K The key space K = {0,1}nk , k ∈K
nk The number of key bits of K
K∗ The subkey variable and all key bits belong to K
K∗(i) The ith bit of K∗

k∗ The realization of K∗

K∗ The subkey space K∗ = {0,1}nk∗ , k∗ ∈K∗
nk∗ The number of key bits of K∗

R The random number
R(i) The ith bit of R
r The realization of R
R The random number space R = {0,1}nr , r ∈ R
nr The number of random bits of R
k� The actual key value of K used by the design
k∗� The actual key value of K∗ driving a LM
nlm The number of leakage modules

By embedding TSC with nlm LMs, attackers have

F1(K∗1 ,R1) = X1,

F2(K∗2 ,R2) = X2,

...
...

Flm(K
∗
lm,Rlm) = Xlm,

, (8)

with the knowledge of the implementation of LMs represented by
F(K∗,R) and P(X) as well as the random number R generated by
PRNG. Next, we detail how to crack the entire key via embedded
TSC.

3.2 Key Cracking Procedure

... ... ...

... ... ...

... ... ...

... ... ...

Figure 3: An example to illustrate leakage power matrix for an LM, wherein
each row represents T Pk∗ and nr = 1

The key cracking process is illustrated as follows. First, attack-
ers are assumed to have the ability to measure the power of the chip
and collect a large number of power traces under the different plain-
texts. Next, with these power traces, attackers calculate one specific
set of key candidates for each LM, denoted by K1, K2, . . . , Km, with
the knowledge of the implementation of each LM by demodulating
techniques, such as DPA. Finally, by intersection of all sets of key
candidates, given by

Kf = K1∩K2∩·· ·∩Km, (9)

attackers are able to reduce the key candidates into a reasonable size
for brute force or directly obtain the genuine key.

For a particular LM (LMi), the procedure of calculating the key
candidate set involves two steps. Let us take the leakage power matrix
shown in Fig. 3 to illustrate the details.



The first step is to apply DPA to identify the leakage power pattern,
T Pk∗� where k∗� denotes the actual value of K∗. As attackers hold the
knowledge of R, the identification process is achieved by grouping
the power traces based on R value and calculating the mean power
difference between R = 0 group and R = 1 group, denoted as DP0−1.
According to the value of DP0−1, we can obtain T Pk∗� as follows.
• If DP0−1 < 0, we have T Pk∗� = [0,1].
• If DP0−1 > 0, we have T Pk∗� = [1,0].
• If DP0−1 ≈ 0, we have T Pk∗� = {[0,0], [1,1]}.

Conventional DPA is unable to differentiate T Pk∗ = [1,1] and T Pk∗� =
[0,0], since both of them lead to DP0−1 ≈ 0. Power effects of AES,
PRNG and AWGN are assumed to be removed by DPA with sufficient
power traces as discussed in Section 2. The power impacts of other
LMs can be removed by DPA as well, since all power traces contain-
ing the power of other LMs are evenly distributed into two groups
associated with R = 0 and R = 1 for this LM. This factor is to be
illustrated by Lemma 1 in Section 3.3.

For the TSC driven by nr random bits, T Pk∗� can be determined in
the similar way by calculating the differential mean power of power
traces with different random numbers. However, DPA is unable to
differentiate T Pk∗� = [1,1, . . . ,1] and T Pk∗� = [0,0, . . . ,0] as well.

The second step is to extract the key candidate set. With the iden-
tified leakage power pattern T Pk∗� . The extraction key process can be
done by simply finding the key that leads to the same leakage power
pattern. As a result, we obtain the key candidate set for LMi denoted
by K∗i , wherein ∀k∗ ∈K∗i , T Pk∗ = T Pk∗� , as shown in Fig. 3.

In order to intersect the key candidate sets obtained by LMs, we
define Ki based on K∗i and Ki ⊆K. For any k ∈Ki, the subkey of k,
denoted by k∗, belongs to K∗i , given by k∗ ∈K∗i . Correspondingly, we
define K1, K2, . . . , and Km.

3.3 Leakage Module Design
The key issue in a TSC design is the LM design, and hence we

discuss its details in this subsection.
During the key cracking process for one LM, the main point is to re-

move the power impact of other LMs by DPA. Therefore, LM should
be designed in such a manner that satisfies the following lemma.

LEMMA 1. For ∀k∗ ∈ K∗, if we randomly select r where r ∈ R,
we have

Pr[T Pk∗(r) = 1] = Pr[T Pk∗(r) = 0] =
1
2
. (10)

Lemma 1 enables power trace containing the power of one LM be
evenly distributed into groups when power traces for this LM are ran-
domly allocated.

According to the above key cracking procedure, we observe that
attackers in fact adopt LM to distribute all key candidates into pre-
defined several key sets. For a general LM, the number of available
key sets is given by the following lemma.

LEMMA 2. Consider an LM driven by nk∗ key bits and nr random
bits. This LM is able to distribute the 2nk∗ key candidates into at most
NKS key candidate sets, where NKS is given by

NKS = Min {2(2
nr )−1,2nk∗ }. (11)

PROOF. For this LM driven by nk∗ key bits and nr random bits,
the size of T Pk∗� is 2nr . Therefore, there are at most 2(2

nr ) possi-
ble values for T Pk∗� . DPA is able to differentiate 2(2

nr )− 1 of them
except T Pk∗� = [0,0, . . . ,0] and T Pk∗� = [1,1, . . . ,1]. Therefore, this
LM is able to distribute 2nk∗ key candidates into Min {2(2nr )−1,2nk∗ }
sets.

Attackers are always expecting to reduce as many key candidates
as possible by LM, and the following lemma indicates how to obtain
the minimum expected number of key candidates.

LEMMA 3. Consider an LM driven by nk∗ key bits and nr random
bits. The minimum expected number of key candidates after reducing
by this LM is given by 1

NKS
2nk∗ , where NKS = Min {2(2nr )−1,2nk∗ }.

PROOF. Let us suppose LM partitions the key space K∗ into NKS
subsets, denoted by K∗1, K∗2, . . . , K∗NKS

. Let n, n1, n2, . . . , nNKS be the

size of K∗, K∗1, K∗2, . . . , K∗NKS
, where n = ∑

NKS
i=1 ni = 2nk∗ . Since the

actual key k∗� ∈K∗ is randomly chosen by designers, the probability
of k∗� within K∗i is given by

Pr[k∗� ∈K∗i )] =
ni

n
. (12)

With the above, the expected number of key candidates left by this
LM, denoted by E(nkc) is calculated by

E(nkc) =
NKS

∑
i=1

(Pr[k∗� ∈K∗i ] ·ni) =
NKS

∑
i=1

(
n2

i
n
). (13)

By minimizing E(nkc), we have

Min(E(nkc)) =
1

NKS
n, when n1 = n2 = · · ·=

1
NKS

n. (14)

Therefore, attackers are required to evenly distribute keys into NKS
sets in case of the minimum expected number of key candidates. With
the above, Lemma 3 is proved.

With Lemma 3, it is possible to estimate the number of LMs re-
quired to crack the whole key, denoted by nlm. Suppose the acceptable
complexity of enumerating all remaining key candidates is 2nb and as-
sume every LM is perfectly designed to expect to shrink the key space
by 1

m according to Lemma 3, where m≤NKS =Min {2(2nr )−1,2nk∗ }.
Therefore, we have

2nb = 2nk ·
nlm

∏
i=1

1
mi

. (15)

To estimate nlm by Eq. 15, we simply consider mi = 2(2
nr )−1 and

mi = 2nk∗ , assuming attackers would fully use each LM, and consider
nr and nk∗ are constant for all LMs. Therefore, for mi = 2(2

nr )−1, we
have

nlm =
nk−nb

log2(2(2
nr )−1)

; (16)

for mi = 2nk∗ , we have

nlm =
nk−nb

nk∗
. (17)

3.4 Overhead and Complexity
The total area cost of TSC, denoted by CT SC, comes from GC de-

noted by CGCand LC denoted by CLC and is estimated by

CT SC =
nlm

∑
i=1
·CGC(nnk∗i

+nri)+CLCi . (18)

CGC(nk∗i +nri) approximately increases exponentially with the increase
of (nk∗i + nri) caused by implementing F(K∗,R). CLC is determined
by attackers in the consideration of the ratio between the power of LM
and the power of the whole chip. In terms of CGC, the best choice of
TSC is to set nk∗i = 1 and nri = 1, just like MOLES.

The complexity to build TSC and crack the key in all is given by

O(
nlm

∑
i=1

2nk∗i
+nri )+O(nlm ·NPT )+O(

nlm

∑
i=1

2nri )+O(2nb). (19)

The first part, O(∑
nlm
i=1 ·2

nk∗i
+nri ), denotes the complexity of building

nlm LMs, wherein we assume that attackers have to go through all
input combinations (2nk∗i

+nri ) to design an efficient LM. The second
part, O(nlm ·NPT ), denotes the complexity to collect sufficient power
traces, where NPT is the number of power traces for cracking one



LM. The third part, O(∑
nlm
i=1 2nri ), denotes the complexity of identify-

ing 2nri elements of T Pk∗� . The fourth part, O(2nb), denotes the com-
plexity of obtaining the key from the key set in a brute force manner.

With the above, to obtain the minimum complexity building TSC of
cracking the key, attackers are suggested to set nk∗i = 1 and nri = 1, just
like MOLES. In other words, MOLES has the lowest hardware cost
and the lowest key cracking complexity. However, it is also easy to
be detected by our proposed TSC identification technique, as detailed
in Section 4.

4. THE PROPOSED TSC IDENTIFICATION
SOLUTION

In this section, we present the proposed TSC identification solu-
tion. We first illustrate the existence of the correlation between the
key and the leaked power via TSC-induced side channels. Next, we
present how to identify such correlation for TSC detection. Finally,
we estimate the detection capability of our approach and discuss its
limitations.

4.1 Observation
The observation used to detect TSC is that all key bits driving one

LM are correlated with the leaked power. Next, we describe the exis-
tence of this correlation.

Consider an LM that is driven by K∗ and R. From the perspective
of designers, power traces are generated by the same plaintext but
different key values and collected at the same time spot, guaranteeing
different keys are masked by the same R value. After collecting power
traces, we group them according to the value of K∗, and power traces
in the same group are generated by the same value of K∗.

Among all groups of power traces, we choose two groups, group
x and group y, and k∗x and k∗y denote values of key bits for group
x and group y. These two groups should satisfy the requirement of
F(k∗x ,r) 6= F(k∗y ,r), and there must exist required group x and group
y according to the design of LM discussed in Section 3.

We calculate the differential mean power of these two groups of
power traces, given by

DP(grpx,grpy) =
1
nx

∑
∀ j∈grpx

nlm

∑
i=1

P( j,K∗i )−
1
ny

∑
∀ j∈grpy

nlm

∑
i=1

P( j,K∗i ), (20)

where nx and ny denotes the numbers of power traces in group x and
group y, and P( j,K∗i ) denotes the power caused by the LM driven by K∗i
in the power trace j. With the assumption used in TSC, PAES, PPRNG
and PAWGN in Eq. 20 are removed by DPA.

To calculate DP(grpx,grpy), let us consider the differential mean power
caused by each LM separately. For the targeted LM driven by K∗, the
differential mean power caused by this LM, denoted by DP(grpx,grpy)(K

∗),
is given by

DP(grpx,grpy)(K
∗) =

1
nx

∑
∀ j∈grpx

P( j,K∗)−
1
ny

∑
∀ j∈grpy

P( j,K∗). (21)

Since F(k∗x ,r) 6= F(k∗y ,r), DP(grpx,grpy)(K
∗
x ) 6= 0.

For any other LM driven by K∗z , let us define n(x,z0), n(x,z1), n(y,z0)
and n(y,z1) be the number of power traces in group x whose k∗ makes
Fz(k∗,r) = 0, the number of power traces in group x whose k∗ makes
Fz(k∗,r) = 1, the number of power traces in group y whose k∗ makes
Fz(k∗,r) = 0, and the number of power traces in group y whose k∗

makes Fz(k∗,r) = 1. The differential mean power caused caused by
this LM, denoted by DP(grpx,grpy)(K

∗
z ), is given by

DP(grpx,grpy)(K
∗
z ) =

1
nx

(n(x,z0)P(0)+n(x,z1)P(1))

− 1
ny

(n(y,z0)P(0)+n(y,z1)P(1))

= (
n(x,z0)

nx
−

n(y,z0)

ny
)P(0)+(

n(x,z1)

nx
−

n(y,z1)

ny
)P(1)

, (22)

where P(0) and P(1) are calculated from Eq. 7. Since the grouping
based on K∗ is not correlated with the distribution of n(x,z0), n(x,z1),
n(y,z0) and n(y,z1), we would have n(x,z0) ≈ n(x,z1) ≈ n(y,z0) ≈ n(y,z1) ≈
1
2 nx ≈ 1

2 ny with sufficient power traces. Therefore, we can obtain
DP(grpx,grpy)(K

∗
z )≈ 0.

By considering the power caused by all LMs together, we have
DP(grpx,grpy) = ∑

nlm
i=1 DP(grpx,grpy)(K

∗
i ) 6= 0, which indicates the exis-

tence of the correlation between key bits (K∗) and leaked power. This
observation enables us to detect TSC by identifying such correlation.

4.2 TSC Detection Algorithm
The proposed TSC detection method is based on identifying the

correlation between key bits and leaked power. However, the design
of TSC discussed above, in fact, is intended to hide such correlation
from two aspects. To be specific, on the one hand, the key information
is masked by the random number; on the other hand, the correlation
between which key bits and the leaked power is unknown to designers.

It is relatively easy to overcome the impact of the random number
by collecting power traces masked with the same random number. To
achieve this, we can sample the power under the same plaintext at the
same time spot while varying keys. However, without knowledge of
which key bits are selected to drive the leakage module, designers are
required to try all key bit combinations to identify TSC in the worst
case scenario. In the following, we present that designers could have
a high detection probability with only a few attempts.

Algorithm 1: TSC Detection Algorithm

1 Set N∗k , Nv and Nt ;
2 while 1→ Nv do
3 Randomly choose K∗;
4 IdentifyLeakageModule(K∗);
5 if Any LM detected then
6 Stop;
7 end if
8 end while

9 IdentifyLeakageModule(K∗)
10 while 1→ Nt do
11 Randomly choose group x and group y in K∗;
12 if DP(grpx,grpy)(r) 6= 0 then
13 Detect the leakage module and return;
14 end if
15 end while
16 end

4.2.1 Overall Algorithm
Algorithm 1 illustrates the detection algorithm for TSC. We start

to set the number of key bits verified, Nk∗ , and the number of pro-
cesses to identify LM, Nv. How to set Nk∗ and Nv is to be detailed
in Section 4.3. Then, for each identifying leakage module process,
we randomly select key bits K∗ from all key bits K to verify whether
they drive any LM, denoted by IdentifyLeakageModule(K∗), and the
number of key bits for K∗ is equal to Nk∗ . Whenever any LM is de-
tected by a selected K∗, the algorithm stops. In the following, we
first present the process of identifying LM, and then discuss the de-
tection capability of the proposed detection algorithm as well as the
limitations.

4.2.2 Identifying Leakage Module
Based on the observation in Section 4.1, we formulate the problem

of identifying LM as identifying the correlation between given key
bits and leaked power. The process is illustrated by Line 9-16 in Al-
gorithm 1. We group power traces based on the value of K∗, and we
try Nt pairs of groups of power traces. Nt is determined, guaranteeing
a high detection probability. For each pair of groups of power traces,



we calculate their differential mean power. If there is any strange dif-
ferential mean power, we consider that there are LMs embedded in
the chip.

However, it is possible that designers choose key bits K∗ that drive
no LM, one LM or multiple LMs. Let us discuss these cases one by
one in the following.

• K∗ does not contain all key bits of any LM. For this case, we
cannot detect any of LMs. This is because that power traces
containing the power of LMs are evenly distributed among groups
based on the value of K∗ according to Lemma 1, which makes
DP(grpx,grpy) ≈ 0.

• K∗ contains all key bits of one LM. For this case, We are able to
detect this LM whenever we choose two groups of power traces
whose keys, k∗x and k∗y , satisfies the requirement of F(k∗x ,r) 6=
F(k∗y ,r) according to Section 4.1.

Assume groups are independent, and according to Lemma 1,
the probability of detecting this leakage module is given by

Pr[DP(grpx,grpy) 6= 0] = Pr[T Pk∗x (r) 6= T Pk∗y (r)]

= Pr[T Pk∗x (r) = 1 and T Pk∗y (r) = 0] +

Pr[T Pk∗x (r) = 0 and T Pk∗y (r) = 1]

=
1
2
× 1

2
+

1
2
× 1

2
=

1
2
.

(23)

• K∗ contains all key bits of one LM and some extra key bits. For
this case, we are able to detect this LM and those extra key
bits would not have influence on identifying this LM. Let K∗1
be all key bits driving this LM. Thus, this LM will be detected
whenever two groups of power traces whose keys, k∗1x and k∗1y,
satisfies T Pk∗1x

(r) 6= T Pk∗1y
(r). Since key bits are independent,

the probability of selecting key bit value from K∗ and K∗1 be-
longing to any key set is the same. As a result, we have

Pr[DP(grpx,grpy) 6= 0] = Pr[T Pk∗x (r) 6= T Pk∗y (r)] =
1
2
. (24)

• K∗ contains all key bits of more than one LMs. For this case,
we are able to detect LMs. Suppose there are nl LMs. To detect
them, we have to find two groups of power traces, group x and
group y, satisfying DP(grpx,grpy) 6= 0. Suppose LMs consume
the same power PLC when activated. Thus, for any k∗ ∈K∗, we
have nl possible power values caused by these nl LMs, nlPLC,
(nl − 1)PLC, . . . , PLC and 0. With the above, there must exist
two groups make nl LMs consume different power.

Next, let us discuss the probability of nl LMs consuming differ-
ent power under kx and ky with the same r. For any k∗ ∈K∗, the
probability of nl LMs consuming tP0 in all is given by Ct

nl
1
2

nl .
Therefore, the probability of kx and ky making nl LMs consume
different power is given by

Pr[DP(grpx,grpy) 6= 0] = 1−
nl

∑
i=0

(Ci
nl

1
2

nl

)2 ≥ 1
2
, (25)

which can be proven to be greater than or equal to 1
2 .

• K∗ contains all key bits of more than one LMs and some extra
key bits. For this case, we are able to detect LMs and those
extra key bits would not have influence on detecting LMs. This
is easily proven by above discussion.

With the above, we can conclude that if K∗ contains all key bits of
any LMs, our approach is able to detect them whenever two chosen
groups of power traces have clear and stable differential mean power.

We try Nt pairs of groups of power traces in order to have a high
detection probability. With Nt tries, the probability of detecting LMs
is given by

1− (1−Pr[DP(grpx,grpy) 6= 0])Nt > Pcon f idence. (26)

As a result, Nt is determined according to user-defined confidence,
denoted by Pcon f idence. Since Pr[DP(grpx,grpy) 6= 0] ≥ 1

2 according to
Eq. 23, Eq. 24 and Eq. 25, we can have about 99.9% probability to
detect LM with Nt = 10 if K∗ contains all key bits of any of the LMs.

Finally, the complexity of the proposed TSC detection algorithm is
approximately given by

O(Nv×Nt ×NPT ), (27)

where NPT denotes the number of power traces required.

4.3 Detection Capability
To estimate the detection capability of our approach by Algorithm 1,

let us first summarize the TSC detection problem as follows. Let nk
be the number of key bits. Attackers would like to build Nlm LMs for
TSC. Each LM is driven by nk∗ different key bits. Designers, on the
contrary, expect to detect any of LMs by attackers. The detection flow
is like this. Each time, designers randomly select Nk∗ key bits from
nk key bits. If nk∗ key bits of one of LMs are inside of Nk∗ key bits,
TSC is detected by designers. Thus, if designers try above process Nv
times, the probability of detecting TSC is given by

PDeT SC(Nv,Nk∗ ,nlm,nk∗) = 1−∏
Nv
i=1 ∏

C
nk∗
Nk∗

j=1 (1−
nlm

C
nk∗
nk −(i−1)C

nk∗
Nk∗
− j

), Nk∗ ≥ nk∗

0, Nk∗ < nk∗

,
(28)

where PDeT SC(Nv,Nk∗ ,nlm,nk∗) denotes the probability to detect TSC.
If Nk∗ < nk∗ , our approach definitely misses TSC as discussed. If
Nk∗ ≥ nk∗ , PDeT SC(Nv,Nk∗ ,nlm,nk∗) is influenced by Nv, Nk∗ , nlm and
nk∗ . Therefore, let us discuss the detection capability of our approach
from two aspects, the impact of nlm and nk∗ set by attackers and the
impact of Nv and Nk∗ set by designers.

Table 2: Parameters of Cases
Case 1 Case 2 Case 3 case 4

nk 128 128 128 128
nk∗ 4-8 4 4 4
nlm 80 80-40 80 80
Nk∗ 10 10 10-14 10
Nv 500 500 500 500-900
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Figure 4: PDeT SC under four cases

We study four cases shown in Table 2 and present the estimated
PDeT SC in Fig. 4. From the perspective of attackers, we study cases
1 and case 2 where we vary nk∗ and nlm. As can be seen, PDeT SC de-
creases dramatically by increasing nk∗ than by decreasing nlm. This is
because that the number of key bit combinations that can be used to
build LM (Cnk∗

nk ) increases significantly with the increase of nk∗ , which
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Figure 5: Power curves indicating the detection of T SC1 with Nk∗ = 1 and the first eight key bits chosen separately

increases the detection complexity. Therefore, the LM driven by mul-
tiple key bits is more difficult to be detected, while the hardware cost
of LM and the complexity of cracking the key would increase expo-
nentially with nk∗ , shown in Eq. 18 and Eq. 19.

From the perspective of designers, we study case 3 and case 4
where we vary Nk∗ and Nv. We find that it is better to increase Nk∗

to improve PDeT SC than to increase Nv. This is because more key bit
combinations (Cnk∗

Nk∗
) are verified once with larger Nk∗ . Moreover, in-

creasing Nk∗ would not introduce any detection complexity shown in
Eq. 27.

As a result, the key of our approach is how to set Nk∗ , making de-
signers have a high probability to choose K∗ that contains all key bits
of one of LMs. If Nk∗ � nk∗ , our approach could detect TSC quickly
as shown by Eq. 28. Therefore, if nk = 128, we could set Nk∗ = 80,
considering the fact that the number of key bits driven by LM is usu-
ally limited in the consideration of hardware cost of implementing
LM. If N∗k = nk, in this extreme case, the algorithm would detect TSC
extremely fast. However, for this ideal case, the assumption that PAES
and PAWGN can be removed by sufficient power traces cannot hold.
This is because that we are not be unable to generate sufficient power
traces with the same random number by varying the value of key bits.
If the random number does not depend on the plaintexts, designers are
able to obtain power traces by varying plaintexts. This is the reason
why the plaintext bit is recommended to be used by TSC.

4.4 Discussion
The proposed solution for TSC identification has the following two

advantages. Compared to existing HT detection techniques using
side-channel analysis, our approach does not require TSC-free chips
as golden reference and hence are practical for TSC identification.
Compared to the method in [7], our approach works for power-based
TSCs with any GC designs that use a combination of arbitrary key
bits, plaintext bits and random bits, while their method cannot handle
such sophisticated TSCs.

Our approach works well against the always-on TSCs but may fail
for trigger-based TSCs. This is because, our approach requires suf-
ficient number of power traces with leaked information from Trojan-
induced side channels, which may not be available if the trigger con-
dition is not satisfied. At the same time, however, designers can use
existing HT detection solutions such as [15] to identify HT triggers
and they are compatible with our TSC identification technique.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
We validate the proposed TSC identification technique by conduct-

ing experiments on FPGA. We adopt two TSCs in the experiments.
One is MOLES whose architecture is shown in Fig. 1, denoted by
T SC1. Each LM of T SC1 is implemented by XORing one key bit
and one random bit, given by Xi = K(i)⊕R(i). The other one, de-
noted by T SC2, is designed as follows. Each LM of T SC2 is im-

plemented by XORing two key bits and two random bits, given by
Xi = K(i)⊕K(i+1)⊕R(i)⊕R(i+1). For both T SC1 and T SC2, the
random number is generated by a linear feedback shift register, while
the LC is realized by flip-flops and the load of LC is controlled by the
number of flip-flops. We transplant T SC1 and T SC2 into an AES cryp-
tosystem implemented on the FPGA. We then measure the transient
power of the entire AES cryptosystem with the oscilloscope.

Table 3: Experimental parameter setting (EPS)
EPS 1 EPS 2 EPS 3 EPS 4

T SC T SC1 T SC2 T SC1 T SC2
nk∗ 1 2 1 2
nr 1 2 1 2

Nk∗ 1 2 2 1
Fig. 5 6 7 8

The experimental parameter settings are shown in Table 3. All
power values shown in Fig. 5-8 remove the bias power, 1.188W, in
order to clearly show the power difference between power curves.
Thus, the ‘0’ value on the y coordinate illustrate ‘1.188W’.

5.2 Results and Discussion
We validate the performance of our proposed TSC identification

technique from three aspects: (i). TSC detection capability; (ii) the
impact of the number of key bits (Nk∗ ) chosen for TSC identification;
and (iii) the impact of LC load.

5.2.1 Detection Capability
Let us consider the detection of T SC1 first. Fig. 5 plots the mean

power curves with increasing number of power traces (NPT). For ev-
ery LM in T SC1, there are only two groups based on the value of
K(i). As can be observed in Fig. 5 (a), all the power curves gradually
become stable with the increase of NPT. Then, we detail the mean
power of all groups when NPT ranges from 1.7×104 to 1.9×104 in
Fig. 5 (b). From this figure, we can observe that the difference be-
tween two groups of one LM is clear and stable. Such power gap is
the evidence of the correlation between the key bit and power con-
sumption, and hence our approach is able to detect all eight LMs in
T SC1.
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Figure 6: Power curves indicating the detection of T SC2 with Nk∗ = 2 and
K(0)K(1) chosen



Next, let us validate our TSC identification technique for T SC2.
Fig. 6 shows the mean power curves of four groups when K(0)K(1)
are chosen during Trojan detection and they drive one LM. A close
examination of Fig. 6 reveals the following two observations. First,
T SC2 is successfully detected by our approach since there exists the
pair of groups with clear power gap (e.g., K(0)K(1)= 00 and K(0)K(1)=
01), indicating the correlation between K(0)K(1) and the power con-
sumption. Second, we obtain the similar mean power when the pair
of groups associated with 00 and 11 of K(0)K(1) or the pair of groups
associated with 01 and 10 are chosen. This is because that the value
of Xi is the same for these pairs of groups, which leads to the same
leakage power caused by LM.

While we only validate the proposed solution for T SC1 and T SC2,
we believe it is insensitive to any power-based TSC designs according
to the theoretical analysis in Section 4.

5.2.2 Impact of Nk∗

1.7 1.75 1.8 1.85 1.9

x 10
4

−6

−4

−2

0

2

4

6

Number of Power Traces

P
o
w
e
r(
m
W
)

K(0)K(1)=00

K(0)K(1)=01

K(0)K(1)=10

K(0)K(1)=11

Figure 7: Power curves indicating the detection of T SC2 with Nk∗ = 1 and
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Figure 8: Power curves indicating the detection of T SC2 with Nk∗ = 1 and
K(1) chosen

In the above experiments, we have shown that whenever Nk∗ = nk∗ ,
our approach is able to detect TSC when all key bits driven one LM
are chosen during TSC detection. In this experiment, we study the
cases when Nk∗ > nk∗ and Nk∗ < nk∗ .

For Nk∗ > nk∗ , we set Nk∗ = 2 which is larger than nk∗ = 1 during
the detection of T SC1. Fig. 7 shows four power curves when K(0)
and K(1) are chosen and either of them drives one LM. We observe
that the mean power associated with 00 of K(0)K(1) is the largest;
the mean powers associated with 01 and 10 are close and are a little
bit smaller; the mean power associated with 11 is the smallest. This
is because that both LMs leaking power when the driven key bit is 0.
Our approach is able to detect T SC1 whenever any of the two groups
with clear power gap are chosen.

For Nk∗ < nk∗ , we set Nk∗ = 1 which is smaller than nk∗ = 2 during
the detection of T SC2. Fig. 8 present the case when K(1) is chosen
for TSC identification. As can be observed, we cannot obtain a reli-
able power gap between the two mean power curves associated with
K(1)= 0 and K(1)= 1. This is because the power of LMs is randomly
distributed into the chosen groups and cannot be differentiated.

5.2.3 Impact of LC load
Finally, we study the impact of the LC size on the number of power

traces required for TSC identification, and the results are shown in
Table 4. It is clear that fewer power traces are needed with higher
capacitive load of the leakage source (implemented as flip-flops in

Table 4: Impact of load of LC
# of flip-flops

16 128 1024
NPT 15231 8723 1864

this work). This result shows that, while a large leakage source could
help attackers to extract keys easily, it also makes TSC easy to be
detected by our proposed TSC identification technique.

6. CONCLUSION
In this paper, we first investigate the general architecture of power-

based TSCs and introduce the corresponding key cracking process.
Next, we present a novel TSC identification technique by exploiting
the correlation between key and power side-channel. Experimental
results for two TSC designs inserted into an AES cryptosystem imple-
mented on FPGA proved the effectiveness of our proposed solution.
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