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ABSTRACT
With technology scaling, integrated circuits suffer from increasingly
severe static and dynamic variations, which often manifest themselves
as infrequent timing errors on circuit speed paths, if a large timing
guard-band is not reserved. This paper presents a new forward tim-
ing error correction scheme, namely ForTER, which predicts whether
the occurrence of timing errors would propagate to the next level of
sequential elements and corrects them without necessarily borrowing
timing slack. The proposed technique can be combined with other
timing error resilient circuit design techniques to further improve cir-
cuit performance, as demonstrated in our experimental results with
various benchmark circuits.

1. INTRODUCTION
With technology scaling, the timing behavior of integrated circuits

(ICs) becomes increasingly uncertain due to static process variation
and various dynamic variation effects such as voltage/temperature
fluctuations [1–3]. Conventional circuit designs tolerate these vari-
ations by embedding a large timing guard-band into the design to en-
sure error-free computing. Unfortunately, such conservative design
methodology reduces the benefits provided by technology scaling.
Consequently, resilient design methodologies for timing errors have
emerged as alternative solutions and have attracted lots of attention.

1.1 Related Work
Generally speaking, prior works achieve timing error resilience with

the following three techniques: (i) timing error recovery by restoring
the system to a pre-error state and conducting re-execution with more
timing margin; (ii) timing error masking by adding redundant logic;
(iii) time borrowing by delaying the arrival time of the correct data to
the next logic level.

Timing Error Recovery: One well-known solution to achieve timing
error resilience is the so-called timing speculation technique. Timing-
speculative circuits usually employ double-sampling latches to detect
timing errors on circuit speed paths (e.g., Razor [4]). Once an error is
detected, backward error recovery (BER) is conducted to restore the
system to a known-good pre-error state. Thanks to the built-in roll-
back support in microprocessors, it is quite cost-efficient to implement
a BER solution for timing errors occurred on their datapath. That is,
we can simply flush the pipeline and replay the offending instructions
(usually at a lower frequency) for timing error correction. Recently,
Intel presented the measurement results of a timing-speculative mi-
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croprocessor test chip in [5], showing that the resilient design is able
to achieve more than 30% throughput gain over a conventional design
that does not allow timing errors. Such huge benefits have motivated
a large amount of recent research efforts on design and optimization
techniques for timing-speculative circuits (e.g., [6–12]).

However, for general logic circuits (including microprocessor con-
trol path), it is very difficult, if not impossible, to implement a BER
solution for timing error resilience, due to the high cost to checkpoint
error-free states without microarchitecture support.

Timing Error Masking: Instead of rolling back the system to a
pre-error state, timing error masking techniques add a redundant logic
block to overwrite the outputs of the circuit upon application of inputs
that sensitize speed paths [13, 14]. With such exact sensitization con-
straint, the redundant error-masking circuit tends to have more timing
slack when compared to the original circuit, and hence is immune to
timing errors.

In [13], the so-called speed-path characteristic function that repre-
sents the set of all speed-path activation patterns is used to synthesize
the error-masking circuit, which is quite expensive in terms of run-
time and cost overhead. Recently, InTimeFix [14] proposed to add
fine-grained redundant approximation circuit into the design to pro-
vide more timing slack for circuit speed paths.

Time Borrowing: For those flip-flops (FFs) driven by circuit speed
paths, denoted as suspicious FFs (SFFs), if they are followed by non-
critical paths, we can replace them with sequential elements having
time-borrowing capability and correct timing errors by delaying the
arrival time of the correct data to the next logic level (e.g., [15, 16]).

While effective in many cases, such time-borrowing techniques
have the inherent weakness of error effect propagation. That is, even if
a suspicious FF can borrow some time from its successive logic level,
the timing slack of this level is reduced. Therefore, some initially non-
suspicious FFs in this successive level may become suspicious ones
and need to be replaced by sequential elements with time-borrowing
capability again. [17] proposed a so-called T IMBER technique that is
able to recover from two-stage timing errors, but it can only mitigate
the problem instead of solving it. Moreover, all these works involve
rather complicated clock control and analysis, limiting their applica-
bility in real designs.

1.2 Summary of Contributions
In this paper, we propose a new forward error correction (FEC)

scheme for timing error resilience, namely ForTER, which predicts
whether the timing errors occurred on SFFs would propagate to the
next level of sequential elements, denoted as affected FFs (AFFs). If
they do affect a particular AFF and the timing error indeed occurs, we
simply invert the original AFF value calculated with the erroneous
value in the SFFs. It is important to know that we have an almost
full clock period for prediction logic since it has nothing to do with
whether there is a timing error or not. Therefore, the proposed FEC
technique does not require complex clock control and does not reduce
the timing slack of any level, when compared to time borrowing tech-
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Figure 1: The overall architecture of the proposed forward timing error correction scheme, ForT ER

niques. Note, however, SFFs need to be equipped with timing error
detection capability (e.g., double-sampling latches as in [4, 5]).

The main limitation of the proposed FEC scheme is its associated
hardware cost because it needs to be introduced to protect all AFFs
of a particular SFF. As a result, it is usually not cost-efficient to serve
as a standalone solution to achieve timing error resilience. However,
as a general FEC solution, it can be flexibly combined with other
resilient design techniques such as timing speculation and timing error
masking to further optimize the circuit. The main contributions of this
work include:

• we propose a novel FEC scheme, ForTER, for timing error re-
silience, in which we construct the timing error effect prediction
logic based on Boolean Differential Equation (BDE) and use it
to achieve timing error resilience;
• we present a cost-efficient implementation to apply ForTER

into timing-speculative circuit to achieve better system through-
put;
• we show how to apply ForTER into timing-speculative circuit

to trade-off performance and cost and how to combine ForTER
with InTimeFix to achieve better timing error resilience for gen-
eral circuits.

The remainder of this paper is organized as follows. In Section 2,
we discuss the hardware architecture of the proposed FEC framework
in detail. Next, we show the application of ForTER in the timing-
speculative circuits and the general circuits in Section 3 and Section 4,
respectively. Experimental results on various benchmark circuits are
then presented in Section 5. Finally, Section 6 concludes this paper.

2. PROPOSED ForTER ARCHITECTURE
The overall architecture of the proposed FEC framework for tim-

ing error resilience, namely ForTER, is shown in Fig. 1. As can be
observed, all the SFFs are equipped with timing error detection capa-
bility (e.g., implemented as Razor flip-flops [4]) and the error signals
from SFFs indicate whether timing errors occur or not. ForTER pro-
tects SFFs by correcting the timing error at their corresponding AFFs.
However, it is important to note that the effect of the timing error
might be masked by side-inputs on the propagation path. Therefore,
the error effect prediction logic is designed to predict the propagation
of such error effect. To be specific, for a particular AFF, if the pre-
diction logic indicates that its value is affected by some SFFs which
have the timing errors at a particular cycle, then the value of the AFF
is reversed to correct the error; otherwise it keeps unchanged. This
is achieved by adding a two-input XOR gate before the AFF whose
inputs are the original input to the AFF and the error effect prediction
logic output.

Let us use the example shown in Fig. 2 to briefly explain how
ForT ER works. Suppose FF2 is an SFF with timing error detec-
tion capability, wherein the Error Signal indicates the occurrence of
the timing error. The timing error effect of FF2 would propagate to
its AFF, FF4, under the condition that a timing error occurs on FF2
and the side-input of the OR gate is a non-controlling value (i.e., logic
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Figure 2: Timing error correction with ForTER: an example

‘0’) at the same time. To correct such error effect, we only need to
invert the current value of FF4 calculated with the erroneous value
of FF2. The error prediction logic is constructed accordingly and it
outputs logic ‘1’ when the above condition is satisfied. One may ar-
gue for this example, simply delaying the clock to FF2 could achieve
timing error resilience without adding much overhead. This is true.
However, for complex industrial designs, time borrowing techniques
require to perform the accurate timing analysis and conduct the com-
plicated clock control, which is a challenging task, especially con-
sidering the ever-increasing circuit variations. The proposed ForTER
technique eliminates such needs and thus is a preferred solution.

In the rest of this section, we discuss a general method to construct
the error effect prediction logic and the corresponding FEC circuit.

2.1 Timing Error Effect Prediction with BDE
We build our timing error effect prediction logic based on Boolean

differential equation. Let us briefly introduce it here first. BDE, as
an analytical methodology, is widely used in the synthesis, verifica-
tion and testing of digital circuits. According to [18], we have the
following two definitions:

DEFINITION 1. The Boolean Difference of a Boolean function f (x)
with respect to a single variable xi is

∂ f (x)
∂xi

= fxi ⊕ fx̄i , x = (x0,x1, ...,xi, ...,xn), (1)

where x denotes input array with n variables, fxi = f (x0,x1, ...,xi =
1, ...,xn), fx̄i = f (x0,x1, ...,xi = 0, ...,xn), and ⊕ is XOR operation.

Eq. 1 is called Simple Boolean Differential Equation, which has the
following property:

∂ f (x)
∂xi

=

{
1, transition of xi affects the value of f
0, transition of xi does not affect the value of f ,

(2)
and transition could be either 0→ 1 or 1→ 0.

Furthermore, BDE can be also used to check concurrent transitions
on multiple variables. Assuming xs = (xs0,xs1, ...,xsm) is a subset of
the entire input variable set x,

DEFINITION 2. The Boolean Difference of a Boolean function f (x)
respect to a set of variables xs is

∂ f (x)
∂xs

= fxs ⊕ fx̄s , xs = (xs1,xs2, . . . ,xsm), (3)
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fxs and fx̄s are functions whose variables in xs have opposite values.

Eq. 3 is called Vertical Boolean Differential Equation. Since vari-
ables in xs can have 2m combinations, Eq. 3 can be expanded as,

∂ f (x)
∂xs

=


f(xs0xs1...xsm)⊕ f(x̄s0 x̄s1...x̄sm)

f(x̄s0xs1...xsm)⊕ f(xs0 x̄s1...x̄sm)
...

...
f(xs0xs1...x̄sm)⊕ f(x̄s0 x̄s1...xsm)

. (4)

Each equation in Eq. 4 has similar properties to detect the transition
of variables in xs as shown in Eq. 2.

For a given Boolean function, the basic principle of BDE is to ver-
ify whether the output value is affected by the transition of one or
some input variables, which perfectly matches our needs on error ef-
fect prediction, wherein we would like to know whether the transition
of certain SFFs would change their corresponding AFFs.

Without loss of generality, consider the Boolean function of the
AFF, f , and timing errors occur concurrently on a set of inputs de-
noted as xs. The error effect can then be predicted by one of the
equations in Eq. 4, determined by the error state of xs. Let us con-
sider the following simple example. If inputs xs0 and xs1 have timing
errors, and the error state is (xs0 = 0, xs1 = 1), which means that the
correct state should be (xs0 = 1, xs1 = 0). This error effect can be
predicted by f(x̄s0 xs1 )

⊕ f(xs0 x̄s1 )
, indicating whether the correct state

would lead to the change of the output based on the erroneous state.
To give the complete error effect prediction function, the BDE should
cover all error states. Suppose the function f has n suspicious in-
puts. Then, there are Cp

n suspicious input combinations for any p of
n suspicious inputs occurring errors concurrently. For each combi-
nation, there are 2p−1 error states to be handled. Therefore, in all,
there are ∑

n
p=1 Cp

n 2p−1 possible error states for n suspicious inputs.
At last, the error effect prediction function for the AFF is to combine
the BDE with suspicious signals and error signals that indicate which
error state appears.

2.2 Cost-Efficient ForTER Implementation
To implement the error effect prediction logic for a particular AFF,

a straightforward method is to realize it along with the original logic,
which, however, may introduce quite high hardware cost. This moti-
vates us to propose a novel cost-efficient implementation scheme.

Before discussing the details, let us take an example shown in Fig. 3
to illustrate the idea of our cost-efficient implementation. Consider
one function of AFF, f , that is driven by one SFF, xs0 . According to
BDE, its error effect prediction function, fp, can be given as:

fp = exs0
( fxs0
⊕ fx̄s0

),

where exs0
denotes the error signal and exs0

= 1 if xs0 encounters the
timing error. If fp = 1, the timing error of xs0 would erroneously
change the value of the original function; otherwise not. For the orig-
inal function, f , it can be re-written according to Shannon’s decom-
position theorem as:

f = xs0 fxs0
+ x̄s0 fx̄s0

.

Examination of the above two equations together shows that they
share two sub-functions, fxs0

and fx̄s0
. This motivates us to gener-

ate the shared sub-functions first and thereafter construct the original
logic and error prediction logic with some additional gates separately
to save the hardware cost, as shown in Fig. 3. Moreover, it is worth
noting that fxs0

and fx̄s0
can further share some common logics, since

they come from the same original function. At last, the error masking
logic corrects possible timing error effect by XORing the outputs of
original logic and error effect prediction logic.

When the AFF is driven by multiple SFFs, the error effect predic-
tion logic needs to deal with a number of error states as discussed
earlier. Let us start with the Boolean function that contains two sus-
picious input variables (i.e. xs = (xs0,xs1)) as an example. According
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Figure 3: ForTER implementation for an AFF with one SFF (xs0 ).

to Eq. 1 and Eq. 3, the basic sub-function used in BDEs are fxs0
, fx̄s0

,
fxs1

, fx̄s1
, f(xs0 xs1 )

, f(xs0 x̄s1 )
, f(x̄s0 xs1 )

, and f(x̄s0 x̄s1 )
, wherein the first four

subfunctions can be easily constructed by the last four sub-functions
with xs0 and xs1 . In order to save hardware cost, the original func-
tion can be decomposed with respect to xs0 and xs1 according to the
Shannon’s decomposition theorem:

f = xs0 xs1 f(xs0 xs1 )
+ x̄s0 xs1 f(x̄s0 xs1 )

+ xs0 x̄s1 f(xs0 x̄s1 )
+ x̄s0 x̄s1 f(x̄s0 x̄s1 )

,

and the error prediction function is given as:

fp =exs0
ēxs1

( fxs0
⊕ fx̄s0

)+ ēxs0
exs1

( fxs1
⊕ fx̄s1

)+

exs0
exs1

[(xs0 ⊕ xs1)( fxs0 xs1
⊕ fx̄s0 x̄s1

)+(xs0 ⊕ x̄s1)( fx̄s0 xs1
⊕ fxs0 x̄s1

)]
,

where four subfunctions can be further shared. In general, for an AFF
function with n SFFs, there are 2n shared subfunctions that can be
obtained by decomposing the original function with respect to n sus-
picious inputs in the same way. After building shared subfunctions,
the error effect prediction logic and the original logic can be auto-
matically constructed according to BDEs and the decomposed origi-
nal function. Note that, the above implementation has impact on the
circuit timing and may render a non-suspicious FF becoming a suspi-
cious one. We would stop using ForTER to protect AFFs under such
circumstances.

2.3 ForTER Cost Analysis
The hardware cost of ForTER is composed of two parts: the error

detection hardware and the error correction hardware, given as:

CostForT ER = NSFFCostRazor +
MAFF

∑
i=1

CostAFFi , (5)

where NSFF and MAFF denote the number of SFFs and AFFs, respec-
tively, and CostRazor and CostAFFi denote the extra cost of Razor-like
sequential elements for error detection when compared to standard
flip-flop and the cost for error correction at AFFs. Note that, when
applying ForTER for timing-speculative circuits, only the latter cost
exists because such circuits need to have built-in timing error detec-
tion capability and are already equipped with error detection sequen-
tials.

CostAFFi is related to the number of SFFs driving AFFi. As shown
in Fig. 3, the cost for error correction at a particular AFF mainly
comes from two parts, the reconstructed original logic according to
the new signal order and the error effect prediction logic. In particu-
lar, the cost of the error effect prediction logic for an AFF increases
significantly with the number of SFFs that drive it, because the BDE
in the error effect prediction logic becomes much more complicated
with the increase of SFFs.

From the above, solely applying ForTER to achieve timing error
resilience may result in quite high hardware cost even with the pro-
posed cost-efficient implementation, especially when the circuit con-
tains many SFFs. Nevertheless, with its unique advantage of being
able to mask timing error effects without performing accurate tim-
ing analysis and complex clock control, it is an attractive solution to
be combined with other timing error-resilient design techniques, as
shown in the following two sections.
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3. ForTER FOR TIMING-SPECULATIVE
CIRCUITS

In this section, we study the application of ForTER on timing-
speculative circuits. As protecting SFFs would introduce hardware
cost, the key issue is to protect a selected set of SFFs under a hard-
ware cost constraint to minimize the timing error rate in such circuits.

3.1 Problem Formulation
Given a circuit with n SFFs, we use S = (s1,s2, ...,sn) to represent

the SFF list, wherein si = 1 indicating SFFi is chosen to be protected
by ForT ER while si = 0 indicating it is not chosen. We use ES =
(es1 ,es2 , ...,esn) to represent the list of error rates of SFFs which are
estimiated according to [11]. With n SFFs, we assume this circuit has
m AFFs driven by them.

With the above definitions, our optimization problem is to mini-
mize the timing error rate of the circuit subject to a specified hardware
cost constraint, given as:

Objective: Min
∀S

E = (I−S)ET
s , si ∈ {0,1}

Constraint:
m

∑
i=1

CostAFFi <Costex

, (6)

where CostAFFi is the cost used by ForTER to protect AFFi, Costex is
the cost constraint, and I = (1,1, ...,1)1×n. Note that, (I−S)ET

s rep-
resents the sum of timing error rates of SFFs, implying that if a certain
SFF is chosen to be protected by ForTER, it does not contribute to the
sum of error rates. As discussed earlier, the cost of ForTER mainly
results from the reconstructed original logic and the error effect pre-
diction logic, and they are estimated with a weighted value for the
extra logic elements introduced by ForT ER.

3.2 Optimization Algorithm
The above optimization problem can be modeled as the well-known

Knapsack problem [19], which has been proved to be NP-complete.
SFFs are considered as the items to be packed, with error rate reduc-
tion as their profits and protection cost as weights. The cost constraint
is considered as bag capacity. If a certain item is put into the bag,
that means we select a certain SFF to be protected by ForTER. Thus,
the optimization objective is to maximize the total profit by select-
ing items into the bag. It is worth noting that the above problem is
not exactly the same with the conventional formulation of Knapsack
problem. This is because, in our targeted problem, the profits and
weights are correlated, resulting from the fact that SFFs could share
the prediction logic of ForTER. With a different protection scheme,
the protection cost for the same SFF can be different.

To solve the above Knapsack problem, we resort to a branch-and-
bound algorithm (BB), which divides the Knapsack problem into sub-
Knapsack problems iteratively. At each step, BB tries to protect one
SFF, and discards some subproblems based on a bounding function
that estimates the lower bound of error rate achieved by the subprob-
lem under cost constraint. The key difference between the original
problem and the subproblem is that, in the subproblem, some AFFs
have already been equipped with error effect prediction logic that may
be shared with some other SFFs later. Thus, it is difficult to accurately
estimate the protection costs of SFFs.

To give the bounding function, let us first consider a certain sub-
problem, in which, Sr = {si,si+1, ...,sk} denotes the list of un-protected
SFFs and Cr denotes the remaining cost. All unprotected SFFs are
sorted according to their profit-weight ratios, and then we have

esi

csi

>
esi+1

csi+1

> ... >
esk

csk

,

where csi is the protection cost of SFF si, estimated based on the exist-
ing constructed error effect prediction logic. The lower bound of the
subproblem can be obtained greedily by protecting SFFs in the de-
scending order according to their profit-weight ratios. Assume SFF s j

is the first one that cannot be protected because of the cost constraint.
The lower bound of the error rate ESr for this subproblem is given as:

ESr = e j
Cr−∑

j−1
k=i ck

c j
+ e j+1 + e j+2 + ...+ ek. (7)

Interested readers may refer to [19] for the proof.
With above, the optimization algorithm based on BB algorithm is

as follows. We first adopt the greedy algorithm to determine the base-
line solution, treated as the initial best solution. The greedy algorithm
takes items in the sorted order according to their profit-weight ratios
until no more items can be taken. Then, BB algorithm starts with no
SFFs chosen to be protected. In each search process, BB prunes some
SFFs by comparing the lower bound of the subproblem with that of
the best solution. If this bound is less than that of the best one, it goes
into the subproblem; otherwise it does not. For each searched solu-
tion, we record it if it is the best one among all the searched solutions.
The BB stops until there is no enough cost to protect any more SFFs.

4. ForTER FOR GENERAL LOGIC
CIRCUITS

Timing speculation is an effective technique to achieve timing error
resilience for circuits with built-in rollback mechanism, e.g., micro-
processor datapath. For general logic circuits, however, it is usually
not possible to checkpoint the entire system states and low-cost timing
error masking techniques are preferable. In this section, we present
how to combine ForTER with the low-cost timing error masking so-
lution, InTimeFix [14], to further optimize circuit timing.

4.1 InTimeFix
To get a better understanding of the proposed solution, we first

briefly discuss InTimeFix.
For a SFF with Boolean function F driven by speed paths, InTime-

Fix employs two simplified approximation logics G0 and G1 to cal-
culate correct results to mask timing errors on it. This is achieved
by constructing a functionally-equivalent yet timing-improved circuit.
With the approximation logic, circuit speed paths in F become false
paths while those non-critical paths in F remain true. Approximation
logic functions of G0 and G1 are defined as: G0 is 0-approximation
of F if G0 = 0⇒ F = 0 (i.e., G0 = 0 implies F = 0); similarly, G1 is
1-approximation of F is G1 = 1⇒ F = 1.

Given a targeted timing slack improvement threshold, InTimeFix
proposed a heuristic algorithm to construct approximation logics to
cover those minterms that sensitize circuit speed paths. It also guar-
antees that the delay of the approximation logics do not introduce any
new speed paths. While in most cases, it can improve timing slack
with low hardware cost, its effectiveness is related to the speed path
structure. In the extreme case, for example, if a SFF is driven by one
speed path containing only a series of AND gates, the corresponding
1-approximation logic would be the duplication of this circuit path,
which cannot provide any timing slack.

4.2 Problem Formulation
For a given SFF, we can either mask the timing error at its fan-in

logic cone with InTimeFix, or predict and correct its error effects at
the AFFs of its fan-out logic cone with ForTER. Consequently, In-
TimeFix and ForTER are two complementary techniques that can be
naturally combined to achieve better timing error resilience.

Consider a general logic circuit with n SFFs, S = (s1,s2, . . . ,sn),
our optimization problem is to minimize the maximum path delay
subject to the hardware cost by selectively protecting a set of SFFs
with either InTimeFix or ForTER, given as:

Objective: Min
∀S

(Max(dp))

Constraints: CostInTimeFix +CostForT ER <Costex

, (8)

where Max(dp) denotes the maximum path delay without timing error
protection and Costex denotes the cost constraint.
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4.3 Optimization Algorithm
We adopt a heuristic algorithm to solve the above optimization

problem. In the beginning, all SFFs are sorted in the descending order
according to their timing slack. Then, we start from the SFF driven
by the most critical speed path and determine to adopt either InTime-
Fix or ForTER to protect it. For each SFF, if InTimeFix can protect it
and cost less hardware than ForTER, we choose InTimeFix; otherwise
we use ForTER. Before protecting this SFF by ForTER, we determine
whether SFFs that have been protected by ForTER can be partially
protected with InTimeFix in order to save the cost to protect this SFF
(to be discussed in the following paragraph). After protecting each
SFF, we check whether the cost constraint is satisfied. If it is not,
we discard the protection for this SFF and terminate the algorithm;
otherwise we try the next SFF.

As 0-approximation logic G0 and 1-approximation logic G1 used
in InTimeFix are separate, we can select to use only one of them. With
G0, timing error occurs only for 0→ 1 transition; with G1, the timing
error occurs only for 1→ 0 transition. Based on the above observa-
tion, we can achieve further benefits by protecting a SFF jointly with
ForT ER and InTimeFix for the following reasons: (i) it is likely that
the hardware cost and timing slack with G0 and G1 are quite unbal-
anced, and selectively using the one with lower cost and leaving the
other transition to be protected by ForT ER may lead to more benefits;
(ii) with only one possible timing error, the error prediction logic for
ForT ER can be dramatically reduced.

5. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of the proposed

ForTER solution by conducting experiments with several large IS-
CAS’89 and IWLS’05 benchmark circuits. We first use a commercial
logic synthesis tool to optimize the circuits for their timing perfor-
mance. ForTER logic is then synthesized into the circuit by adapting
an open-source synthesis tool ABC [21].

5.1 Results on Timing-Speculative Circuits
In this subsection, we present the results when applying ForTER

on timing-speculative circuits1, which can roll back the system once
a timing error is detected. We try to optimize the circuit through-
put, given as [12]: minCP[(1 + error(CP) · penalty) ·CP], wherein
CP is the operational clock period, error(CP) is the percentage of
cycles with timing errors, and penalty is the penalty for error correc-
tion. Similar to [12], we assume the penalty to be 10 cycles. To get
error(CP), we sweep the operational clock period CP and perform
timing simulation with one million random input patterns.

Experimental results are reported in Table 1. Original denotes the
case for conventional designs that do not allow timing errors to occur.
We employ error recovery mechanism without and with ForTER and
denote these two solution as BER and ForTER, respectively. As can
be observed from Table 1, when compared to Original, BER leads to
7.05% throughput improvement on average, which justifies the effec-
tiveness of timing speculation technique. As for ForTER, we present
two cases with hardware cost constraints of 5% and 10%, respec-
tively. Under 5% constraint, ForTER achieves 20.56% throughput im-
provement over Original and 12.61% additional throughput improve-
ment over BER, which proves the efficiency of ForTER on optimizing
timing-speculative circuits. Relaxing the cost constraint to 10% leads
to an additional 6-7% throughput gain over BER. We can find out that
the increase of throughput gain does not keep the same pace as the
increase of hardware cost. This is because our algorithm targets those
SFFs with relatively high error probability and low cost for correc-
tion first. A close examination of experimental results shows that the
effectiveness of ForTER varies among different benchmark circuits.
For example, the throughput improvement for s38417 with ForTER is
much higher than that for wb_conmax. We attribute such difference
to the unique path delay distribution of each benchmark.

1We assume these benchmark circuits have built-in error recovery scheme.
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Figure 4: Comparison on normalized throughput per power.

Finally, to evaluate the power impact with ForTER, we present ex-
perimental results on throughput per power (TPP) in Fig. 4. The re-
ported TPP values are normalized with respect to the case of Original.
As can be clearly seen from the figure, ForTER is able to achieve
much higher TPP than both Original and BER. In particular, ForTER
achieves more than 20% improvement over BER for s38417. It is
worth noting that, in most cases, ForTER with 10% constraint outper-
forms the case with 5% constraint in terms of TPP. This is because,
even though we get diminishing returns for throughput gain with the
increase of hardware cost, its improvement percentage is still usually
higher than the cost increment.

5.2 Results on General Logic Circuits
In this subsection, we present the results when applying ForTER

in general logic circuits that do not have rollback recovery capabil-
ity. We combine ForTER and InTimeFix (denoted as “ForTER”) and
compare it with the case when only applying InTimeFix (denoted as
“Baseline”). According to [4], the hardware cost to equip a SFF with
timing error detection capability is assumed to be 10 gates.

In Table 2, we report the minimum clock period, the relaxed tim-
ing slack with resilient design techniques Baseline and ForT ER, and
their associated hardware cost. We set the hardware cost constraint to
be only 2%, considering the low cost of InTimeFix. As can be seen,
the Baseline solution results in 11.81% timing slack compared to the
original design (denoted as Original) on average, while ForT ER has
14.57% timing slack. The additional 2.76% slack justifies the effec-
tiveness of ForTER. Note that, to apply ForTER, only another 0.48%
hardware cost is required when compared to the Baseline.

A close examination of Table 2 shows the following interesting ob-
servations. Firstly, for s38417, ForT ER achieves more timing slack
with less hardware cost, due to the fact that some of the SFFs in
s38417 require Baseline to pay more hardware than ForT ER. Sec-
ondly, for s38584 and ethernet, Baseline stops its optimization with
very low hardware cost (about 0.1%) because there exist one SFF
whose delay cannot be reduced at all. ForT ER, on the other hand, is
able to conduct further optimization with more hardware cost. Thirdly,
for des_perf and wb_conmax, ForTER, unfortunately, cannot lead to
any further timing slack improvement under the specified 2% hard-
ware cost constraint. Consequently, we relax the cost constraint for
these two benchmarks to check whether ForTER can lead to any im-
provement, and results are plotted in Fig. 5. As can be observed,
for des_perf, ForTER starts to show benefits when the hardware con-
straint is relaxed to be more than 6%; for wb_conmax, Basline is not
effective with more than 4% hardware while ForT ER can still be used
to dramatically improve timing slack.

Finally, we report the power values in Fig. 6, under hardware con-
straint 2%. They are normalized with respect to the original design
and we can find that both Baseline and ForT ER only increase circuit
power consumption slightly.

6. CONCLUSION
In this paper, we have proposed a novel forward timing error cor-

rection scheme, namely ForTER, which predicts whether the occur-
rence of timing errors would propagate to the next level of sequen-
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Circuit Original BER ForTER
Circuit size 5% Cost Constraint 10% Cost Constraint

(# of gates) T h.(MHz) T h.(MHz) ∆BW (%) T h.(MHz) ∆FW (%) ∆FB(%) φF (%) T h.(MHz) ∆FW (%) ∆FB(%) φF (%)
s38417 24370 148.68 162.41 9.24 191.54 28.83 17.94 4.93 205.97 38.54 26.82 9.87
s38584 21066 142.29 154.43 8.53 173.026 21.60 12.04 5.07* 183.50 28.97 18.83 10.21*

des_perf 154323 150.083 153.81 2.49 174.05 15.97 13.16 5.13* 181.82 21.15 18.21 9.88
wb_conmax 75352 69.34 74.31 7.17 81.11 16.98 9.15 4.85 84.67 22.11 13.94 10.18*

ethernet 157841 79.90 86.16 7.83 95.44 19.44 10.77 4.76 101.66 27.23 17.99 9.51
Average 7.05 20.56 12.61 4.95 27.60 19.16 9.93

T h.: throughput; ∆BW : BER throughput improvement ratio over Original; ∆FW : ForTER throughput improvement ratio over Original;
∆FB: ForTER throughput improvement ratio over BER; φF : ForTER hardware cost ratio.
*: These results do not strictly satisfy the constraint because cost is estimated during optimization.

Table 1: Experimental results on the throughput and hardware cost for timing-speculative circuits.

Relaxed Slack Hardware Cost
Circuit Circuit Size Original Baseline ForTER Baseline ForTER

(# of gates) CP (ns) σ (ns) ∆IW (%) σ (ns) ∆FW (%) # of gates φIW (%) # of gates φFW (%)
s38417 24370 6.726 0.764 11.36 0.906 13.47 460 1.89 280 1.15
s38584 21066 7.028 0.983 13.99 1.389 19.76 23 0.11 430 2.04

des_perf 154323 14.422 2.784 19.30 2.784 19.30 3059 1.98 3059 1.98
wb_conmax 75352 6.663 0.401 6.02 0.401 6.02 1441 1.91 1441 1.91

ethernet 157841 12.515 1.051 8.40 1.792 14.31 193 0.12 2,057 1.30
Average 11.81 14.57 1.2 1.68

∆IW : relaxed slack ratio of Baseline over Original ∆FW : relaxed slack ratio of ForTER over Original
φIW : hardware cost ratio of Baseline over Original φFW : hardware cost ratio of ForTER over Original

Table 2: Experimental results on the relaxed slack and hardware cost: Baseline vs. ForTER.
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Figure 5: Relaxed slack ratio with respect to cost: des_perf and wb_conmax.
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Figure 6: Comparison on normalized power.

tial elements and corrects them without necessarily borrowing timing
slack. While ForTER itself is associated with moderate hardware cost,
it can be effectively combined with other timing error-resilient design
techniques and dramatically improve circuit timing slack, as demon-
strated in our experimental results.
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