
On Hardware Trojan Design and Implementation
at Register-Transfer Level

Jie Zhang and Qiang Xu
CUhk REliable Computing Laboratory (CURE)

Department of Computer Science & Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Email: {jzhang, qxu}@cse.cuhk.edu.hk

Abstract—There have been a number of hardware Trojan
(HT) designs at register-transfer level (RTL) in the literature,
which mainly describe their malicious behaviors and trigger
mechanisms. Generally speaking, the stealthiness of the HTs is
shown with extremely low sensitization probability of the trigger
events. In practice, however, based on the fact that HTs are not
sensitized with verification test cases (otherwise their malicious
behaviors would have manifested themselves), designers could
focus on verification corners for HT detection. Consequently, a
stealthy HT not only requires to be hard to trigger, but also needs
to be able to evade those hardware trust verification techniques
based on “unused circuit identification (UCI)”. In this paper, we
present new HT design and implementation techniques that are
able to achieve the above objectives. In addition, attackers would
like to be able to control their HTs easily, which is also considered
in the proposed HT design methodology. Experimental results
demonstrate that HTs constructed with the proposed technique
are both hard to be detected and easy to be controlled when
compared to existing HTs shown in the literature.

I. INTRODUCTION

Today’s integrated circuit (IC) designs usually involve large
design teams and many third-parties. Consequently, they are
vulnerable to a wide range of malicious alterations that subvert
or compromise the normal operation of infected devices,
namely hardware Trojans (HTs) [1]. For instance, a backdoor
inserted into the Actel/Microsemi chips was recently found [2],
and a report released by U.S. Senate Armed Services Com-
mittee claimed that about one million suspected bogus parts
have been found in U.S. military aircraft [3]. Consequently,
HTs have attracted serious attention from authorities [4], [5],
which motivate a large amount of research efforts.

A. Related Work

HTs can be inserted into an IC at various design stages,
e.g., specification, register-transfer level (RTL), layout and
fabrication. Among them, HTs inserted at RTL by rogue
designers in the design team or integrated into the system with
third-party intellectual property (IP) cores are the most serious
threats because attackers have high flexibility to implement any
malicious function.

HT Detection: Detecting HTs inserted at RTL is ex-
tremely difficult since traditional IC verification techniques are
not suitable for finding “extra” functionalities beyond circuit
specification, especially considering the fact that attackers
usually employ a rare event with extremely low activation
probability in normal functional mode to trigger HTs. To

the best of our knowledge, Hicks et al. [6] made the only
attempt to detect HTs at RTL in the literature. Leveraging
the fact that a HT usually keeps dormant during verification,
the HT detection problem is formulated as an “unused circuit
identification (UCI)” problem. That is, if part of circuits in
a design is not sensitized with verification test cases, it is
likely that such circuitry belongs to a HT. However, how
to define “unused circuit” is not quite clear and the authors
considered the following: if any pair of related signals are
equal throughout all test cases, the intervening circuits between
them are regarded as unused circuitry and hence potential HT.
From another perspective, those uncovered parts with respect
to code coverage metrics1 during verification can be treated as
another type of unused circuits. While UCI techniques are able
to detect many existing HT designs shown in the literature to
be detailed in Section II, they are sensitive to the actual HT
implementation style [7].

HT Design and Implementation Methodology: HT de-
tection and HT desigdesign are like arms race, wherein de-
fenders constantly update their security measures to protect the
system while attackers respond with more tricky HTs to intrude
a system. There are a variety of HTs proposed in earlier works,
and however they tend to ignore the importance of HT im-
plementation. [8] developed two HTs compromising memory
access mechanism and shadow mode mechanism to support
software attacks without showing detailed implementation. [9],
[10] presented several HT designs with various trigger methods
and malicious behaviors in the embedded system challenge
competition. [11] designed two simple HTs controlled by a
counter for the RSA encryption circuit. [12] designed the HT
to facilitate side-channel attack. However, none of them [8]–
[12] provides detailed HT implementation. Recently, Trust-
Hub website [13] has released a list of HT benchmarks, but
almost all of them could be detected by UCI techniques as
shown in Table I (see Section II). This is because these HTs
are not carefully designed to be hidden as “useful circuits”.
Sturton et al. [7] designed some HTs that are able to evade [6].
However, their HT design and implementation methodology,
on one hand, is based on exhaustive search to locate malicious
circuitry that could be used to build HTs rather than a general
HT design methodology, and on the other hand, it does not
consider the traditional verification as well as code coverage
metrics.

1Widely used code coverage metrics are line coverage, condition coverage,
toggle coverage, FSM coverage, branch coverage and path coverage.

B. Summary of Contribution

Motivated by above, in this paper, we propose a systematic
HT design and implementation methodology, aiming at making
HTs bypass existing HT detection techniques without losing
any flexibility of the HT. The approach designs and implements
HTs from three aspects. First, to evade traditional verification
tests, HTs keep dormant during verification through the se-
lected rare trigger condition. Second, to evade UCI techniques,
HTs are hidden as “useful circuit” with the proposed two
HT coding models. Third, HTs should be as controllable as
possible so that attackers could easily employ them to perform
malicious operations.

The remainder of this paper is organized as follows. In Sec-
tion II, we motivate this paper. Then, we discuss the proposed
HT design and implementation methodology in Section III.
Experimental results are presented in Section IV. Finally, we
conclude this paper in Section V.

II. MOTIVATION

Index Circuit TV Line Cond FSM Toggle Branch Path [6]
T1 MC8051-T200

√ √ √ √ √

T2 MC8051-T300
√ √ √ √ √ √

T3 MC8051-T400
√ √ √ √ √ √

T4 MC8051-T500
√ √ √ √ √ √

T5 MC8051-T600
√ √ √ √ √ √

T6 MC8051-T700
√ √ √ √ √ √

T7 MC8051-T800
√ √ √ √ √

T8 RISC-T100
√ √ √ √ √

T9 RISC-T200
√ √ √ √ √

T10 RISC-T300
√ √ √ √ √

T11 RISC-T400
√ √ √ √ √

T12 RS232-T100
√ √ √

T13 RS232-T200
√ √ √ √ √

T14 RS232-T300
√ √ √ √ √

T15 RS232-T400
√ √ √ √ √

T16 RS232-T500
√ √ √ √ √

T17 RS232-T600
√ √ √ √ √ √

T18 RS232-T700
√ √ √ √ √ √

T19 RS232-T800
√

T20 RS232-T900
√ √ √ √ √ √

√
means the HT is detected by this method.

TABLE I: The summary of the HTs from Trust-Hub [13] identified
by code coverage metrics and [6]

Fig. 1: The code model of most HTs from the Trust-Hub [13] written
in Verilog HDL

Table I summarizes the HTs from Trust-Hub [13] identified
by traditional verification tests denoted as TV and UCI tech-
niques. The experiment is conducted on a SoC-based platform
detailed in Section IV rather than on the original circuits,
because there is no test case available for the original circuits.
HTs are carefully transferred into the platform by connecting

them on expected signals without any modification on the
HT implementation. As can be seen, traditional verification
tests miss all HTs while UCI techniques, especially [6], can
detect all HTs. The reason is that these HTs are not hidden
as “useful circuits”. After further examination, we find that
implementations of most HTs from the Trust-hub can be
summarized as Fig. 1. One signal, denoted as ten, is used
to indicate the occurrence of the trigger condition, which is
driven by either a specific pattern or a counter. This HT
implementation can evade the traditional verification as long as
the trigger condition is not activated, which is easily achieved
with the huge state space of the circuit. However, it can be
detected by UCI techniques, because code lines, “ten <= 1′b1”
and “ f <= fm”, would not be executed and “ f ” would be
always equal to “ fn” under all non-trigger conditions.

The above motivates us to propose a systematic HT design
and implementation methodology to evade all existing HT
detecting techniques.

III. HT DESIGN AND IMPLEMENTATION
METHODOLOGY

Generally speaking, a HT is composed of its activation
mechanism (referred as trigger) and its malicious function
(referred as payload). Our objective is to design and implement
HTs that can evade both the traditional verification and UCI
techniques without sacrificing much flexibility. To achieve it,
we consider three design and implementation rules. Firstly,
HTs should keep dormant during the verification so as to evade
the traditional verification. Secondly, HTs should be hidden as
“useful circuit” so as to evade all UCI techniques. Thirdly,
to make HTs flexible for attackers to perform malicious
operations, it should be as controllable as possible. Since the
payload mainly depends on the objective of attackers and also
does not affect the stealthiness and the controllability of the
HT, we only focus on the trigger design and implementation
in this paper.

A. Rule One

Traditional verification and testing detects a HT by trig-
gering it, and hence how to design a rare trigger condition
that makes the HT keep silent during the verification becomes
a key problem. To achieve it, attackers can generally employ
the following four methods.
• Attackers can select trigger inputs whose trigger val-

ues are difficult to be sensitized during the verification.
• Attackers can adopt multiple trigger inputs. If there are

l trigger inputs denoted as t1, t2, . . . , tl , the probability
of the occurrence of the trigger condition is roughly
equal to ∏

l
i=1 Pti , wherein Pti is the probability of

the trigger input i being the trigger value. However,
considering the size of the HT, attackers can only use
limited trigger inputs.

• Attackers can adopt a sequence of trigger values.
Consider l trigger inputs, t1, t2, . . . , tl , and suppose
attackers construct the trigger condition by m contin-
uous trigger values. In this way, the probability of the
trigger condition can be further reduced, represented
as ∏

m
j=1 ∏

l
i=1 Pti j . Similarly, the number of continuous

trigger values cannot be too large in the consideration
of the hardware cost.

• Attackers can select trigger inputs from components
that are less dependent, reducing the probability of the
occurrence of trigger values at the same time. This
is because the test case used by the designer usually
targets on one or some specific normal functionalities.

Given the huge state-space that the HT can hide within
a reasonably sized circuit, attackers can easily select some
trigger inputs to construct the trigger condition. Consequently,
rule one can be illustrated by minimizing the probability of
the trigger condition subject to the hardware cost constraint.

Objective : Min
m

∏
j=1

l

∏
i=1

Pti j ;

Constraint : cost(m, l)<COSTex.

(1)

The hardware cost of HT is a function of the number of trigger
inputs and the number of continues trigger values. Since the
HT is implemented by the proposed code models discussed in
rule two, we can estimate the HT cost by synthesizing code
models in advance. Note that, the trigger condition in Eq. 1
ignores the dependency of signals, because obtaining accurate
probability of the trigger condition through simulation is very
time-consuming in the iterative algorithm.

Despite the rare trigger condition designed by rule one,
HTs, however, could be detected by UCI techniques, as shown
in Table I. We would discuss how to resolve this problem in
rule two.

B. Rule Two

The main idea behind to make HT evade UCI techniques is
to hide it as the “useful circuit” with respect to the definition
of the “unused circuit”. To achieve this, we propose a novel
solution that combines the code writing style and the trigger
input selection. As observed in the literature, there are mainly
two kinds of triggers: pattern-based trigger and counter-based
trigger, and thus we take them as examples to illustrate the
proposed code models.

Let us start with the code writing style. We propose two
code models for HT implementation based on the pattern-based
trigger and counter-based trigger. Code model one is shown in
Fig. 2. Compared to the code model used by HTs from the
Trust-Hub [13] shown in Fig. 1, code model one has three
differences. First, since code lines, conditions, FSMs, transi-
tions of signals, branches and paths controlled by the trigger
condition are definitely uncovered (e.g., Fig. 1), we propose to
partition the trigger condition into multiple parts of the trigger
condition, namely sub-trigger condition. In this way, all parts
of the HT controlled by sub-trigger conditions can be covered,
because sub-trigger conditions could be satisfied under certain
non-trigger conditions. As shown in Fig. 2, we employ multiple
patterns denoted as pattern1, pattern2, . . . , and patternk or
multiple counters denoted as counter1, counter2, . . . , and
counterk, and use multiple signals denoted as ten1 , ten2 , . . . ,
and tenk to indicate the occurrence of corresponding sub-trigger
conditions. Fig. 2 (a) and Fig. 2 (b) show how to implement a
sub-trigger condition that is realized by a specific counter and
a part of pattern. Second, since [6] is able to detect the HT
whose affected output is always driven by the normal function,
we partition the normal function into two sub-normal functions

Fig. 2: Code model One to implement the HT written in Verilog HDL

to make the final output be driven by sub-normal functions
alternately. As shown, sub-normal functions denoted as fn1 and
fn2 are controlled by their corresponding conditions denoted
as c1 and c2. Third, the final output (f) composed of two sub-
normal functions, malicious function, and their corresponding
conditions are integrated by AND, OR, and NOT operators
instead of “if-else” or “case” operators, and in this way, the
assignment statement of the final output with the malicious
function must be executed under non-trigger conditions.

Code model two, based on code model one, replaces all “if-
else” and “case” operators in the trigger by AND, OR and NOT
operators. Compared to code model one, HTs implemented
by code model two can definitely evade condition coverage,
FSM coverage, branch coverage and path coverage, because
no conditions, FSMs, branches and paths are used. However,
code model two would introduce more code lines for the HT,
which is likely to attract the attention of designers [8].

The HT designed according to the two proposed code
models can evade all existing UCI-based techniques as long
as two conditions are satisfied during the verification: (1) ten1 ,
ten2 ,. . . , and tenk have both 0-to-1 and 1-to-0 transitions. (2)
c1 and c2 have been set to logic ‘1’ once. If all non-trigger
conditions are sensitized, such two conditions can definitely
be satisfied. However, it is nearly impossible to make all non-
trigger conditions be verified with limited verification time
and effort, which could cause HTs to be detected by UCI
techniques. For instance, in Fig. 2, it is possible that part of the
trigger condition (e.g., “pattern1 == PAT T ERN1”) has never
been satisfied, and hence the code line, “ten1 <= 1′b1”, is not
covered and the signal, ten1 , does not have both transitions,

which cause the whole HT to be detected by line coverage,
toggle coverage and [6]. Similarly, the final output denoted as
f could be driven by only one part of normal circuit (e.g., fn1),
which makes HTs be identified by [6].

Consequently, HTs should be able to evade all UCI tech-
niques as likely as possible even when the verification test
cases are not complete. To achieve this, we are required to
carefully select trigger input and partition trigger condition
to increase the probability of each sub-trigger condition.
Since whether HTs can evade UCI techniques is bounded by
the least-likely-triggered sub-trigger condition and less-likely-
occurring sub-normal function, we obtain the HT by max-
imizing probabilities of the least-likely-triggered sub-trigger
condition and less-likely-occurring sub-normal function with
the constraint of the number of code lines (NLex), given as:

Objective : Max(min{Pc1 ,Pc2});
Max(min{Pten1

,Pten2
, . . . ,Ptenk

});
Constraint : NL(k)< NLex;

(2)

where Pci and Pteni
denote probabilities of the occurrence of

the i-th sub-normal function and the i-th sub-trigger condition,
and NL(k) denotes the number of code lines for HTs. NL(k)
is a linear function of the number of sub-trigger conditions (k)
whose coefficients can be obtained from HT code models.

Maximizing the probability of the less-likely-occurring
sub-normal function is relatively easy, because it is irrelevant
to the trigger and payload design and designers would verify
normal functionalities of the circuit as completely as possi-
ble. However, maximizing the probability of the least-likely-
triggered sub-trigger condition can conflict with minimizing
the probability of the trigger condition shown in Eq. 1.
Therefore, how to select trigger inputs to not only keep the
HT silent but also evade UCI techniques is challenging. We
will discuss that in details in Section III.D.

C. Rule Three

Generally, attackers expect the HT designed to be as
controllable as possible, increasing the flexibility to perform
malicious operations. However, some signals cannot be con-
trolled in terms of attackers (e.g., lacking in the physical
access), which hence restricts choices of trigger inputs.

To design flexible HTs, we introduce the un-controllability
of each signal that reflects the difficulty of setting a signal
to a required value from the perspective of attackers. The
un-controllability of each signal is defined as the number of
signals that should be manipulated but cannot be manipulated
to set a value of this signal from prime inputs, which includes
the 0-un-controllability (UC0) and 1-un-controllability (UC1).

We obtain the UC0 and UC1 of each signal by analyzing
the circuit netlist. First, we set UC0 and UC1 of each prime
inputs for the circuit according to the actual environment. If I,
a prime input, cannot be controlled by the attacker, we have

UC1(I) = 1, and UC0(I) = 1; (3)

otherwise,
UC1(I) = 0, and UC0(I) = 0. (4)

With given UC0 and UC1 of each prime input, the UC0 and
UC1 of each signal is calculated in the topology order from

prime inputs to prime outputs. Fig. 3 presents the calculation
of the un-controllability of each gate. Note that, the calculation

Fig. 3: The un-controllability calculation of each gate

of the un-controllability of each gate ignores the dependence
of input signals for simplification.

With the un-controllability of each signal, attackers can
determine trigger inputs with respect to the actual requirement.
Suppose attackers choose t1, t2, . . . , tl as trigger inputs and
select their m specific continuous values together as the trigger
condition. Then, the un-controllability of the trigger condition
is the sum of un-controllability of each trigger input driven by
corresponding trigger value, denoted as UCT , which indicates
that the number of signals that cannot be controlled to set the
trigger condition by the attacker.

D. Overall Flow

As discussed, the above three rules have quite different
requirements on the trigger input selection, and therefore how
to consider them together in an HT design and implementation
is a challenging problem.

In this paper, we emphasize rule two over rule one and rule
three. Consequently, the “best” HT is obtained by maximizing
the probability of the HT evading UCI techniques with the
constraints of the probability of the trigger conditions (PTex),
the hardware cost (COSTex), the number of code lines (NLex)
and un-controllability of the HT (UCTex), represented as:

Objective : Max(min{Pten1
,Pten2

, . . . ,Ptenk
});

Constraints :
m

∏
j=1

l

∏
i=1

Pti j < PTex ;

cost(m, l)<COSTex;
NL(k)< NLex;
UCT <UCTex .

(5)

We do not maximize probabilities of less-likely-triggered sub-
normal functions in Eq. 5, because it can be done indepen-
dently without listed constraints.

Due to the huge solution space for the trigger condition,
we solve the above problem by a heuristic algorithm described
in Algorithm 1. In the beginning, as attackers, we obtain the
probability of each signal by the simulation with guessed test
cases as well as un-controllability of each signal (Line 1-
2). To reduce the solution space of the trigger condition, we
first determine the number of trigger inputs and the number
of sequence of trigger values according to constraints of the
hardware cost and the number of code lines (Line 3). Then,
we sort all signals according to the larger probability between

Algorithm 1: Overall Flow
1 Run the simulation with guessed test cases to obtain the

probability of each signal;
2 Calculate un-controllability of each signal;
3 Determine the number of trigger inputs (l) and the length of

sequence of trigger values (m) according to constraints of
hardware cost and the number of code lines;

4 Sort signals according to the larger probability between being
logic ‘1’ and logic ‘0’ in the decreasing order;

5 while the number of signals is larger than l and the number
of recorded solutions is smaller than N do

6 Implement the HT with the first l signals in the signal list
as trigger inputs and partition the trigger condition evenly;

7 if both the probability of the trigger condition and
un-controllability of HT are satisfied then

8 Record the current solution as a candidate;
9 end if

10 Remove the first signal in the signal list;
11 end while
12 Run simulation and determine the final solution from

candidates;

being logic ‘1’ or logic ‘0’ in the descending order (Line
4). After that, the algorithm goes into a loop (Line 5-11).
In each loop, we implement the HT by treating the first l
signals in the signal list as trigger inputs and partitioning
the trigger condition evenly. If both the probability of the
trigger condition and un-controllability of HT are satisfied,
we record the current solution. Since we choose l signals
that have largest signal probabilities in the signal list each
time, it is more likely to build sub-trigger conditions with high
probabilities. Finally, we remove the first signal in the signal
list and go back. The loop stops if the number of signals is
smaller than l or the number of recorded solutions is larger than
user-defined parameter N. The reason why we find a number
of solutions is that the probabilities of the trigger condition
and sub-trigger conditions are not very accurate based on the
simple analysis. Consequently, in order to obtain a good HT,
we run the simulation again to verify the designed HT, and
select the solution that is the most likely to evade the UCI
techniques among candidates.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We use 24 HTs in our experiments, wherein 20 are HT
benchmark circuits from Trust-Hub [13] and the remaining 4
are from previous work [7], [8]. We believe these HTs are
enough to evaluate the proposed HT design and implementa-
tion methodology. We keep their payloads but re-design their
triggers by the proposed method.

We do not directly conduct experiments on those circuits
in which HTs are originally inserted, because verification
tests required by both code coverage metrics and [6] for
HT detection are not available. Instead, we have selected a
SoC design from OpenCores [15], containing a 32-bit RISC
microprocessor namely OpenRisc and many peripherals such
as UART, USB and MAC, as the hardware platform for HT
insertion and detection. We adopt the 17 test cases bundled
with this design for verification. We assume attackers know
5 test cases among all for HT design while designers adopt

the remaining 12 test cases to verify the design. During the
HT design process, we set 1% hardware cost and 5% code
line constraints and consider that prime inputs connecting the
main memory, UART, USB and MAC can be controlled by
attackers. Finally, HTs are carefully designed and inserted into
the platform and controlled by different trigger conditions.

B. Results and Discussion

0

2

4

6

8

10

12

1e−8 1e−10 1e−12 1e−14 1e−16 1e−18 1e−20

The probability of the trigger condition

T
he

 n
um

be
r

of
 H

Ts
 d

et
ec

te
d

1/1/2 means there are one HT detected by traditional verification,
one HT detected by UCI techniques and two HTs detected in all.

The number of HTs detected
by traditional verification
The number of HTs detected
by UCI techniques

11/0/11

7/0/7

2/0/2 1/1/2

0/0/0

0/3/3

0/5/5

Fig. 5: The number of HTs detected by the traditional verification
and UCI techniques under the constraint of diverse probabilities of
the trigger condition

First, we study the effectiveness of the proposed HT
design and implementation method. We adopt the traditional
verification denoted as TV and 7 UCI techniques that are line
coverage, condition coverage, FSM coverage, toggle coverage,
branch coverage, path coverage and [6] to evaluate designed
HTs, and results are shown in Fig. 4. For the traditional
verification, we find that it misses all HTs since none of
them have been activated during the verification. For UCI
techniques, we consider a UCI technique detects an HT if
it reports any part of the circuit that belongs to the HT.
Therefore, without verification, each UCI technique detects all
HTs that they cover. As seen, condition coverage covers none
of HTs, because we do not use any conditions in the two code
modes. Moreover, for code model one, FSM coverage does
not cover all of HTs because some of them are counter-based
HTs written without FSMs. Compared to code model one,
none of HTs written by code model two are covered by FSM
coverage, branch coverage and path coverage. This is because
all FSMs, branches and paths are replaced with AND, OR and
NOT operators that cannot be recognized by these coverage
metrics. With test cases used in the verification, most methods
begin to miss some HTs, because all parts of these HTs that
UCI techniques focus on are verified. In the end, HTs designed
by both code model one and two evade all UCI techniques. As
shown in Fig. 4 (a) and Fig. 4 (b), it is possible to use fewer
test cases to detect more HTs, but the fewer test cases would
results in more wrongly-identified HTs to be reported, which
leads to much more manual effort to further examination. We
present the coverage2 of each UCI technique in Fig. 4 (c). By
comparing to original HTs without any modifications shown
in Table I, HTs revised by proposed method are much more
likely to evade existing HT detection methods.

Next, we present the impact of the probability of the trigger
condition on designed HTs. The result is shown in Fig. 5. As
can be observed, with the decrease of the probability of the

2The coverage of an UCI technique is the proportion of candidates that are
verified by this technique.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

The Number of Test Cases

T
h
e
 N

u
m

b
e
r

o
f
H

T
s
 D

e
te

c
te

d
(a) Code Model One

TV

Line

Cond

FSM

Toggle

Branch

Path

[6]

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

The Number of Test Cases

T
h
e
 N

u
m

b
e
r

o
f
H

T
s
 D

e
te

c
te

d

(b) Code Model Two

TV

Line

Cond

FSM

Toggle

Branch

Path

[6]

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

The Number of Test Cases

C
o
v
e
ra

g
e
 (

%
)

(c) Coverages

Line

Cond

FSM

Toggle

Branch

Path

[6]

Fig. 4: (a) and (b) present numbers of HTs detected by code coverage metrics and [6] with the increase number of test cases, wherein HTs
are implemented by code model one and two; (c) presents the coverage of each method with the increase number of test cases.

trigger condition, the traditional verification detects fewer and
fewer HTs. This is because the HT is likely to keep dormant
during the verification if it is controlled by a rare trigger
condition. On the contrary, UCI techniques detects more and
more HTs with the decrease of the probability of the trigger
condition. Since the probability of sub-trigger condition is re-
duced with the decrease of the probability of trigger condition,
any sub-trigger conditions un-activated would cause the whole
HT to be detected. Under our experimental environment, when
the probability of trigger condition is set to be 1e-16 per
clock cycle, HTs designed by proposed method can evade all
detection methods.

0

2

4

6

The un−controllability of the trigger condition

0 50 100 150 200

T
h

e
 n

u
m

b
e

r
o

f
H

T
s
 d

e
te

c
te

d

Fig. 6: The number of HTs detected under the constraint of the diverse
un-controllabilities of the trigger condition

Finally, we discuss the impact of the controllability of the
HT on its stealthiness. As shown in Fig. 6, the number of HTs
detected decreases with the increase of the un-controllability of
the trigger condition. This is because the requirement of the HT
controllability could sacrifice some choices of trigger inputs,
possibly resulting in poor trigger design. How to balance the
controllability and stealthiness of HT mainly depends on the
objective of the attacker.

V. CONCLUSION

In this paper, we propose a systematic hardware Trojan
design and implementation methodology. Our approach de-
signs and implements HTs that are not only hard to trigger
but also easy to evade existing detection techniques based on
UCI techniques. In addition, it considers the HT controllability
in order to provide flexibility for attackers to control the HT.
Experimental results demonstrate that the HTs designed with
the proposed method can evade all existing HT detection
techniques.

VI. ACKNOWLEDGEMENT

This work was supported in part by a CUHK Direct Grant
No. 2050488.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan
taxonomy and detection. IEEE Design & Test of Computers,
pp. 10–25, 2010.

[2] S. Skorobogatov and C. Woods. Breakthrough silicon scanning
discovers backdoor in military chip. In Proc. International con-
ference on Cryptographic Hardware and Embedded Systems,
pp. 23–40, 2012.

[3] Inquiry into counterfeit electronic parts in the
department of defense supply chain. Committee
Armed Services, United States Senate, May 2012.
http://www.levin.senate.gov/download/?id=24b3f08d-02a3-
42d0-bc75-5f673f3a8c93.

[4] Defense science board task force on
high performance microchip supply.
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf, 2005.

[5] M. Beaumont, B. Hopkins, and T. Newby. Hardware Trojans -
prevention, detection, countermeasures (a literature review).
Technical report, DTIC Document, 2011.

[6] M. Hicks, M. Finnicum, S.T. King, M.M.K. Martin, and J.M.
Smith. Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically. In Proc. IEEE
Symposium on Security and Privacy, pp. 159–172, 2010.

[7] C. Sturton, M. Hicks, D. Wagner, and S.T. King. Defeating
UCI: Building stealthy and malicious hardware. In Proc. IEEE
Symposium on Security and Privacy, pp. 64–77, 2011.

[8] S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou. Designing and implementing malicious hardware. In
Proc. USENIX Workshop on Large-scale Exploits and Emergent
Threats, pp. 1–8, 2008.

[9] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno.
A case study in hardware trojan design and implementation.
Information Security, pp. 1–14, 2011.

[10] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware
trojan design and implementation. In Proc. IEEE International
Workshop on Hardware-Oriented Security and Trust, pp. 50–57,
2009.

[11] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar. Trojan detection using IC fingerprinting. In Proc.
IEEE Symposium on Security and Privacy, pp. 296–310, 2007.

[12] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson.
Trojan side-channels: Lightweight hardware trojans through
side-channel engineering. In Proc. International Conference on
Cryptographic Hardware and Embedded Systems, pp. 382–395,
2009.

[13] Trust-hub website. http://www.trust-hub.org.
[14] Opencores website. http://opencores.org/.

