
VeriTrust: Verification for Hardware Trust

Jie Zhang, Feng Yuan, Lingxiao Wei, Zelong Sun, and Qiang Xu

CUhk REliable Computing Laboratory (CURE)
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {jzhang, fyuan, lxwei, zlsun, qxu}@cse.cuhk.edu.hk

ABSTRACT
Hardware Trojans (HTs) implemented by adversaries serve as back-
doors to subvert or augment the normal operation of infected devices,
which may lead to functionality changes, sensitive information leak-
ages, or Denial of Service attacks. To tackle such threats, this paper
proposes a novel verification technique for hardware trust, namely
VeriTrust, which facilitates to detect HTs inserted at design stage.
Based on the observation that HTs are usually activated by dedicated
trigger inputs that are not sensitized with verification test cases, Ver-
iTrust automatically identifies such potential HT trigger inputs by ex-
amining verification corners. The key difference between VeriTrust
and existing HT detection techniques is that VeriTrust is insensitive to
the implementation style of HTs. Experimental results show that Ver-
iTrust is able to detect all HTs evaluated in this paper (constructed
based on various HT design methodologies shown in the literature) at
the cost of moderate extra verification time, which is not possible with
existing solutions.

1. INTRODUCTION
With globalization of the semiconductor industry, today’s integrated

circuit (IC) designs involve many third-parties during the design and
manufacturing process, and hence they are vulnerable to a wide range
of malicious alterations, namely hardware Trojans (HTs) [1]. For ex-
ample, [2] reported a hardware backdoor found in a military grade
FPGA, and King et al. [3] showed how easy it is to implement a HT
in general-purpose processor, which grants privileged access to all
memory elements of the system. Therefore, HTs are serious threats to
military, financial, and other critical systems [4, 5].

HTs can be inserted in ICs in almost any stage, e.g., RTL design,
logic synthesis, physical design, and manufacturing process. As it is
not economically feasible to make the IC design and fabrication pro-
cess completely trustworthy (even for military products), it is essential
to develop verification techniques to tackle the challenging HT detec-
tion problem. Ideally, we would like to be able to detect a HT by
activating it and observing its malicious behavior. In practice, how-
ever, since we are not knowledgeable about the location, the trigger
condition and the malicious functionalities of the HT, it is very dif-
ficult, if not impossible, to directly activate it, especially considering
that attackers would typically design a rare event to trigger the HT.

Most prior works on HT detection are based on side-channel anal-
ysis (SCA) (e.g., [6–10]). The idea behind is that a HT will affect
some side-channel signatures, such as path delay and supply current,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13, May 29-June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 $15.00.

even if it is not functionally activated. A common assumption of these
works is that HTs are inserted into some random ICs post-fabrication
(instead of all) and there exists a trustworthy golden IC that has been
thoroughly tested used for signature comparison or characterization.
Consequently, these methods are not applicable to detect HTs inserted
at design time, which will appear in every fabricated IC product.

Generally speaking, however, the likelihood of HTs being inserted
at design time is much higher than that being inserted at manufactur-
ing stage, because adversaries do not need to access foundry facilities
to implement HTs. To the best of our knowledge, Hicks et al. [11]
made the only attempt to detect HTs inserted at design time in the
literature. Based on the observation that tricky HTs are usually not
activated by test cases at design time (otherwise their malicious be-
havior will be already manifested), the HT detection problem can be
formulated as how to identify “unused circuits” in the system.

However, there is no rigorous definition for “unused circuits” and
hence the general unused circuit identification (UCI) problem is an
open problem without clear solutions. In [11], the authors defined
one type of unused circuits as follows. If any pair of related signals
are equal throughout all test cases, the intervening circuits between
them are regarded as unused ones and hence potential HTs, which can
be replaced by a wire. Clearly, such restricted definition of unused
circuits can only cover a small set of possible HTs. Later, [12, 13]
presented how to automatically construct HTs that can evade the HT
detection algorithm shown in [11].

Generally speaking, a HT is composed of its activation mechanism
(referred to as trigger) and its malicious function (referred to as pay-
load). In order to pass functional test and trust validations, stealthy
HTs usually employ certain trigger condition that is controlled by ded-
icated trigger inputs and difficult to be activated with verification test
cases. Based on this observation, in this paper, we propose a novel
verification technique for hardware trust, namely VeriTrust, to iden-
tify the malicious trigger inputs for HT detection, by exploiting the
fact that trigger conditions for HTs are not satisfied with verification
test cases. The main contributions of this paper include:

• We classify HTs into two categories, bug-based HTs and parasite-
based HTs, based on their impacts on the normal functionalities
of the circuit, and discuss their corresponding characteristics.

• We present the so-called VeriTrust technique to detect parasite-
based HTs by identifying the dedicated trigger inputs used in
HTs. Unlike existing HT detection algorithms, VeriTrust is in-
sensitive to the implementation style of HTs and hence prevents
attackers from defeating it by simple HT modifications.

• We propose several techniques to reduce the memory usage and
runtime of VeriTrust to make it scalable to large circuits.

The remainder of this paper is organized as follows. Section 2
presents preliminaries of this work. In Section 3, we characterize
HTs inserted at design time into two types, namely bug-based HTs
and parasite-based HTs. Next, we detail VeriTrust technique for de-
tecting parasite-based HTs in Section 4. Experimental results are then
presented in Section 5. Finally, Section 6 concludes this paper.

2. PRELIMINARIES

2.1 Hardware Trust Challenges
Traditionally, the hardware layer of computing systems is often im-

plicitly regarded as trustworthy. This assumption turns out to be quite
naive [2–5], and several governments have expressed serious concerns
about IC security [14,15]. Designing HTs that are able to evade tradi-
tional IC verification tests is in fact not a very challenging task. This
is because, the objective of these techniques (e.g., simulation and em-
ulation) is to ensure an IC performs its specified functionalities. They
do not intend to detect extra functionalities introduced into the de-
sign. Given the huge state-space that HTs can hide within a reason-
ably sized circuit, attackers can easily employ a trigger condition that
has extremely low probability to be activated with verification tests.
Various HT designs have been shown in the literature (e.g., [16, 17])
in recent years, and the Trust-Hub website [18] has released a set of
HT benchmark circuits with different triggers and payloads.

Ideally, we would like to prevent HTs from ever being inserted into
ICs or ever being triggered at run time. There have been some recent
research efforts to achieve the above objectives via design obfuscation
and/or isolation [19–22]. These solutions facilitate to mitigate some
HT threats, but the associated design cost is quite high and there is no
guarantee that ICs would be HT-free with these design methodologies.

2.2 Verification for Hardware Trust
Most existing HT detection techniques consider HTs inserted dur-

ing fabrication and use side-channel analysis for HT detection (e.g.,
power-based analysis [6], timing-based analysis [7], and current-based
analysis [8]). To reduce the sensitivity of SCA-based HT detection
methods on the process variation, several gate-level characterization
(GLC) techniques were proposed for HT detection recently [9, 10].

For HTs inserted at the design stage, they usually keep dormant
when applying verification tests because otherwise their malicious be-
haviors would have manifested themselves. From this perspective, if
part of circuits in a design is not sensitized with verification test cases,
it is likely that such unused circuitry contains a HT inserted by attack-
ers. Consequently, the HT detection problem can be formulated as an
unused circuit identification problem [11]. It is important to note that
we can define many kinds of “unused circuits” and develop the corre-
sponding UCI algorithms, but whether a particular UCI algorithm is
effective or not depends heavily on the definition itself.

One way to define “unused circuit” is based on the code coverage
metrics used in verification. During circuit verification, we have a
number of widely-used code coverage metrics: line coverage, condi-
tion coverage, toggle coverage, finite state machine (FSM) coverage,
branch coverage, and path coverage. We can simply define “unused
circuits” as uncovered parts with respect to code coverage metrics and
focus on them for HT detection. The above metrics facilitate to iden-
tify some HTs, but attackers can easily defeat such HT detection tech-
niques by coding RTL in a different style as detailed in Appendix B.

Hicks et al. [11] defined another type of “unused circuit” as fol-
lows. Consider a signal pair (s, t), where t is dependent on s. If t = s
with all verification test cases, the intermediate circuit between s and t
is regarded as “unused circuit”. With the above definition, the UCI al-
gorithm traces all signal pairs during the verification and reports those
for which the property s = t holds throughout all test cases as places
where potential HTs may lie.

For a HT whose payload is implemented separately from the cir-
cuit’s normal function, the UCI algorithm presented in [11] is guaran-
teed to find it. This is because, there would exist a dedicated signal
representing the circuit’s normal function and it is equal to the final
output of the circuit throughout all the verification test cases when
the HT is not triggered. Because of this, [11] is able to detect some
HTs that evade the earlier-mentioned coverage-oriented HT detection
method. However, the fact that the effectiveness of [11] relies on HT
implementation style enables the simple attack. That is, it is fairly
easy to modify the implementation of the HT so that no signal pairs

are equal to each other during verification (an example is given in
Section 3.2), which has been shown in [12, 13].

Theoretically speaking, if we have a trustworthy high-level model
of the design, we can resort to formal verification (FV) techniques [23]
to check its equivalence with the questionable design for HT detec-
tion. In practice, however, FV techniques are usually not scalable to
large circuits and the trusted high-level model may not be available.

2.3 Threat Model
As in [11], our threat model is that the hardware design can be

covertly compromised by HTs inserted into the RTL code or the netlist,
implemented by rogue designers in the design team or existing in
third-party intellectual property cores to be integrated into the system.
The motivation of HT insertion could be financial or general malice.

We assume the design verification procedure is not compromised
and all verification test cases are trustworthy. We further assume a
HT would be caught by verification test as long as it is triggered.

3. HT CLASSIFICATION
In this section, we classify HTs into two categories according to

their impacts on the normal functionalities of the circuit. Attackers
could either create certain HTs that directly modify the normal func-
tionalities of the circuit, or insert certain HTs that introduce additional
malicious behavior but keep all the normal functionalities of the cir-
cuit. They are named bug-based HT and parasite-based HT respec-
tively in this paper.

For the ease of discussion, we have the following definitions:
DEFINITION 1. A functional input is an input that is used by the

circuit’s specified normal functionality.
DEFINITION 2. A trigger input is an input that is used in the con-

dition under which the HT is activated. Note that, functional inputs
can serve as trigger inputs for HTs [12].

3.1 Bug-Based HT
A bug-based HT changes the circuit in a manner that causes it to

lose some of its normal functionalities. Consider an original design
in Fig. 1(a) whose normal function is fn = d1d2. An attacker may
change it to a malicious function, fm = d̄1d2, by adding an additional
inverter, as shown in Fig. 1(b). With this malicious change, the circuit
has lost certain functionalities, i.e., the two circuits behave differently
when d2 = 1. Their corresponding K-Maps are shown in Fig. 2(a) and
Fig. 2(b). By comparing the two K-Maps, we can observe that some
entries of the normal function have been modified by the malicious
function as highlighted in gray. For bug-based HT, some functional
inputs serve as trigger inputs to the HT, e.g., for the circuit shown in
Fig. 1(b), d2 is both a functional input and a trigger input.

From a different perspective, the bug-based HT can be simply re-
garded as a design bug (with malicious intention though), as the de-
sign in fact does not realize all of its normal functionalities designated
by the specification. As a result, the extensive simulation/emulation
is likely to detect this type of HTs. From this perspective, bug-based
HT is usually not a good choice for attackers in terms of the stealthy
requirement, and almost all HT designs appeared in the literature
(e.g., [3,11–13,16–18]) belong to the parasite-based type, as discussed
in the following.

3.2 Parasite-Based HT
A parasite-based HT exists along with the original circuit, and does

not cause the original design to lose any normal functionalities. Again,
consider an original circuit whose normal function is fn = d1d2. Sup-
pose an attacker wants to insert a HT whose malicious function is
fm = d̄1d2 into the design. To control when the design runs the nor-
mal function and when it runs malicious function, the attacker could
employ some additional inputs as trigger inputs, t1 and t2. In order
to escape from trust validation, trigger inputs are usually carefully se-
lected and the trigger condition is designed to be an extremely rare
event occurred with verification tests.

d1

d2

fn = d1d2

fn

(a) Original circuit

d1

d2

fm = ¹d1d2

fm

(b) Bug-based HT

d1

t1

t1

d2

t2

h1

h2

h3

h4

h5

t2

d1
d2

h6

d1
t1

t2

d1

t1
d2
t2
d2

h1
h2

h3

h4

d2

h5

fn+m = ¹t1d1d2 +¹t2d1d2 + t1t2¹d1d2

fn+m
fn+m

(c) Parasite-based HT where {t1, t2}= {1,1} is the trigger condition

Figure 1: HT classification with a simple example.

0 0 1 0

00 01 11 10

K-Mapd1d2

(a)

0 1 0 0

d1d2

00 01 11 10

K-Map

(b)

0 0 1 0

d1d2

00 01 11 10

K-Map

0 0 1 0

0 1 0 0

0 0 1 0

t1t2

00

01

11

10

(c)

0 0 1 0

d1d2

00 01 11 10

K-Map

0 0 1 0

X X X X

0 0 1 0

t1t2

00

01

11

10

(d)
Figure 2: (a) K-Map of original circuit in Fig. 1(a); (b) K-Map of bug-based
HT in Fig. 1(b); (c) K-Map of parasite-based HT in Fig. 1(c); (d) K-Map of
parasite-based HT in Fig. 1(c) by setting entities of the malicious function as
don’t cares.

Let us examine the K-Map of the parasite-based HT-inserted cir-
cuit, as shown in Fig. 2(c). The third row represents the malicious
function while other rows show the normal function. By comparing it
with the K-Map of the original circuit (see Fig. 2(a)), we can observe
that the parasite-based HT enlarges the K-Map size with additional
inputs so that it can keep the original function while embedding the
malicious function. The circuit can then perform the normal function
and the malicious function alternately, controlled by trigger inputs.

With the above, we obtain the following two lemmas which we rely
on to detect parasite-based HTs.

LEMMA 1. Consider a signal that attackers expect to modify its
value with a parasite-based HT, at least one dedicated trigger input
must be employed to activate this parasite-based HT.

LEMMA 2. Suppose the value of a signal, denoted by S, can be
manipulated by a parasite-based HT. Any signals that are logically-
driven by signal S have at least one dedicated trigger input.

The proofs of Lemma 1 and Lemma 2 are shown in Appendix A.

Lemma 1 enables us to focus on the HT trigger signal identification
for HT detection. Then, with Lemma 2 , it is not necessary to consider
every signal in the circuit as HT-affected signal. Instead, we only
need to consider inputs of state elements (e.g., flip-flops) and primary
outputs of the circuit, which dramatically reduces the search space of
our solution (detailed in Section 4).

Note that, parasite-based HTs may or may not be detected by the
UCI technique presented in [11], depending on how the HT is im-
plemented. Fig. 1(c) presents two possible implementations for the
earlier example. The one at the lefthand side can be detected by [11],
since fn+m is equal to h5 (the normal function) under all non-trigger
conditions. The implementation shown at the righthand side, how-
ever, will evade [11], because the HT is not implemented separately
from the circuit normal function and none of the signal pairs in the
circuit are equal under all non-trigger conditions.

4. THE VERITRUST SOLUTION
In this section, we detail the proposed VeriTrust technique for de-

tecting parasite-based HTs inserted at design time. For the conve-
nience of presentation, HTs mentioned in the rest of the paper means
parasite-based HTs unless otherwise specified.

4.1 Overview
Consider a signal whose driving combinational logic cone contains

a HT. According to Lemma 1, attackers must employ at least one ded-
icated trigger input to manipulate the value of this signal. VeriTrust
detects the HT by identifying such dedicated trigger inputs according
to the following lemma.

LEMMA 3. For a signal affected by a parasite-based HT, if we set
all entries of the malicious functionalities of the HT as don’t-cares,
the dedicated trigger inputs used to activate HTs become redundant1.

The proof of Lemma 3 is presented in Appendix A. Let us take
the K-Map shown in Fig. 2(d) to illustrate Lemma 3. This K-Map
represents the circuit in Fig. 1(c) where all entries of the malicious
function are considered as don’t-cares. By logic simplification, we
obtain the original normal function to be d1d2 and hence the dedicated
trigger inputs, t1 and t2, become redundant.

Lemma 3 enables us to identify HT trigger inputs for a particular
signal by setting entries of the malicious function as don’t-cares. Such
HT detection method has the advantage of being insensitive to the HT
implementation style (when compared to existing HT detection tech-
niques), because the entries that represent the malicious functionali-
ties of a HT do not change with the implementations.

Although we cannot know which entry belongs to the malicious
function a priori, what we do know is that these malicious entries
must have not been activated during verification tests (otherwise the
HT would have been detected already). In other words, any activated
entry is HT-free, which is the premise of our VeriTrust solution.

Suppose the verification for the normal function of a circuit is com-
plete, then the un-activated entries are composed of those unreachable
entries in functional mode and entries from malicious function. Un-
reachable entries have no effects on the circuit outputs and hence can
be safely ignored by setting them as don’t cares. As a result, by set-
ting all the un-activated entries as don’t-cares, we can determine those
redundant inputs as trigger inputs for HTs. However, in practice, veri-
fication tests are usually incomplete, which means un-activated entries
may also belong to normal function. Under such circumstance, if we
set all un-activated entries as don’t-cares to identify redundant inputs,
the found ones may include both functional inputs and trigger inputs,
and designers need to further examine them to identify true HT trig-
ger inputs, if any. It is important to note that, we may include some
functional inputs as potential trigger inputs due to incomplete verifi-
cation tests, but we will never miss any dedicated trigger inputs when
they do exist. Therefore, VeriTrust guarantees to detect parasite-based
HTs, which is not possible with existing HT detection techniques.

The earlier discussion focuses on combinationally-triggered HTs,
now let us examine whether VeriTrust is able to detect those sequentially-
triggered HTs. Generally speaking, there are two kinds of sequential
triggers widely used in the literature: the counter-based trigger and
the pattern-based trigger. They are typically implemented in a simi-
lar manner that one or more dedicated signals are asserted to trigger
the HT when the counter reaches the pre-defined counter value or the
specific trigger pattern appears [18]. Because these dedicated signals
driven by the actual trigger inputs are redundant for the normal func-
tion within the combinational logic cone driving the HT-affected sig-
nal (according to Lemma 3), VeriTrust is capable to detect such HTs.

To sum up, consider a RTL design or a synthesized gate netlist that
may contain HTs, our VeriTrust technique detects HTs by looking for
redundant inputs after setting all un-activated entries during verifica-
tion tests to be don’t-cares. From this perspective, Veritrust can be
1An input is redundant if its value change has no impact on any circuit output.

source code HT netlist HT verification

tracing

mechanisms
tracing checker

tracer

Figure 3: The overview of VeriTrust

considered as an “unused input identification” technique. The overall
framework of VeriTrust is shown in Fig. 3, which contains two parts:
the tracer and the checker. The tracer traces verification tests to iden-
tify those signals that contain un-activated entries by tracing mecha-
nisms that are constructed according to the design netlist. According
to Lemma 2, it is not necessary to consider every signal in the circuit
for HT detection and the signals of interest during tracing are the in-
puts to all flip-flops and primary outputs. Then, the checker analyzes
these signals and determines whether any of them indeed contain re-
dundant inputs and hence are potentially affected by HTs. The details
of the tracer and the checker are shown in the following subsections.

4.2 Tracer
Consider a particular signal whose fan-in logic cone may contain

a HT, the responsibility of the tracer is to find out whether it con-
tains any un-activated entries after verification tests. A straightfor-
ward method is to record the activation history of each and every en-
try, but it would require unaffordable memory space for large circuits
and incur high runtime overhead. To resolve this problem, instead of
tracing the activation history of each and every logic entry, we propose
to trace in a much more compressed form.

Before discussing the details, let us revisit some basics of Boolean
functions. In general, any combinational circuit can be represented in
the form of sum-of-products (SOP) and product-of-sums (POS). SOP
uses OR operation to combine those on-set minterms, while POS uses
AND operation to combine those off-set maxterms. Two minterms
(maxterms) are adjacent if they have only one different literal.

Next, let us define three new terms, malicious on-set minterm, ma-
licious off-set maxterm and dummy term that compose malicious func-
tion as follows.

DEFINITION 3. The malicious on-set minterm is the on-set minterm
in the malicious function whose adjacent minterms in the normal func-
tion are off-set.

DEFINITION 4. The malicious off-set maxterm is the off-set max-
term in the malicious function whose adjacent maxterms in the normal
function are on-set.

DEFINITION 5. The dummy term is the on-set minterm or off-set
maxterm in the malicious function whose adjacent minterms or max-
terms in the normal function are also on-set or off-set.

With the above definitions, only the malicious on-set minterms and
malicious off-set maxterms have malicious behavior. Consequently, it
is not necessary to set dummy terms as don’t cares to indentify ded-
icated trigger inputs by Lemma 3. Fig. 4 shows the K-Maps of two
example HT-infected circuits (t1 and t2 are trigger inputs) to illustrate
the above terms. The entry filled with vertical lines is malicious on-
set minterm, as its neighboring entries in the normal function are all
logic ‘0’s. The entry filled with horizontal lines is malicious off-set
maxterm, as its neighboring entries in the normal function are all logic
‘1’s. The remaining entries without vertical lines and horizontal lines
in the malicious function are dummy terms, as they have the same
values with their neighboring entries in the normal function. From the
above definitions, when simplifying the circuit into the minimal form
of SOP (POS), we have the following observations:

1

0

malicious

on-set minterm

malicious

off-set maxterm

(a) (b)

0

0 0 1 0

d1d2

00 01 11 10

K-Map

0 0 1 0

0 1 0 0

0 0 1 0

t1t2

00

01

11

10

C1

C2

1

0 0 1 0

d1d2

00 01 11 10

K-Map

0 0 1 0

0 1 1 0

0 0 1 0

t1t2

00

01

11

10

C1

C2

dummy term

Figure 4: Two HT-affected circuits triggered by {t1, t2}= {1,1}.

• Malicious on-set minterms and malicious off-set maxterms can
only be combined with terms in the malicious function. This is
because all the adjacent minterns (maxterms) of malicious on-
set minterms (malicious off-set maxterms) in the normal func-
tion are off-set (on-set). For example, in Fig. 4 (a), one mali-
cious off-set maxterm is combined with one dummy term (cir-
cled by C2), and in Fig. 4 (b), one malicious on-set maxterm is
combined with one dummy term (circled by C2).

• Dummy terms can be combined with terms in the normal func-
tion as well as terms in the malicious function. For example,
the circle C1 in Fig. 4 (a) and Fig. 4 (b) shows that the dummy
term is combined with terms in the normal function; the circle
C2 in Fig. 4 (a) and Fig. 4 (b) shows that the dummy term is
combined with terms in the malicious function.

From the above, simplified products or sums containing malicious
on-set minterms or malicious off-set maxterms cannot be activated
during the verification. In other words, during the tracing process, we
can record the activation history of products and sums instead of that
of each logic entry, and hence the memory requirement and runtime
overhead of our tracer can be dramatically reduced. The simplified
products and sums can be obtained by simplifying the circuit to the
minimum SOP and POS form, by leveraging the capability of logic
synthesis tool. Note that, the proposed tracing methodology is appli-
cable even if the circuit is not simplified to the minimum SOP and
POS form. For the extreme case when we do not perform any simpli-
fication, the proposed tracer is simply degraded to tracing all entries.

The tracing procedure might still be time-consuming if the number
of products and sums to be traced is large. To resolve this problem, we
adopt the following two methods to reduce tracing overhead. First, we
periodically remove those sums and products that have been activated.
Second, we periodically remove those unactivated sums and products
whose signal is determined to be HT-free with our checker.

4.3 Checker
The tracer outputs a number of signals that have un-activated prod-

ucts or sums after applying verification tests. The checker then checks
whether a particular signal is driven by any redundant input by assign-
ing the corresponding un-activated products and sums to be don’t-
cares. If it is, it would be a suspicious HT-affected signal; otherwise
it is guaranteed to be HT-free.

To identify whether a signal is driven by redundant inputs could
be time-consuming if its fan-in logic cone is large. To mitigate this
problem, we adopt three methods for redundant input identification,
which differ in the checking capability and time complexity.

Checker 1 simply checks whether there is any redundant input by
removing un-activated products/sums from the signal’s SOP/POS rep-
resentation. Take the circuit in Fig. 4 (a) as an example. One SOP can
be represented as: f = d1d2 + t1t2d2. If we remove the un-activated
t1t2d2 from the SOP, the logic function becomes f = d1d2 with re-
dundant inputs t1 and t2. This efficient checking mechanism is ef-
fective in many cases, but it cannot guarantee complete identifica-
tion of redundant inputs. This is because, whether checker 1 can
find out redundant inputs depends on the SOP/POS representation of
the signal. For example, if the circuit in Fig. 4 (b) is represented as
f = t̄1d1d2 + t̄2d1d2 + t1t2d2, then removing the un-activated t1t2d2
cannot leave t1 and t2 redundant.

Checker 2 leverages logic synthesis to re-simplify the function by
considering un-activated products and sums as don’t-cares. If an input
does not appear in the synthesized circuit, it is a redundant input. This
method is able to find most redundant inputs, but still cannot guar-
antee to find all since synthesis tool cannot guarantee optimality by
employing heuristic algorithm for logic minimization.

Checker 3 verifies all inputs that are used in the un-activated prod-
ucts/sums one by one. If the change of an input would not cause the
change of the function in all input patterns under the condition that
un-activated products and sums are set as don’t cares, it should be a
redundant input. Checker 3 can guarantee to find out all redundant
inputs, but it is more time-consuming than Checker 1 and Checker 2.

To ensure complete identification capability while keeping compu-
tational time low, we run checker 1, checker 2 and checker 3 in a con-
secutive manner. That is, if a more efficient checker (e.g., checker 1)
finds out a redundant input for a particular signal with un-activated
products/sums, we mark it as a suspicious HT-affected signal and
move to process the next signal of interest. Otherwise, we use the
next checker for redundant input identification. If all the three check-
ers cannot find redundant inputs for the signal of interest, it is guaran-
teed to be HT-free. Eventually, the checker returns a list of suspicious
signals that are potentially affected by HTs.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
The HTs used in our experiments are obtained from two sources:

the Trust-Hub website [18] and some related papers [3, 11–13, 16],
detailed in Appendix B. We do not directly conduct experiments on
those circuits in which HTs are originally inserted, because verifica-
tion tests required by both [11] and VeriTrust for HT detection are
not available. Instead, we have selected a SoC design from Open-
Cores [24], containing a 32-bit RISC microprocessor namely Open-
Risc and many peripherals such as UART, USB and MAC, as the hard-
ware platform for HT insertion and detection. We adopt the 17 test
cases bundled with this design for verification.

For those RTL HTs, we carefully transplant them onto our experi-
mental platform, keeping their triggers and payloads as discussed in
Appendix B. For those HTs for circuit netlist, we use Synopsys De-
sign Compiler to obtain the netlist of the design, and then we insert
these HTs by copying gates used by the HT into the netlist and con-
nect them to the targeted signals. To evaluate the effectiveness of
VeriTrust, we compare it with [11] and code coverage metrics.

5.2 Results and Discussion
Generally speaking, a HT detection algorithm reports a list of can-

didate places where HTs may lie and requires designers to inspect fur-
ther to identify whether these suspicious places indeed contain HTs.
On one hand, if a true HT evades from the detection algorithm and
does not appear in the candidate list, this would cause catastrophic
effect; on the other hand, if the candidate list is very large, it will
require much manpower to conduct further inspection. We therefore
show results on the above two aspects first, and then present the run-
time overhead of VeriTrust.

5.2.1 The Detection Capability
Fig. 5 presents the HTs identified by VeriTrust and UCI techniques

after applying all the 17 test cases. Note that, a HT is considered to be
detected if part of its trigger and/or payload is shown in the candidate
list, reported by the corresponding HT detection algorithm.

First, let us look at the HT detection capability of UCI techniques
for RTL HTs, as shown in Fig. 5(a). For HTs in G1, we observe that
condition coverage detects T3 and T5 and FSM coverage detects T17
only, because most of the HTs in G1 are implemented without con-
ditional expressions and FSMs. The line coverage, toggle coverage,
branch coverage and path coverage detect all of them except T19, be-
cause T19 is implemented as a pure combinational logic block and all

���

���

Figure 5: The summary of HTs identified by UCI techniques and VeriTrust

signals used by HTs have both 1-to-0 and 0-to-1 transitions. [11] de-
tects all HTs in G1 because the final output is equal to the output of the
normal function throughout the test cases. For HTs in G2, only T12 is
detected by some code coverage metrics and [11]. This is because one
signal partially indicating the trigger condition of T12 is quite difficult
to be sensitized during verification and hence keeps constant. Theo-
retically speaking, however, HTs in G2 are likely to evade such UCI
techniques, because all signals partially indicating the trigger condi-
tion could be set separately without activating the HT and there are no
two signals that can hold equal under all non-trigger conditions. It is
the fact that the lack of sufficient verification test cases exposes T12.
The condition coverage and FSM coverage miss T12 because there
are no conditions and FSMs in T12. Finally, for HTs in G3, T18 is
detected by some code coverages and [11] due to the same reason as
T12. Compared to T12, T18 evades line coverage, branch coverage
and path coverage further. This is because T12 is implemented by the
basic AND, OR and NOT operators.

From the above, we can observe that the different HT implementa-
tion style has a high impact on the detection capability of UCI tech-
niques and none of them are able to detect all HTs. On the contrary,
VeriTrust is insensitive to HT implementation styles and detects all the
HTs based on the fact that they all contain dedicated trigger inputs.

Fig. 5(b) presents the HT detection result for HTs inserted into cir-
cuit netlist. As code coverage metrics are not meaningful for circuit
netlist, we only present results for [11] and VeriTrust. It can be ob-
served that VeriTrust can detect all the HTs while [11] misses T26,
T28, T30 and T32 due to the fact that none of pairs of signals for HTs
keep equal throughout the verification tests.

5.2.2 The Number of Suspicious Candidates
Fig. 6 presents the number of suspicious candidates reported by

[11] and VeriTrust. By comparing the three curves, we observe that
the number of suspicious candidates reported by VeriTrust is much
smaller than those reported by [11] initially, especially when [11] is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1000

2000

3000

4000

5000

6000

Figure 6: The number of suspicious candidates reported by [11] and VeriTrust
with the increase number of test cases

0

1

2

3

4

5

The Name of Test Cases

ba
sic

cb
as
ic cy

dc
tes
t

ex
ce
pt ex

t ffl
flo
at fp

lin
kre
gte
st
ma
c
mm

u ov sf

sim
ple tic

k

tic
ks
ys
ca
ll

S
lo
w
d
o
w
n
F
a
c
to
r

Figure 7: The slowdown factor of VeriTrust compared with the base

applied to the netlist. This is because the number of state elements
traced by VeriTrust is much smaller than the number of signal pairs
traced by [11] VeriTrust. On the other hand, the number of suspicious
candidates reported by VeriTrust decreases slower. This is because,
as soon as a signal pair is with different values, [11] can abandon it
while VeriTrust requires to accumulate sufficient activated products
and sums of the signal to deem it as HT-free.

Further trust validation is needed to determine whether the final list
of suspicious candidates are indeed affected by HTs. As shown in
Fig. 6, we can observe that the total number of suspicious candidates
reported by VeriTrust is smaller than that reported by [11] but they are
in the same order.

5.2.3 Runtime Overhead
Fig. 7 presents the slowdown factor of VeriTrust when compared

against the case of functional verification without HT detection (re-
ferred to as base). It can be observed that the slowdown factor without
periodically removing sums and products is quite high, about 4.25, as
shown in the black bars. With periodically removing sums and prod-
ucts, however, the slowdown factors reduce with the application of
more test cases (due to less traced signals). As shown in the gray bars,
VeriTrust requires about 35% more runtime to finish 17 test cases.

Finally, Fig. 8 compares the runtime overhead of [11] and VeriTrust
for netlist HTs. For the fair comparison, we remove signal pairs of
[11] periodically as well. As can be seen, the runtime of [11] is larger
than VeriTrust due to the high number of to-be-traced signal pairs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.1

0.2

0.5

1

2

5

10

20

50

The Number of Test Cases

S
lo
w
d
o
w
n
F
a
c
to
r

Figure 8: The slowdown factors of [11] and VeriTrust with the increase number
of test cases compared with the base

6. CONCLUSION
In this paper, we propose a novel HT detection technique for HTs

inserted at the design stage, namely VeriTrust, to automatically iden-
tify HTs trigger inputs by examining verification corners. The main
advantage of VeriTrust compared to existing HT detection techniques
is that VeriTrust is insensitive to HT implementation styles. Exper-
imental results demonstrate that all the HTs that we have evaluated
based on existing HT designs appeared in the literature are detectable
with VeriTrust.

HT design and HT detection are like arms race, wherein attackers
constantly update their tactics to intrude a system while defenders re-
spond with more security measures to protect the system. We discuss
the limitations of VeriTrust in Appendix C and we plan to investigate
whether they can be used to evade VeriTrust.

7. ACKNOWLEDGEMENT
We thank Professor Srini Divadas for his insightful comments that

greatly improved the paper. This work was supported in part by a
CUHK Direct Grant No. 2050488.

8. REFERENCES
[1] M. Tehranipoor and F. Koushanfar. A survey of hardware Trojan taxonomy

and detection. IEEE Design & Test of Computers, vol.27, no.1, 2010.
[2] S. Skorobogatov and C. Woods. Breakthrough silicon scanning discovers

backdoor in military chip. In Proc. International Conference on
Cryptographic Hardware and Embedded Systems, pp. 23–40, 2012.

[3] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing
and implementing malicious hardware. In Proc. USENIX Workshop on
Large-Scale Exploits and Emergent Threats, 2008.

[4] J. Markoff. Old trick threatens the newest weapons. In The New York Times,
p. D1, Oct. 27, 2009.

[5] S. Adee. The hunt for the kill switch. IEEE Spectrum, pp. 34–39, 2008.
[6] D. Agrawal, et al. Trojan detection using IC fingerprinting. In Proc. IEEE

Symposium on Security and Privacy, pp. 296–310, 2007.
[7] J. Li and J. Lach. At-speed delay characterization for IC authentication and

trojan horse detection. In Proc. IEEE International Workshop on
Hardware-Oriented Security and Trust, pp. 8–14, 2008.

[8] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia. Self-referencing: a
scalable side-channel approach for hardware trojan detection. In Proc.
International Conference on Cryptographic Hardware and Embedded
Systems, pp. 173–187, 2010.

[9] Y. Alkabani and F. Koushanfar. Consistency-based characterization for IC
trojan detection. In Proc. IEEE/ACM International Conference on
Computer-Aided Design, pp. 123–127, 2009.

[10] S. Wei, S. Meguerdichian, and M. Potkonjak. Gate-level characterization:
foundations and hardware security applications. In Proc. ACM/IEEE Design
Automation Conference, pp. 222–227, 2010.

[11] M. Hicks, et al. Overcoming an untrusted computing base: detecting and
removing malicious hardware automatically. In Proc. IEEE Symposium on
Security and Privacy, pp. 159–172, 2010.

[12] C. Sturton, M. Hicks, D. Wagner, and S. T. King. Defeating UCI: building
stealthy and malicious hardware. In Proc. IEEE Symposium on Security and
Privacy, pp. 64–77, 2011.

[13] J. Zhang and Q. Xu. On Hardware Trojan Design and Implementation at
RTL. Proc. IEEE International Symposium on Hardware-Oriented Security
and Trust, to appear, 2013.

[14] U. S. Dept. of Defense. Defense Science Board Task Force on High
Performance Microchip Supply.
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf, 2005.

[15] M. Beaumont, B. Hopkins, and T. Newby. Hardware trojans-prevention,
detection, countermeasures (a literature review), 2011.

[16] S. Wei, K. Li, F. Koushanfar, and M. Potkonjak. Hardware Trojan horse
benchmark via optimal creation and placement of malicious circuitry. In
Proc. ACM/IEEE Design Automation Conference, pp. 90–95, 2012.

[17] Y. Jin, N. Kupp, and Y. Makris. Experiences in hardware trojan design and
implementation. In Proc. IEEE International Workshop on
Hardware-Oriented Security and Trust, pp. 50–57, 2009.

[18] Trust-Hub Website. https://www.trust-hub.org/.
[19] R. Chakraborty and S. Bhunia. Security against hardware trojan through a

novel application of design obfuscation. In Proc. IEEE/ACM International
Conference on Computer-Aided Design, pp. 113–116, 2009.

[20] A. Waksman and S. Sethumadhavan. Silencing hardware backdoors. In
Proc. IEEE Symposium on Security and Privacy, pp. 49–63, 2011.

[21] A. Waksman and S. Sethumadhavan. Tamper evident microprocessors. In
Proc. IEEE Symposium on Security and Privacy, pp. 173–188, 2010.

[22] T. Huffmire, et al. Moats and drawbridges: An isolation primitive for
reconfigurable hardware based systems. In Proc. IEEE Symposium on
Security and Privacy, pp. 281–295, 2007.

[23] S. Vasudevan, J.A. Abraham, V. Viswanath, and J. Tu, Automatic
decomposition for sequential equivalence checking of system level and RTL
descriptions. In Proc. ACM/IEEE International Conference on Formal
Methods and Models for Co-Design, pp. 71–80, 2006.

[24] OpenCores Website. http://opencores.org/.

APPENDIX
A. LEMMAS AND PROOFS

LEMMA 1. Consider a signal that attackers expect to modify its
value with a parasite-based HT, at least one dedicated trigger input
must be employed to activate this parasite-based HT.

PROOF. Suppose there exists a signal that is affected by a HT but
does not have any dedicated trigger input. In this case, all inputs are
functional inputs to this signal. Then, this HT must change the sig-
nal’s normal function under some functional input patterns in order to
be effective. Since any change would lead to the loss of original func-
tionalities, it can only be a bug-based HT instead of a parasite-based
HT. In other words, the parasite-based HT must be designed with at
least one dedicated trigger input.

LEMMA 2. Suppose the value of a signal, denoted by S, can be
manipulated by a parasite-based HT. Any signals that are logically-
driven by signal S have at least one dedicated trigger input.

PROOF. For any signal that is logically-driven by signal S, its value
can be manipulated by the parasite-based HT as well. Then, according
to Lemma 1, it should have at least one dedicated trigger input in order
to activate the HT.

LEMMA 3. For a signal affected by a parasite-based HT, if we set
all entries of the malicious functionalities of the HT as don’t-cares,
the dedicated trigger inputs used to activate HTs become redundant.

PROOF. Consider a signal affected by a parasite-based HT whose
function could be represented by f =Cn fn+Cm fm, wherein fn and fm
denote the normal function of the circuit and the malicious function of
the HT, which are controlled by the non-trigger condition Cn and the
trigger condition Cm, respectively. If we set all entries of the malicious
function Cm fm as don’t-cares, from the perspective of the design, we
can use Cm fn to replace Cm fm. Then, the new function becomes f ′ =
(Cn +Cm) fn, which means it exhibits the normal function fn under
both trigger and non-trigger conditions. As a result, dedicated trigger
inputs become redundant.

B. HARDWARE TROJANS USED IN EXPER-
IMENTS

The HTs used in our experiments are obtained from two sources:
the Trust-Hub website [18] and some related papers [3, 11–13, 16],
as summarized in Table 1. To be specific, there are 33 HTs, wherein
24 HTs are inserted into the HDL source code at the register-transfer
level (RTL) while the other 9 HTs are inserted into netlist. We do
not include other HTs appeared in the literature, because we can find
their corresponding types from what we used after examination. We
believe these HTs are sufficient to evaluate UCI techniques and the
proposed VeriTrust technique thoroughly.

We rename these HTs as shown in the first column of Table 1. Col-
umn 2 presents the name of designs where HTs are originally inserted.
Column 4 and Column 5 demonstrate the trigger and the payload of
HTs, respectively. Based on their triggers and payloads, we have the
following observations:

• The trigger of these HTs can be roughly classified into two cate-
gories: Ê counter-based trigger and Ë pattern-based trigger. For
counter-based trigger, the counter can be pulsed by any signals
(e.g., clock, instruction, data signal). For pattern-based trigger,
the trigger observes a specific pattern or a sequence of specific
patterns defined by the attacker. Signal driving the counter or the
pattern are usually independent from the HT payload to lower
the probability of the trigger being activated.
• The HT payloads have quite diverse malicious functionalities,

e.g., compromising address or data register, leaking secrete in-
formation, reducing performance, depending on the objective of
the attacker.

B.1 RTL HTs
T1–T20 are HT benchmark circuits in the form of RTL source code

from Trust-Hub [18], originally inserted into three designs: MC8051,
RISC, and RS232. As shown in [13], these HTs can be easily detected
by both coverage metrics and [11], because all code lines controlled
by the trigger condition of the HT that is indicated by a specific signal
are never executed during the verification and the signal affected by
the HT is always driven by one signal indicating the normal function.

While the above shows the effectiveness of UCI techniques for HT
detection, it is still possible to make these HTs evade UCI techniques
by simple HT design modifications. We therefore intentionally revise
some HT implementations for comparison between UCI techniques
and VeriTrust by using two code models proposed by [13]. Compared
to the original HT implementation used by Trust-Hub, these two code
models partition both the trigger condition and the normal function
and adopt multiple signals indicating them. In this way, all code lines
controlled by part of the trigger condition can be executed under non-
trigger condition, and the signal affected by the HT can be driven by
multiple signals alternately. The difference between two code models
from [13] is that the trigger in the second code model is constructed
with basic AND, OR and NOT operators.

Besides the 20 HTs from Trust-Hub, we use another 4 HTs from
previous works. For T21 and T23 from [11], only high-level descrip-
tion on their triggers and payloads are available, and we choose to use
the code model of HTs from Trust-Hub to construct them. T22 from
[12] is a combinationally-triggered HT that can be mapped to the sec-
ond code model in [13]. T24 is constructed by ourselves based on the
malicious circuit provided by [12], and it is also a combinationally-
triggered HT.

With the above, the 24 HTs in the form of RTL source code can be
classified into three groups, G1, G2 and G3, based on the respective
implementation methods.

G1: HTs constructed with their original implementations whose in-
dexes are odd, including T1,T3, T5, T7, T9, T11, T13, T15, T17,
T19, T21 and T23.

G2: HTs constructed with code model one in [13], including T2, T4,
T8, T10, T12 and T14.

G3: HTs constructed with code model two in [13], including T6,
T16, T18, T20, T22 and T24.

B.2 HTs for Netlist
Among the 9 HTs for netlist, 8 are from Trust-Hub [18]. While

there are a number of HT benchmarks for netlist shown in [18], their
trigger mechanisms are quite similar and we select 8 HTs with differ-
ent kinds of payloads. [11] can detect all the original HTs, because
the final function is always the same as the normal function under all
non-trigger conditions. Similarly, we select 4 HTs, T26, T28, T30 and
T32 and do some modifications on them based on the code model of
HTs for Netlist that is obtained by transferring the code model in [13]
into the netlist. Therefore, theoretically, HTs constructed based on
this code model can evade [11] in all non-trigger conditions.

In addition, we generate one rare switching HT based on [16],
namely T33. In [16], Wei et al. developed the one-gate HT trigger to
power on HT payloads. The main consideration of [16] when creating
the HT is its leakage and timing impact on the design as it targets on
the HT inserted at the post-fabrication. As we consider HTs inserted
at design stage, we generate the one-gate HT trigger whose switching
probability is the lowest among all gates, and we use this trigger to
control the payload to change the value of one flip-flop.

C. LIMITATIONS OF VERITRUST
VeriTrust has been shown to be able to detect all the HTs that we

have evaluated in this paper. However, this does not mean no HTs can
defeat it. In particular, attackers may exploit the assumptions used
in VeriTrust to evade it. We therefore discuss its limitations in this
section.

Table 1: The summary of HTs used in our experiments

Index Circuit Level Trigger Payload
T1 MC8051-T200 RTL Ë idle mode state activate internal timer
T2 MC8051-T300 RTL Ë specific data through UART block receiving any message
T3 MC8051-T400 RTL Ë a specific sequence of commands disable interrupt
T4 MC8051-T500 RTL Ë a specific sequence of commands compromise received data
T5 MC8051-T600 RTL Ë interrupt on INT0 pin modify PC to disable jump
T6 MC8051-T700 RTL Ë a specific command compromise data
T7 MC8051-T800 RTL Ë specific data through UART manipulate stack pointer
T8 RISC-T100 RTL Ê the number of specific instructions change memory address
T9 RISC-T200 RTL Ê the number of specific instructions replace instructions with sleep command
T10 RISC-T300 RTL Ê the number of specific instructions transmit data to external storage
T11 RISC-T400 RTL Ê the number of specific instructions manipulate the address
T12 RS232-T100 RTL Ë specific data through UART stick a signal
T13 RS232-T200 RTL Ë specific data compromise performance counter
T14 RS232-T300 RTL Ê transmitting time compromise transmitted data
T15 RS232-T400 RTL Ë specific data compromise received data
T16 RS232-T500 RTL Ê execution time stick a signal
T17 RS232-T600 RTL Ë a specific sequence of data stick a signal & compromise data
T18 RS232-T700 RTL Ë a specific sequence of data stick a signal
T19 RS232-T800 RTL Ë specific data from UART manipulate the output signal
T20 RS232-T900 RTL Ë specific data from UART block the transmission
T21 Leon3 [11] RTL Ë a specific sequence of bus data access protected memories
T22 Leon3 [12] RTL Ë a specific sequence of instructions compromise the supervisor mode
T23 Leon3 [11] RTL Ë a specific sequence of bus data execute arbitrary code
T24 OpenRisc RTL Ê a specific counter value compromise a register
T25 s15850-T100 Netlist Ë specific values of flip-flops leak internal signal
T26 s35932-T100 Netlist Ë specific values of flip-flops enable the scan chain
T27 s35932-T200 Netlist Ë specific values of flip-flops mask four gates
T28 s35932-T300 Netlist Ë specific values of flip-flops slow down the path
T29 s38417-T100 Netlist Ë specific values of signals control an internal signal
T30 s38417-T200 Netlist Ë specific values of signals propagate erroneous value
T31 s38417-T300 Netlist Ë specific values of signals leak value through side-channel
T32 s38584-T200 Netlist Ê a specific counter value leak value to primary output
T33 OpenRisc Netlist Ë a specific data pattern change the value of the flip-flop
Ê: counter-based trigger Ë: pattern-based trigger

Firstly, VeriTrust is not able to detect bug-based HTs because it
tries to find the trigger input that is redundant in terms of circuit nor-
mal functions. However, bug-based HTs are realized by using only
functional inputs, thus bypassing VeriTrust. As discussed earlier, how-
ever, bug-based HTs can survive only in the hope of incomplete veri-
fication. Since attackers cannot control the design of verification test
cases, the threat caused by bug-based HTs is usually small.

Secondly, VeriTrust would miss those HTs whose trigger is always
on. This kind of HTs is usually used to compromise parameters of
the design (e.g., timing, power or reliability) without introducing new
functionalities to the design. For example, a HT may simply intro-
duce some extra inverters on a circuit path to increase its delay. As
VeriTrust focuses on detecting HTs that have function-level malicious

behavior, these types of HTs can evade it. On the other hand, it is
usually difficult to insert HTs to modify the circuit parameters at the
design stage, because computer-aided design tools used in the later
design stage (e.g., logic synthesis and physical design) may remove
such impact with circuit optimization.

Finally, similar to [11], we assume that a HT is detected as long as
it is functionally-activated. In practice, however, the verification test
cases may miss identifying the malicious behavior of HTs. There-
fore, it would be beneficial to review and/or redesign verification test
cases for trust validation from this perspective. On the other hand, this
problem is a less concern because attackers usually would not bet on
careless verification to hide HT payloads.

