
Online Clock Skew Tuning for Timing Speculation

Rong Ye†‡, Feng Yuan† and Qiang Xu†‡
†CUhk REliable Computing Laboratory (CURE)

Department of Computer Science & Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

‡Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
Email: {rye,fyuan,qxu}@cse.cuhk.edu.hk

ABSTRACT
The timing performance and yield of integrated circuits can be
improved by carefully assigning intentional clock skews to flip-
flops. Due to the ever-increasing process, voltage, and temper-
ature variations with technology scaling, however, traditional
clock skew optimization solutions that work in a conservative
manner to guarantee “always correct” computation cannot per-
form as well as expected. By allowing infrequent timing errors
and recovering from them with minor performance impact, the
concept of timing speculation has attracted lots of research at-
tention since it enables “better than worst-case design”. In
this work, we propose a novel online clock skew tuning tech-
nique for circuits equipped with timing speculation capability.
By observing the occurrence of timing errors at runtime and
tuning clock skews accordingly, the proposed technique is able to
achieve much better timing performance when compared to ex-
isting clock skew optimization solutions. Experimental results
on various benchmark circuits demonstrate the effectiveness of
the proposed methodology.

1. INTRODUCTION
Clock skew optimization (CSO) [1] has been exploited as an

effective technique to improve the timing performance of in-
tegrated circuits (ICs), by assigning intentional clock arrival
times to flip-flops (FFs) in synchronized sequential circuits.
Earlier works in this domain [1–5] try to find a good clock
schedule that maximizes the timing slack of all paths. Re-
cently, with the introduction of tunable clock tree to combat
process variation [9], researchers have also presented various
post-silicon clock skew tuning techniques to improve circuit
timing performance [6, 8, 10–12].

All the above works ensure that circuits can always oper-
ate correctly, even in the worst case scenario. With the ever-
increasing static process variation effects due to manufactur-
ing imperfection and dynamic variation effects such as voltage
and temperature fluctuations, a large guard band needs to be
reserved when conducting clock skew optimization, leading to
rather limited performance improvement room for such conser-
vative approaches. Instead, timing speculation technique such
as Razor [14] allows infrequent occurrence of timing errors and
achieves timing error resilience by employing error detection
and correction techniques. This “better than worst-case” de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD 2011, November 7-10, 2011, San Jose, California, USA.

sign methodology enables the tradeoff between reliability and
performance/power and hence can achieve much better energy
efficiency. It has thus received lots of research attention from
both academia and industry [14–16].

To the best of our knowledge, there is no clock skew opti-
mization work for circuits equipped with timing speculation
capability. This is unfortunate, because these two techniques
naturally complement each other and combining them together
is able to achieve much better timing performance. On the
one hand, with timing speculation, we do not need to guaran-
tee “always correct” operation during clock skew optimization,
which significantly enlarges the improvement room of skew op-
timization techniques. On the other hand, clock skew tun-
ing can be used to manipulate the occurrence of timing errors
in the circuit in such manner that those frequently sensitized
paths are with larger timing slack and hence the overall tim-
ing error rate of the circuit can be reduced, resulting in better
throughput of the circuit.

Motivated by the above, in this paper, we propose a novel
online skew tuning framework for circuits equipped with tim-
ing speculation capability. To be specific, we develop novel
hardware architecture to collect online timing error informa-
tion and use it to guide our proposed clock skew tuning pro-
cedure to achieve better timing performance. Experimental
results on various benchmark circuits demonstrate the effec-
tiveness of our proposed methodology. Note that, our frame-
work focus on post-silicon skew tuning, and hence it can easily
be combined with pre-silicon skew scheduling works.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the preliminaries of this work. The pro-
posed online skew tuning framework and the corresponding
algorithms are then detailed in Section 3 and Section 4, re-
spectively. Next, Section 5 presents our experimental results
on various benchmark circuits. Finally, Section 6 concludes
this paper.

2. PRELIMINARIES AND MOTIVATION

2.1 Pre-Silicon Clock Skew Scheduling
Generally speaking, pre-silicon clock skew scheduling can

be classified into two categories by different optimization ob-
jectives: performance-driven ones [1, 2] to achieve the highest
operational frequency and timing yield-driven ones [3–7, 10]
to maximize yield under a particular clock period. Consid-
ering the variability of critical path delays, some prior works
(e.g., [1, 2]) allocated a safety margin with both upper and
lower bounds to each feasible region of clock skews in ad-
vance in order to minimize clock period, and some other works
(e.g., [4–7]) used statistical models to optimize this problem.
All these works try to assign a good clock schedule at design
stage, relying on static timing analysis results and process vari-
ation models. These offline estimation/analysis techniques,
however, cannot provide very accurate timing information and

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 442

hence limit the effectiveness of pre-silicon clock skew schedul-
ing solutions.

2.2 Post-Silicon Clock Skew Tuning
Recently, post-silicon tuning capability has been introduced

to clock tree design to remove unintentional skews and boost
timing yield under increasing process variations [8]. A repre-
sentative example is Intel’s dual-core Itanium processor, which
places tunable delay buffers (TDBs) in the clock distribution
network to cancel clock skew variations [9]. These TDBs can
be programmed from the test access port (TAP).

To realize post-silicon skew tuning, the design of tunable de-
lay buffers is important and various design schemes have been
presented in the literature [10]. With the help of TDB designs,
the authors of [11] proposed a post-silicon clock timing ad-
justment strategy, but how to program the tunable elements
and determine their locations is not addressed. In [10,12], the
authors combined a statistical timing driven skew scheduling
algorithm with a post-silicon clock tuning scheme.

The above works rely on offline testing to obtain timing
information and use it for post-silicon clock tuning. Path de-
lay test generation, however, is an extremely difficult problem
and the coverage is usually quite low. More importantly, with
technology scaling, the discrepancy between circuits’ timing
behavior in functional mode and that in structural test mode
has dramatically increased [13]. Due to the above, the effec-
tiveness of existing post-silicon clock skew tuning techniques
is also limited.

2.3 Timing Speculation
Circuit-level timing speculation technique, being able to de-

tect timing errors at online stage, react to the error quickly and
recover from it by rolling back to a known-good pre-error state,
has become one of the most promising solutions to deal with
the ever-increasing static and dynamic variation effects with
technology scaling. Various techniques have been presented
for online timing error detection. Without loss of generality,
we employ the representative Razor flip-flop (refer to [14] for
details) to detect timing errors in this work, by replacing all
critical FFs that are driven by speed-paths (i.e., critical or
near-critical paths) of the circuit with Razor-FFs.

2.4 Motivation
Targeting circuits equipped with timing speculation capa-

bility, this work is motivated by the following observations.
A specific manufactured circuit has its unique characteristics
(e.g., path delay distribution), which is difficult to estimate
during design stage or costly to characterize with delay test-
ing techniques accurately. Consequently, a large design guard
band needs to be reserved for conventional clock skew opti-
mization techniques. With timing speculation, however, we
do not need to guarantee “always correct” operation, which
dramatically increases the flexibility and improvement room
of clock skew optimization techniques. While existing tim-
ing speculation techniques are able to apply dynamic volt-
age/frequency scaling to achieve better energy-performance
tradeoff using timing error rate information, this is conducted
at the entire circuit level. With online clock skew tuning ca-
pability, we can manipulate timing error rate in a fine-grained
manner so that those frequently sensitized paths are with larger
timing slack, and hence reduce the overall timing error rate of
the circuit.

The above motivates us to design a novel online clock skew
tuning framework, as shown in Fig. 1, wherein we collect run-
time timing error information and use it to guide our clock
skew tuning process to achieve better circuit performance, as
detailed in the following sections.

Figure 1: Proposed Online Skew Tuning Framework

1

2

n

Figure 2: Conceptual Basic Tuning Block

3. DESIGN FOR ONLINE CLOCK SKEW
TUNING

Circuit equipped with timing speculation capability can de-
tect and correct infrequent timing errors, but it does not sup-
port the collection of timing error information, let alone clock
skew tuning. Consequently, we need to add additional cir-
cuitries into the design to achieve this objective.

3.1 Basic Tuning Block
To monitor and manage system timing behavior as shown in

Fig. 1, the most aggressive design would be to record the tim-
ing errors occurred on each Razor-FF and conduct clock skew
tuning individually. Clearly, such design will introduce unaf-
fordable hardware cost, and complicate the clock skew tuning
procedure. A more practical approach is hence to group adja-
cent Razor-FFs together to form a basic tuning block, wherein
we collect timing errors occurred in it together and we insert
only one tunable delay buffer for each block to apply skew tun-
ing. Within each block, all FFs receive the same clock signal,
whose skew is controlled by the control unit (see Fig. 1). Note
that, due to the above, clock skew tuning will only affect paths
between blocks.

Without loss of generality, we assume that the error signal
will be set as 1 once timing error is detected by the corre-
sponding Razor-FF. These error signals are “ORed” together
and connected to a counter (see Fig. 2). Since the likelihood
of having multiple Razor-FFs in a block to have timing errors
simultaneously is quite low, the above design saves area cost
with little accuracy loss. The carry-out signal of counter can
be used to indicate whether the counter is full.

3.2 Timing Error Collection and Clock Skew
Tuning Mechanism

One challenging issue in the proposed framework is how to
online collect timing error information from all the distributed
blocks to the system-level control unit. The most straightfor-
ward solution would be to connect the error counter of every
block to the control unit. This strategy, however, incurs unaf-
fordable routing cost to the system.

To tackle this problem, we propose a serially shifting mech-
anism and the proposed architecture is depicted in Fig. 3. In
this mechanism, the distributed error counters can be recon-
figured to work as a shift register by adding some additional
control logic. In other words, the error counter has two opera-
tional modes: counting mode and shifting mode. In counting

443

Critical Path

Clock Signal

Configuration
Registers

Configuration
Registers

Configuration
Registers

Critical Path

Skew Selection

Mode Signal

Error Signature

Figure 3: Block Diagram for Timing Error Collection
and Clock Skew Tuning

mode, the number of timing errors occurred in the correspond-
ing block is accumulated. Whenever an error counter is full
(indicated by the carry out signal), the system-level control
unit will receive a “full” signal from this block and then set all
the counters into shifting mode to collect timing errors from
all blocks. In shifting mode, the FFs in all counters are seri-
ally linked as a shift register and their values are shifted out
to control unit without disturbing the normal operation of the
system. With this mechanism, we are able to collect timing
error information in a sampling way during a certain tuning
period by assuming that timing error rate in shifting mode is
the same with that during counting mode.

At the end of each tuning period 𝑇 , control unit determines
the skew setting for each block based on the collected tim-
ing error information, and sends out the corresponding control
signals to the tunable delay buffers equipped with each basic
tuning blocks, using a similar shifting mechanism. In other
words, control signals are serially shifted into the configura-
tion registers and they are applied in parallel when ready for
applying skew tuning.

4. PROPOSED ALGORITHMS
4.1 Grouping Algorithm for Tuning Block

Formation
Since each tuning block is equipped with only one tunable

delay buffer, we would like to have all the FFs within a block to
lie in the same subtree1 from the viewpoint of clock tree struc-
ture, so that we can simply insert the TDB in the root node
of this subtree. This grouping problem studied here is to de-
termine a grouping plan with maximum system controllability
satisfying 𝑛𝑏/𝑛𝑓 < 𝛽, wherein 𝑛𝑏 is the total number of blocks
after grouping and 𝑛𝑓 is total FF count. Here, system control-
lability is defined as (1−𝑃𝑖𝑛𝑠𝑖𝑑𝑒/𝑃), wherein 𝑃𝑖𝑛𝑠𝑖𝑑𝑒 represents
the number of critical paths inside blocks and 𝑃 is the total
number of critical paths in the whole circuit. Larger control-
lability means that more critical paths are outside blocks after
grouping. The proposed grouping procedure is a bottom-up
approach based on the physical layout of the synthesized clock
tree structure, detailed in Fig. 5.

First of all, we initialize all the leaf nodes as subtrees (Line
4∼5), and then try to merge them together to form larger sub-
trees (Line 6∼10). The decision on whether to merge subtrees
or not depends on the critical path count in the merged sub-
tree. To trade off system controllability and hardware cost,
we allow a certain number (specified as parameter 𝑝) of criti-
cal paths inside subtrees. Consequently, the criterion used to

1The concept “subtree” used in the context of clock tree means the
same concept with “block”, which will not be explicitly explained in
the following.

𝑇𝑖𝑗 : the subtree using 𝑁𝑖𝑗 as root
T: the set of subtrees
B: the resulting set of blocks
1. Initialize 𝑝 = 0
2. Repeat
3. 𝑝 + +
4. Initialize all leaf nodes as 𝑇ℎ𝑗

5. T← {𝑇ℎ𝑗 : 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑚ℎ}
6. For tree level iteration 𝑖 from (ℎ− 1) to 1
7. For node index iteration 𝑗 from 1 to 𝑚𝑖

8. If all the children subtrees of 𝑇𝑖𝑗 ∈ T AND
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟(𝑇𝑖𝑗) < 𝑝

9. T← Include(𝑇𝑖𝑗)
10. Else B← Include(all children subtrees of 𝑇𝑖𝑗)
11. Exclude all the B-type and C-type blocks from B
12. Until 𝑛𝑏/𝑛𝑓 < 𝛽

Figure 5: Proposed Grouping Algorithm

decide merging becomes whether the number of critical paths
within a subtree is less than a parameter 𝑝 (see Line 8): if the
critical path count in the new subtree is less than 𝑝, we merge
its children subtrees together; otherwise, we have to treat its
children subtrees as different blocks. By doing so, in the case
with 𝑝 = 1, we obtain subtrees without any critical path inside
them as shown in Fig. 4 (a), where the subtrees are outlined
by the dash line rectangles. We can see that the two wends of
any critical path are included in different subtrees.

However, it is not necessary to collect timing errors and add
tunable delay buffer for every block. For the ease of discus-
sion, let us first define four types of FFs according to their
relationships to critical paths: (i) BR-type FFs, serving as
both beginner and receiver of critical path; (ii) R-type FFs,
serving as only receiver of critical path; (iii) B-type FFs, serv-
ing as only beginner of critical path; (iv) C-type FFs, common
FFs, serving as neither beginner nor receiver of critical path.
Based on this, we define four types of subtrees/blocks as listed
in Table 1 according to the FF types these blocks contain. For
example, if a certain block contains no BR-type FF but R-type
FF inside, it is defined as R-type block no matter whether it
has B-type or C-type FF. Based on this categorization, we
have the following observation: for those FFs that are not in-
cluded in BR-type blocks, their optimal skews can be easily
determined offline at design stage and hence there is no need
to tune their skews at runtime.

With the above, we can conclude that only BR-type block
needs to be equipped with both timing error collection and
tuning capabilities, R-type blocks requires to have timing error
collection capability only, while the other two types do not
need to be observed or tuned at runtime. Therefore, we can
get the final set of tuning blocks as shown in Fig. 4 (b) (again,
for the case with 𝑝 = 1). By incrementing parameter 𝑝, we can
obtain grouping outcome with less blocks until satisfying the
pre-defined requirement 𝑛𝑏/𝑛𝑓 < 𝛽. To get proper grouping
faster, a binary search method can be used to set the parameter
𝑝, instead of incrementing its value by one each time.

4.2 Skew Tuning Algorithm
Our proposed clock skew tuning technique is comprised of

two phases: (i) offline phase (see Fig. 6) and (ii) online phase
(see Fig. 7). By taking online timing error information into
consideration, online clock skew tuning can optimize the cir-
cuit’s timing performance based on the variation character-
istics of a specific chip and the actual path sensitization of
applications.

Before introducing our algorithms in detail, let us discuss
how to setup the skew tuning step for each block first. To
guarantee that there exists no silent errors (i.e., timing errors
occurs on those FFs that are not protected with Razor-like

444

Block Type
FF Type Equipment

BR-type FF R-type FF B-type FF C-type FF Tuning Mechanism Observing Mechanism
BR-type Block

√ ⃝ ⃝ ⃝ Yes Yes
R-type Block × √ ⃝ ⃝ No Yes
B-type Block × × √ ⃝ No No
C-type Block × × × √

No No√
: contained; ×: not contained; ⃝: do not care.

Table 1: Categorization for Tuning Block Formation

RC C B RC B BR

N00

N10 N11

N20 N21 N22 N23

N30 N31 N32 N33 N34 N35 N36 N37

RC C B RC B BR

TDB

C: Common FF
B: Beginner of Critical Path
R: Receiver of Critical Path

: Critical Path
: Non-Critical Path

N00

N10 N11

N20 N21 N22 N23

N30 N31 N32 N33 N34 N35 N36 N37

(a) B-Type and C-Type Blocks Included (b) B-Type and C-Type Blocks Excluded

Figure 4: Tuning Block Formation: An Example

C: the set of BR-type blocks, C ⊂ B
𝐶𝑖: BR-type block, 𝐶𝑖 ∈ C
Offline Phase
1. For the iteration 𝑖 from 1 to 𝑛𝑓

2. If 𝐹𝐹𝑖 /∈ 𝐶𝑗 , for ∀𝐶𝑗

3. If 𝐹𝐹𝑖 is B-type FF
4. Set skew level of 𝐹𝐹𝑖 = 1
5. Else if 𝐹𝐹𝑖 is R-type FF
6. Set skew level of 𝐹𝐹𝑖 = 5

Figure 6: Proposed Algorithm in Offline Phase

detectors), we constrain the maximum tunable skew values of
TDBs to ensure enough timing margin is kept for non-Razor
FFs. If the timing threshold 𝛾 (e.g., 𝛾 = 80% of clock cycle
period) is used to set up Razor-FFs, the maximum tunable
skew is

𝑆𝑚𝑎𝑥 = [(1 − 𝛾) ⋅ 𝑇𝑐 − 𝛿]/2 , (1)

wherein 𝑇𝑐 is clock cycle period and 𝛿 is a safety margin. Five
tuning skew levels2 as shown in Table 2 are used in our imple-
mentation, and all the skew levels are set to be 3 initially.

Skew Level 1 2 3 4 5
Skew Value −𝑆𝑚𝑎𝑥 −𝑆𝑚𝑎𝑥/2 0 𝑆𝑚𝑎𝑥/2 𝑆𝑚𝑎𝑥

Table 2: Tunable Skew Set

As discussed in Section 4.1, for all those FFs that are not
included in BR-type blocks after grouping procedure, their op-
timal skew tuning can be simply determined at design stage, as
shown in Fig 6. Besides, the most important part of proposed
tuning algorithm is online phase, a heuristic approach target-
ing the FFs in BR-type blocks beyond above offline phase. It
is, however, rather difficult to determine the skew setting of
BR-type blocks, because any action taken to a block is possi-
ble to be a double-edged sword: either worsen the block itself
to benefit the blocks as the receivers of critical paths starting
from this block or improve itself to worsen the receivers. Con-
sequently, we need to determine it at online phase (see Fig. 7).
To tackle the above problem, we first define the benefit for

2Tuning forwardly/backwardly means decreasing/increasing the
skew level.

block 𝑘 as below,

𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑘) =
∑

𝑖∈𝑈𝑘

(𝑒𝑟𝑟𝑜𝑟(𝑖) − 𝑒𝑟𝑟𝑜𝑟(𝑖)𝑛𝑒𝑤) , (2)

wherein 𝑒𝑟𝑟𝑜𝑟(𝑖) is error rate of block 𝑖, and 𝑈𝑘 is the block
set including block 𝑘 itself and all the blocks as the receivers
of critical paths starting from block 𝑘. If 𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑘) ≥ 0, the
tuning action to block 𝑘 in last tuning period is considered to
be beneficial, otherwise it is not beneficial.

First of all, we consider those blocks that do not have timing
errors during the last tuning period (Lines 1∼15). Since these
blocks do not encounter errors, it is very likely that they have
extra timing budgets. Our tuning process for these blocks
decreases the timing budgets of blocks without errors, while
relaxing the timing stress of blocks with errors. After that,
our focus is changed to those blocks with errors (Line 16∼27).
This procedure is repeated periodically. The proposed online
tuning algorithm can be seen as a greedy heuristic, which tries
to handle the block with the highest error rate each time. The
mechanism to cancel those tuning actions that do not bring
any benefits can guarantee to reduce the timing error rates of
the overall system step by step.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
To evaluate the effectiveness of the proposed online skew

tuning methodology, we conduct experiments on several large
ISCAS’89 and IWLS’05 benchmarks. We synthesize these cir-
cuits, generate clock tree structures, and obtain timing infor-
mation using Synopsys EDA tools. To take process variation
effect into consideration, we perform Monte Carlo simulation
to inject gate-level delay variation following Gaussian distri-
bution with standard deviation equal to 5%.

We set the top 5% longest paths as critical paths and treat
their receivers as Razor-FFs, and we assume with the help of
error recovery mechanism, we can roll back the system once
timing error is detected and we can lower system frequency
for a short while to re-compute the result in the failure cycle.
Similar with [15], we can trade off timing error rate with clock
cycle period to achieve a higher throughput according to the

445

C: the set of BR-type blocks, C ⊂ B
𝐶𝑖: BR-type block, 𝐶𝑖 ∈ C
Online Phase
1. Initialize 𝐶𝑖 → 𝑠𝑘𝑒𝑤 = 3, for ∀𝐶𝑖

2. Initialize 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) after 1st tuning period 𝑇1, for ∀𝐶𝑖

3. For ∀𝐶𝑖 : 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) = 0
4. Set 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒
5. 𝐶𝑖 → 𝑠𝑘𝑒𝑤 −−
6. Repeat for each tuning period 𝑇𝑘1

(𝑘1 = 2, 3, ⋅ ⋅ ⋅)
7. For ∀𝐶𝑖 : 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) = 0
8. If 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒
9. If 𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝐶𝑖) ≥ 0
10. If 𝐶𝑖 → 𝑠𝑘𝑒𝑤 ∕= 1
11. 𝐶𝑖 → 𝑠𝑘𝑒𝑤 −−
12. Else set 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒
13. Else 𝐶𝑖 → 𝑠𝑘𝑒𝑤 + + // cancel last action
14. Set 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒
15. Until 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒, for ∀𝐶𝑖 : 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) = 0

16. Set 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒, for ∀𝐶𝑖 : 𝐶𝑖 → 𝑠𝑘𝑒𝑤 ∕= 5
17. Select 𝐶𝑖 with largest 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) AND 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒
18. 𝐶𝑖 → 𝑠𝑘𝑒𝑤 + +
19. 𝐶𝑜𝑙𝑑 ← 𝐶𝑖

20. Repeat for each tuning period 𝑇𝑘2
(𝑘2 = 𝑘1 + 1, . . .)

21. If 𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝐶𝑜𝑙𝑑) < 0
22. 𝐶𝑜𝑙𝑑 → 𝑠𝑘𝑒𝑤 −− // cancel last action
23. 𝐶𝑜𝑙𝑑 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒
24. Select 𝐶𝑖 with largest 𝑒𝑟𝑟𝑜𝑟(𝐶𝑖) AND

𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒
25. 𝐶𝑖 → 𝑠𝑘𝑒𝑤 + +
26. 𝐶𝑜𝑙𝑑 ← 𝐶𝑖

27. Until 𝐶𝑖 → 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒, for ∀𝐶𝑖

Figure 7: Proposed Algorithm in Online Phase

following equation,

min
𝑇𝑐

[(1 + 𝑒𝑟𝑟𝑜𝑟(𝑇𝑐) ⋅ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) ⋅ 𝑇𝑐] , (3)

wherein 𝑇𝑐 is clock cycle period, 𝑒𝑟𝑟𝑜𝑟(𝑇𝑐) is the percentage
of cycles to have timing errors, and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the penalty due
to error cycle occurring. This penalty includes both the cycles
of wasted execution that must be discarded when an error
occurs and the time spent on checkpointing and re-execution.
According to [15], we assume the penalty to be 10 cycles.

We assume there are five discrete tuning levels and we con-
duct simulation with random inputs in our experiments. The
tuning period for the proposed algorithm is set as 100,000 cy-
cles. Note that, longer period can be used in practical applica-
tions. The experiments are conducted on a 2.8GHz PC with
4GB RAM.

To provide a reasonable baseline reference, we utilize the
Useful Skew Technique of IC Compiler to optimize the skews
during the CAD process. The minimum clock cycle period
reported by IC Compiler considering non-Razor case is de-
noted as 𝐶𝑆𝑂𝑛𝑜𝑛𝑟𝑎𝑧𝑜𝑟. The optimal clock cycle period with
reasonable error cycle rate, selected according to Equation 3,
is denoted as 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and used as the baseline solution.
Note that, any design-phase clock skew scheduling algorithm
can be combined with our post-silicon skew tuning framework
as an initial solution. The offline phase of proposed skew tun-
ing algorithm is denoted as 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒 and the online phase
is denoted as 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒.

5.2 Results and Discussion
In Table 3, we present the result for our grouping algorithm.

The parameter 𝛽 used to constrain the total number of blocks
(see Section 4.1) is set to be 2% for small scale benchmarks
(s38584 and s38417), and 0.5% for large benchmarks (ether-
net and des perf). Assuming skew tuning algorithm is imple-
mented with software, the proposed architecture (see Fig. 3) is
implemented and the additional hardware cost to enable on-

Bench. TG# TFF# RB# BRB# Cost(%) Runtime(s)
s38584 21021 1426 4 15 2.62 0.010
s38417 23949 1636 5 22 3.30 0.026
des perf 155746 9105 0 39 0.83 2.458
ethernet 164912 10752 17 36 0.76 9.070
TG#: total gate count; TFF#: total FF count;
RB#: R-type block count; BRB#: BR-type block count;
Cost: hardware cost for equipping R-type and BR-type blocks.

Table 3: Experimental Results on Hardware Cost

7 7.5 8 8.5
0

0.5

1

1.5

2

2.5

3

Clock Cycle Period (ns)

E
rr

or
 C

yc
le

 R
at

e
(%

)

(a) s38584

SO
baseline

SO
offline

SO
online

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Tuning Period Number

E
rr

or
 C

yc
le

 R
at

e
(%

)

(b) s38584

11 11.5 12 12.5 13
0

2

4

6

8

10

Clock Cycle Period (ns)

E
rr

or
 C

yc
le

 R
at

e
(%

)

(c) ethernet

SO
baseline

SO
offline

SO
online

0 2 4 6 8 10
0

0.5

1

1.5

2

Tuning Period Number

E
rr

or
 C

yc
le

 R
at

e
(%

)

(d) ethernet

Figure 8: Error Cycle Rates

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1
0

5

10

15

20

Clock Cycle Period (ns)

O
cc

ur
re

nc
e

F
re

qu
en

cy
 (

%
) (a) s38584

SO
baseline

SO
online

11 11.5 12 12.5 13 13.5
0

5

10

15

Clock Cycle Period (ns)

O
cc

ur
re

nc
e

F
re

qu
en

cy
 (

%
) (b) ethernet

SO
baseline

SO
online

(7.81, 0.081)(7.33, 0.041)

(12.68, 0.173)(11.47, 0.108)

Figure 9: Variation Effects

line tuning is presented in Column 6 of Table 3. As can be
seen, the costs are within 4% for small benchmark circuits and
within 1% for larger ones, and they are strongly related to the
number of basic tuning blocks in the circuit. The runtime to
finish grouping procedure is illustrated in Column 7.

Firstly, we consider one particular instance of the bench-
mark circuits (i.e., under a specific variation pattern). In
Table 4, 𝐶𝑃 is the optimal clock period selected according
to Equation 3. 𝐸𝑟𝑟. is the corresponding error cycle rate
under selected clock period 𝐶𝑃 , and 𝑇ℎ. is the correspond-
ing throughput. We can see that, for 𝑠38584, the baseline
𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 can obtain 4.40% throughput improvement com-
pared with 𝐶𝑆𝑂𝑛𝑜𝑛𝑟𝑎𝑧𝑜𝑟, a non-Razor solution optimized by
IC Compiler. This improvement reflects the efficacy of Razor
technique, which is not the main contribution of this work.
With error information collection and clock skew tuning capa-

446

Bench.
𝐶𝑆𝑂𝑛𝑜𝑛𝑟𝑎𝑧𝑜𝑟 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒

𝐶𝑃 (𝑛𝑠) 𝑇ℎ.(𝑀𝐻𝑧) 𝐶𝑃 (𝑛𝑠) 𝐸𝑟𝑟.(%) 𝑇ℎ.(𝑀𝐻𝑧) Δ1(%) 𝐶𝑃 (𝑛𝑠) 𝐸𝑟𝑟.(%) 𝑇ℎ.(𝑀𝐻𝑧) Δ2(%) 𝐶𝑃 (𝑛𝑠) 𝐸𝑟𝑟.(%) 𝑇ℎ.(𝑀𝐻𝑧) Δ3(%) Δ4(%)
s38584 8.24 121.36 7.86 0.042 126.69 4.40 7.72 0.047 128.93 1.76 7.31 0.081 135.70 5.25 7.11
s38417 7.93 126.10 7.59 0.097 130.49 3.48 7.47 0.122 132.26 1.36 7.17 0.131 137.67 4.09 5.50
des perf 15.52 64.43 14.38 0.064 69.10 7.24 14.2 0.047 70.09 1.44 13.25 0.062 75.01 7.01 8.55
ethernet 13.52 73.96 12.64 0.093 78.38 5.98 12.34 0.088 80.33 2.48 11.45 0.106 86.42 7.58 10.25
𝐶𝑃 : clock period; 𝐸𝑟𝑟.: error cycle rate under selected clock period; 𝑇ℎ.: throughput;
Δ1: throughput difference ratio between 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝐶𝑆𝑂𝑛𝑜𝑛𝑟𝑎𝑧𝑜𝑟 ; Δ2: throughput difference ratio between 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒 and 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒;
Δ3: throughput difference ratio between 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒 and 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒; Δ4: throughput difference ratio between 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒 and 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒.

Table 4: Experimental Results

bilities, offline phase 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒 has 1.76% improvement com-
pared with 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, and online phase 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒, again,
can achieve extra 5.25% improvement compared with 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒.
Similarly, the results of other benchmark circuits are also listed
in Table 4, and we can see that relatively larger improvement
can be achieved with larger benchmark circuits.

To have a closer look into the clock tuning process, we
present experimental results in Fig. 8, using benchmark cir-
cuits 𝑠38584 and 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 as the representative of small and
relatively larger benchmarks, respectively. Fig. 8 (a) and Fig. 8 (c)
show that the three curves in each figure have similar trend
with respect to increasing cycle period, while the lowest error
cycle rate is always achieved by 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒. Using the skew set-
ting of 𝐶𝑆𝑂𝑜𝑓𝑓𝑙𝑖𝑛𝑒 as initial state, 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒 tunes the skews
periodically (see Section 4.2 for details). The error cycle rates
of first 10 tuning periods under the optimal clock period se-
lected by 𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒 are illustrated in Fig. 8 (b) and Fig. 8 (d)
to present the change of error cycle rate during online tuning.
One notable finding from these figures is that proposed skew
tuning can achieve similar decreasing effect of error cycle rate
with that of clock period increasing. In other words, by tuning
skews we can achieve the error cycle rate as low as the case
with laxer clock period.

Finally, we conduct Monte Carlo simulation to produce 100
sample circuits with different variation patterns. Fig. 9 in-
dicates that the mean of selected clock period after applying
𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒 is much smaller than that of 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, thanks
to clock skew tuning. More importantly, with the same pro-
cess variation distribution, the clock period distribution of
𝐶𝑆𝑂𝑜𝑛𝑙𝑖𝑛𝑒 is with much smaller standard deviation when com-
pared to 𝐶𝑆𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. This is expected, because, unlike offline
solutions that can at best optimize the circuit according to a
given process variation model, online clock skew tuning takes
advantage of the knowledge on each individual chip by timing
error collection and facilitates to obtain an optimized chip-
specific skew assignment. The corresponding mean clock pe-
riod and standard deviation of each case are indicated in Fig. 9
in the form of (𝜇, 𝜎).

6. CONCLUSION
Clock skew optimization is a widely-used technique to im-

prove circuit timing performance, in which we assign inten-
tional clock arrival times to FFs in synchronized sequential
circuits. Traditionally, a large timing guard band needs to be
reserved due to various variation effects. In this work, with
the support of elaborately designed hardware architecture, we
propose an online clock skew tuning framework for circuits
equipped with timing speculation capability. By observing
the occurrence of timing errors at runtime and tuning clock
skews accordingly, the proposed technique is able to achieve
much better timing performance when compared to existing
clock skew optimization solutions, as demonstrated in our ex-
perimental results.

7. ACKNOWLEDGEMENT
This work was supported in part by National Science Foun-

dation of China (NSFC) under grant No. 60876029, in part by
the General Research Fund CUHK417807 and CUHK418708

from Hong Kong SAR Research Grants Council (RGC), and in
part by a grant N CUHK417/08 from the NSFC/RGC Joint
Research Scheme.

8. REFERENCES
[1] J. P. Fishburn. Clock skew optimization. In IEEE Transactions

on Computers, vol.39, pp.945-951, July 1990.

[2] R. B. Deokar and S. S. Sapatnekar. A graph-theoretic approach
to clock skew optimization. In Proceeding of International
Symposium on Circuits and Systems, pages 407-410, 1994.

[3] I. S. Kourtev and E. G. Friedman. Clock skew scheduling for
improved reliability via quadratic programming. In Proceeding of
International Conference on Computer-Aided Design, pages
239-243, 1999.

[4] X. Wei, Y. Cai, and X. Hong. Clock skew scheduling under
process variation. In Proc. International Symposium on Quality
Electronic Design (ISQED), pp. 237-242, 2006.

[5] C. Albrecht, B. Korte, J. Schietke, and J. Vygen. Cycle time and
slack optimization for VLSI-chips. In Proc. the IEEE/ACM
International Conference on Computer-aided Design, pp.
232-238, 1999.

[6] J. L. Tsai, D. H. Baik, C. C. P. Chen, and K. K. Saluja
Yield-driven, false-path-aware clock skew scheduling. In Proc.
IEEE Design and Test of Computers, vol. 22, no. 3, pp. 214-222,
2005.

[7] Y. Wang, W. S. Luk, X. Zeng, J. Tao, C. Yan, J. Tong, W. Cai
and J. Ni. Timing yield driven clock skew scheduling considering
non-Gaussian distributions of critical path delays. In Proc. the
45th annual Design Automation Conference, pp. 223-226, 2008.

[8] A. Chakraborty, K. Duraisami, A. Sathanur, P. Sithambaram,
L. Benini, A. Macii, E. Macii, and M. Poncino. Dynamic thermal
clock skew compensation using tunable delay buffers. In Proc.
IEEE Transactions on Very Large Scale Integration Sysmtes,
pp. 639-649, June 2008.

[9] P. Mahoney, E. Fetzer, B. Doyle, S. Naffziger. Clock distribution
on a dual-core, multi-threaded Itanium?-family processor. In
Proc. IEEE International Solid-State Circuits Conference
(ISSCC), pp. 292-293 Vol. 1, 2005.

[10] J. L. Tsai, D. H. Baik, C. C. P. Chen, and K. K. Saluja. A yield
improvement methodology using pre- and post-silicon statistical
clock scheduling. In Proc. the IEEE/ACM International
Conference on Computer-aided Design, pp. 611-618, 2004.

[11] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi. A
post-silicon clock timing adjustment using genetic algorithms. In
Digest of Technical Papers of International Symposium on
VLSI Circuits, pp. 13-16, 2003.

[12] K. Nagaraj and S. Kundu. An Automatic Post Silicon Clock
Tuning System for Improving System Performance based on
Tester Measurements. In Proc. IEEE International Test
Conference (ITC), pp. 1-8, 2008.

[13] S. Sde-Paz and E. Salomon. Frequency and Power Correlation
between At-Speed Scan and Functional Tests. In Proc. IEEE
International Test Conference (ITC), paper 13.3, 2008.

[14] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: a low-power pipeline based on circuit-level timing
speculation. In Proceeding of International Symposium on
Microarchitecture (Micro), pages 7-18, 2003.

[15] M. de Kruijf, S. Nomura, and K. Sankaralingam. A unified model
for timing speculation: Evaluating the impact of technology
scaling, CMOS design style, and fault recovery mechanism. In
Proc. International Conference on Dependable Systems and
Networks (DSN), pp. 487-496, 2010.

[16] Y. Liu, F. Yuan, and Q. Xu. Re-synthesis for cost-efficient
circuit-level timing speculation. In Proc. Design Automation
Conference (DAC), 2011.

[17] J. L. Tsai, L. Zhang, and C. Chen. Statistical timing analysis
driven post-silicon-tunable clock-tree synthesis. In Proc. the
IEEE/ACM International Conference on Computer-aided
Design (ICCAD), pp. 575-581, Nov. 2005.

447

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

