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Modular and Rapid Testing of SOCs
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Abstract—Extensive research has been carried out for test
planning of core-based system-on-a-chip devices. Most of the prior
work assumes that all of the embedded cores are wrapped for test
purpose. However, some designs may contain user-defined logic
or cores that cannot be wrapped due to area constraints or timing
violations. This paper discusses how these unwrapped logic blocks
can be tested rapidly by adapting the TestRail architecture, which
uses only the test control mechanism and the test instructions
available through the IEEE 1500 standard for embedded core test.
A new test scheduling algorithm, which facilitates a concurrent
test of both unwrapped logic blocks and IEEE 1500-wrapped
cores, is proposed, and experiments show that it outperforms a
previous approach when the available number of tester channels
and/or the number of unwrapped logic blocks are small.

Index Terms—Light-wrapped cores, system-on-a-chip (SOC)
testing, test scheduling.

I. INTRODUCTION

G IVEN THE increase in the development time of complex
integrated circuits, a new category of devices, called

system-on-a-chip (SOC) devices, have emerged. They consist
of predesigned and preverified blocks called intellectual prop-
erty (IP) cores. Although core reuse increases the productivity,
due to the growing transistor-to-pin ratio and the increasing
number of embedded cores that are not directly accessible from
the input/output (I/O) ports of the SOC, the manufacturing test
is posing a design implementation problem. Various solutions
for exploiting the SOC’s architecture-specific information
and using functional interconnect as test access mechanisms
(TAMs), either at the core or system level, have been proposed
[4], [5], [8], [22], [29], [31], [42]. Regardless of their potential
benefits in the long term, unless implemented automatically
using a reliable test tool flow, these architecture-specific de-
sign for test (DFT) methodologies do not provide reusability,
scalability, or interoperability and may become the computa-
tional bottleneck in the test automation flow. This problem is
overcome by the modular test strategies [44], which use ded-
icated bus-based TAMs for test data transportation. However,
to enable both core reuse and easy test access, the embedded
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cores are connected to TAMs using special interfaces called
core wrappers. The IEEE 1500 Standard for Embedded Core
Test (SECT) intends to facilitate reuse for SOC testing [12],
[28]. Its architecture consists of test control lines, TAM, and
core wrappers. The test control lines set the operational mode
of each core and the TAM is used to transfer data to/from the
core-under-test (CUT) from/to primary inputs (PIs)/primary
outputs (POs). The core wrapper comprises an instruction
register, control logic, and wrapper boundary register (WBR)
cells, which facilitate an isolation mechanism in the test mode
and provide full controllability and observability to the core
terminals.

SOCs contain user-defined logic (UDL), which is neces-
sary for custom core integration and product differentiation.
Although the system integrator has the full knowledge of the
UDL’s structure and functionality, the manufacturing test of
UDL suffers from the same test access problem as the em-
bedded core test. On the one hand, a small part of the UDL
implements dedicated logic functions, which can be reused
for future designs. Hence, this type of UDL can be integrated
and tested as an in-house developed embedded core. On the
other hand, UDL comprises also glue logic used for interfacing
different cores or implementing SOC-specific functions. This
type of UDL does not need to be reused, and it is difficult to
be wrapped due to its high number of I/O terminals, which will
ultimately incur a large area overhead associated with all of the
WBR cells. In addition, there are also reusable cores that, if
placed on the critical paths of the design, the multiplexers in
WBR cells will lower the maximum operating frequency, thus
having a direct impact on the system’s performance.

The UDL or IP cores that cannot be wrapped due to area
constraints or timing violations are referred to as unwrapped
logic blocks [36]. Since the gate count of these blocks can be
large, the question is how can they be tested effectively? One
approach is to treat them as interconnect circuitry in between
wrapped cores and test them as nonscanned sequential logic,
as discussed in [23] and [25]. If there is a large number of
flip-flops and/or latches in the unwrapped logic blocks, this ap-
proach may present several problems. First, when compared to
the scanned version of the unwrapped logic blocks, the fault
coverage may significantly decrease despite the increased com-
putational time required for sequential automatic test pattern
generation (ATPG). This is unacceptable, according to the anal-
ysis given in [19], where it was shown that a higher test quality
for each core is required to achieve acceptable overall quality
of the SOC, when compared to the case that the core itself is
a chip. Second, due to sequential ATPG, the test pattern count
will grow, which may also lead to an increase in the overall
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Fig. 1. Light-wrapped core without WBR cells [39].

testing time because the test stimuli/responses are not directly
controlled/observed (they have to be shifted in/out through other
cores’ WBR cells). The research presented in [30] and [34] pro-
posed to justify the unwrapped logic block’s test vectors through
its surrounding UDL, without affecting the fault coverage. Al-
though this solution is effective in reducing the DFT overhead,
its main limitation lies in the fact that it reduces the reusability
of the core test sets, since new test sets are required whenever
the unwrapped logic block is used in a different SOC environ-
ment.

The aim of this paper is to present a new effective and effi-
cient test strategy that facilitates concurrent test of unwrapped
logic blocks and wrapped cores. The remainder of this paper is
organized as follows. Section II reviews prior work in this do-
main and summarizes the main contributions of this paper. In
Section III, we present our proposed TAM design and its corre-
sponding test scheduling algorithm. Section IV contains the ex-
perimental results for benchmark SOCs from the ITC’02 bench-
mark set [27]. Finally, Section V concludes this paper.

II. PRELIMINARIES AND MOTIVATION

To the best of our knowledge, [39] provides the only mod-
ular approach, reported in the public domain, for concurrent
test of wrapped cores and unwrapped logic blocks. Despite its
effectiveness for increasing fault coverage for unwrapped logic
blocks, [39] has been designed only for the Test Bus architecture
[35] and, consequently, it requires extra test instructions and it
increases test control complexity. Following a short review of
light-wrapped cores, the main modular test access architectures
are summarized and the motivation of this work is given.

A. Light-Wrapped Cores

Light-wrapped cores, as depicted in Fig. 1, are IP cores
without input and output WBR cells. If the core does not have
other test modes except INTEST and EXTEST mode, then
it does not need a wrapper at all. However, if the core has
other test modes (e.g., built-in self-test mode to test internal
memories inside the core), then a light wrapper that includes a
WIR and the WSC port to control the operational mode of the

Fig. 2. SOC with light-wrapped cores.

core is needed. There are two important properties to be satis-
fied: 1) the light-wrapped cores must be surrounded by IEEE
1500-wrapped cores (which could be many) and, by reusing
the functional interconnect for transferring test data from and
to its producers and consumers,1 full controllability and observ-
ability can still be provided and 2) for light-wrapped cores with
internal scan chains, these scan chains need to be driven from
dedicated test access lines and a bypass mechanism is provided
to shorten the test access between different light-wrapped cores
or between light-wrapped cores and wrapped cores. To facil-
itate modular SOC testing, all of the unwrapped logic blocks
(including unwrapped UDL) can be treated as light-wrapped
cores.

A hypothetical SOC with light-wrapped cores is shown in
Fig. 2. For testing the internal logic of and the UDL, the
controllability of its input terminals can be provided through its
producers’ output WBR cells and/or the primary inputs of the
SOC, while the observability of the output terminals is provided
through its consumers’ input WBR cells and/or the primary out-
puts of the SOC. Besides, because the test stimuli and test re-
sponses are applied and captured through functional paths, all
of the interconnects are tested implicitly, and hence there is no
need to perform ExTest for the interconnects driving or driven
by and UDL. The integration of light-wrapped cores into
a modular test infrastructure available for IEEE 1500-wrapped
cores is key to lowering the overall test application time for the
entire SOC.

One of the design aims in [39] is to maximize the number
of light-wrapped cores. This can lead to very long test applica-
tion time, which, in some situations, may not be the preferred
option for the system integrator. One may argue that, from the
test reuse standpoint, as long as the existence of the wrappers
does not violate the design constraints, it is better to employ
them, regardless of the overhead that they may incur. Hence,
a more practical situation is that the system integrator analyzes
the design requirements and SOC constraints and determines the
wrapper type, for each embedded IP core or user-defined block,
on a case-by-case basis. It is the above-mentioned situation that
motivates the presented research.

1For a given Core , the producers are the cores which feed its primary inputs
and the consumers are the cores which capture its primary outputs in the normal
(functional) mode [39].
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Fig. 3. Test architectures for SOCs containing light-wrapped cores—a simple example. (a) Producer/CUT/consumer model for Test Bus. (b) TestRail with NO
added control.

B. Related Work

Test architectures for modular SOC testing have been subject
to extensive research in recent years [1], [26], [35]. Three basic
types of test architectures are [1]: 1) the Multiplexing architec-
ture; 2) the Daisychain architecture; and 3) the Distribution ar-
chitecture. In the Multiplexing and the Daisychain architectures,
all cores get full access to all TAMs, while in the Distribution ar-
chitecture each core gets assigned its private TAM lines. Two of
the most well-known combinations of the above architectures,
which are necessary to support more flexible test schedules, are
Test Bus and TestRail architectures. The Test Bus architecture
[35] can be seen as a combination of the Multiplexing and Dis-
tribution architectures. Multiple multiplexed test buses on an
SOC operate independently (as in the Distribution architecture)
and, hence, allow for concurrent testing of wrapped cores. How-
ever, its main limitations are that cores connected to the same
Test Bus can only be tested sequentially. and there is no implicit
support for parallel test data transfer for ExTest. The TestRail
architecture [26] is a combination of the Daisychain and Distri-
bution architectures. Multiple TestRails on an SOC also operate
independently; however, unlike for the Test Bus architecture,
cores on each individual TestRail can be tested both sequentially
and concurrently. This also facilitates external testing using par-
allel TAM lines.

The bus-based TAM architecture (i.e., Test Bus or TestRail
architecture) can be further categorized into two types [15]:

• Fixed-width test architecture, in which the total TAM
width is partitioned among several test buses with fixed
width. It operates at the granularity of TAM buses and
each core in the SOC is assigned to exactly one of them.

• Flexible-width test architecture, in which TAM lines are
allowed to fork and merge instead of just partitioning. It
operates at the granularity of TAM lines and each core in
the SOC can get assigned any TAM width as needed.

Numerous TAM design and test scheduling algorithms [41]
have been researched to reduce SOC testing time, assuming that
all cores and UDL are IEEE 1500-wrapped. For the fixed-width
architecture, Iyengar et al. [13] first formulated the integrated
wrapper/TAM co-optimization problem and solved it using the
integer linear programming (ILP) technique. To decrease the

CPU running time, the same authors [14] proposed to com-
bine efficient heuristics and ILP methods. In [32], Sehgal et
al. presented an optimization method based on Lagrange multi-
pliers and achieved better results. Koranne [20] formulated the
test scheduling problem as a network transportation problem
and proposed a two-approximation algorithm to solve it. Goel
and Marinissen [6] tackled the same problem with a new effi-
cient heuristic algorithm TR—Architect, which works for both
cores having fixed-length and cores having flexible-length scan
chains. They also presented the lower bounds for SOC testing
time in this work. For the flexible-width architecture, the op-
timization problem was mapped to the well-known two-dimen-
sional (2-D) bin packing problem in [9], [10], [17], and [45] and
solved with different heuristics. A p-admissible representation
of SOC test schedules based on the use of k-tuples is presented
in [21], and a greedy random search algorithm was used to find
an optimal test schedule. In addition to the above, there are also
many other methods (e.g., [3], [11], [16], [24]–[26], [33], [40],
and [43]) proposed in the literature.

Although the above techniques mainly consider optimizing
the test architecture of SOCs with all logic blocks IEEE 1500-
wrapped, they can be adapted to test SOCs containing light-
wrapped cores as well, in which case test access resources must
be shared and test scheduling algorithms for wrapped cores need
to be adapted. If the unwrapped logic blocks are in a separate test
session, then either serial ExTest, for the Test Bus, or parallel
ExTest, for the TestRail, can be used. In this case, the control
mechanism of the IEEE SECT can be reused; however, if the
size of the unwrapped logic blocks increases, the testing time
may become prohibitively large.

In [39], a producer/CUT/consumer model based on the Test
Bus architecture was introduced, which is able to test IEEE
1500-wrapped and light-wrapped cores concurrently. As shown
in Fig. 3(a), the authors proposed to divide the total TAM into
CUT, producer, and consumer TAM groups. These TAM groups
are then used to scan in/out the internal scan chains of the CUT,
the POs of the producers, and the PIs of the consumers, respec-
tively. One of the main limitations of this solution is its control
complexity, because three separate test access architectures are
required and new test modes need to be introduced to the cores
to act as producers and/or consumers. In addition, the test archi-
tecture described in [39] is less efficient when the total number
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of TAM lines is small, because, in such a case, producer and con-
sumer TAMs normally sit idle for a long time and hence these
test resources are wasted. When multisite testing is utilized to
reduce the SOC test cost [7], [18], [37], the number of TAM
lines is usually small, which necessitates a better test strategy for
this reduced-pin-count testing scenario [2], [38]. Furthermore,
the test scheduling algorithm in [39] is more effective when the
number of unwrapped logic blocks is large. In practice, how-
ever, the number of unwrapped logic blocks is usually not large
since the system integrator tends to wrap as many cores as pos-
sible to reduce the SOC testing time, as long as the DFT logic
does not affect the timing or the area constraints.

By adapting the TestRail architecture and using a new
test scheduling algorithm, as shown in the next section, the
approach proposed in this paper is capable of combining the
benefits of achieving an effective schedule when the number
of unwrapped logic blocks and/or the number of TAM lines is
small and the simple control mechanism available through the
mandatory test instructions (e.g., InTest, ExTest, and Bypass)
of the IEEE SECT.

III. TAM DESIGN AND TEST SCHEDULING

Since the TestRail architecture supports loading cores on in-
dividual TestRails both sequentially and concurrently, it auto-
matically supports the access of a light-wrapped core’s pro-
ducers and consumers. Therefore, no dedicated TAM resources
are necessary for shifting in/out producers’ outputs and con-
sumers’ inputs, as it is the case in [39]. For the TestRail archi-
tecture, when a light-wrapped core is under test, we simply set
its producers and consumers in the ExTest mode and set itself in
the InTest mode if it is a scanned core. That is, TestRails are con-
structed to walk through not only the CUT’s I/Os and internal
scan chains, but also the I/Os of its producers and consumers, as
shown in Fig. 3(b). No new test modes, and hence no additional
test commands, need to be introduced in the wrapper instruc-
tion set. When using the TestRail architecture, both the inputs
and outputs of the producers and consumers are loaded through
the TestRails used by the wrapped cores. Therefore, we do not
need to differentiate them and, from now on, they are both re-
garded as the test partners of the light-wrapped cores. Because
the light-wrapped cores and their test partners might be placed
in different TestRails, separate TestRails can no longer operate
independently. This necessitates a new TAM design and test
scheduling algorithm, which will be described in this section.

A. Problem Definition and Top-Level Algorithm

The problem of minimizing test application time of the Tes-
tRail architecture for SOCs with light-wrapped cores, called

, can be formulated as follows.
Problem : Given the test set parameters for each

core and UDL (including the number of primary inputs, primary
outputs, bidirectional I/Os, number of test patterns, number
of scan chains, scan chain lengths for cores with fixed-length
scan chains, and number of scan cells for cores/UDL with
flexible scan chains), the wrapper property of each core and
UDL (light-wrapped or IEEE 1500-wrapped), the total TAM
width for the SOC, determine the set of TestRails ,

Fig. 4. Pseudocode for optimizing TestRail architecture with light-wrapped
cores.

the width of each TestRail , the wrapper design for each
core , and a test schedule for the entire SOC such that: 1)
every core or UDL is assigned to not more than one TestRail; 2)

; and 3) the overall SOC test application
time is minimized.

The total test application time for the TestRail architec-
ture is the maximum of the test application times of all the in-
dividual TestRails. The IEEE 1500-wrapped cores connected to
a TestRail are assumed to be tested sequentially, i.e., while
a core is tested, all of the other cores connected to the same
TestRail are bypassed. The light-wrapped cores can be either
tested sequentially or concurrently, depending on which alterna-
tive saves testing time. It is important to note that light-wrapped
cores that do not have internal scan chains do not need to be as-
signed to any TestRail because their test stimuli/responses can
be fully controlled/observed from their test partners. The test
application time of a light-wrapped core cannot be determined
until all its test partners (which are IEEE 1500-wrapped cores)
have already been assigned to dedicated TestRails. To decrease
the complexity of the problem, we first separate
the schedules for IEEE 1500-wrapped cores and light-wrapped
cores and then merge them at a later stage of the algorithm.

The proposed top-level algorithm LightTRDesign is a loop
procedure with an upper limit on the exploration time decided
by the predefined value (loopCnt). It takes the SOC core set

and the total TAM width as inputs, and it outputs the
set of TestRails and the overall test application time .
LightTRDesign (shown in Fig. 4) has four main steps (lines
3–6). For each of the iterations, the cost function is different
which implies that we explore loopCnt number of different
TestRail Architectures and select the one which leads to the
lowest test application time. This is important because the
initial test architecture determines the effectiveness of the sub-
sequent optimization procedures. In the results reported in this
paper , which gives a good balance in between
the quality of the results and CPU execution times that are in
the seconds range. Step DesignTestRail determines a set of
TestRails and their widths, based on the cost function generated
from BuildCostFunction. Step ScheduleLightCores schedules
the light-wrapped cores in front of IEEE 1500-wrapped cores
for the previously determined TestRail architecture. The last
two steps (RescheduleInRail and RescheduleBetweenRails) try
to optimize the overall test application time for the SOC by
exploiting the idle times within TestRails. In the following,
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TABLE I
DATA STRUCTURE

we illustratively show the specific features of our overall algo-
rithm. The four main steps (lines 3–6) are described in detail
using a hypothetical SOC afterwards.

Test Conflicts: Because testing the internal logic of the light-
wrapped cores uses the IEEE 1500-wrapped test partners, two
new types of test resource conflicts are introduced.

• Partner-CUT Conflict: The light-wrapped CUT and its test
partners cannot be tested at the same time. This is because
both of them need to utilize the WBRs of the test partner
to shift in/out test stimuli/responses.

• Shared-Partner Conflict: Two light-wrapped cores which
connect directly (i.e., on a dedicated nonshared set of
lines) to the same test partner cannot be tested at the same
time. This is because, as in the above case, sharing of the
partner’s WBRs for test data transfer is prohibited.

Data Structure: The data structure used to store the schedule
information for each core is given in Table I.

The inCompatibleCores list for every core is initialized in a
preprocessing step based on the functional interconnects and
wrapper properties. For an IEEE 1500-wrapped core, once it
was assigned to a TestRail, its test application time is deter-
mined, however, its schedule sequence on the TestRail is not
yet decided. We still consider it unscheduled

and therefore its begin and end times will be updated
after the schedule of light-wrapped cores has been resolved.
Since the test of light-wrapped cores involves its test partners,
a light-wrapped core schedule might affect many other cores
scheduled at the same time. Hence, when a light-wrapped core

has completed its schedule, finishedPatterns and finishedTime
at end (i) are updated for all the other concurrently scheduled
cores.

Test application time for light-wrapped cores: When a new
light-wrapped core is scheduled, all of the cores that are tested
at the same time as this light-wrapped core will change their test
application time. This is illustrated using the following example.

Example 1: The hypothetical SOC shown in Fig. 2 con-
tains two light-wrapped cores: and the UDL. When
using TestRail architecture shown in Fig. 3(b), based on the
functional interconnect, is test partner of , while

and are test partners of UDL. Suppose the test
pattern count for and UDL are and , respectively
( ). The TestRail architecture can be determined by
the procedure DesignTestRail and, as shown in Fig. 5(a),

will be assigned to TestRail 1. The rectangle shown in
the figure includes the time to load/unload both and its
test partner , i.e., the load size for each pattern of is

,2 where is the
maximum scan chain length of after scan chain stitching
to match TAM width and is the number of wrapper
boundary cells of its test partner (the value 1 stands for
the bypass cycle on ). Since and are on
the same TestRail 1, the schedule of is independent of
TestRail 2. If the UDL is assigned on TestRail 1, as shown in
Fig. 5(b), since it shares the same TestRail with and
they are tested concurrently, the load size for each of the over-
lapped test patterns is

, where
stands for the maximum scan chain length of

UDL after scan chain stitching to match TAM width . If
the UDL is assigned on TestRail 2, as depicted in Fig. 5(c),
however, although and UDL are not on the same Tes-
tRail, their test partners share the same TestRail. Therefore,
the load size for each of the overlapped test patterns will
be

. In Fig. 5(b) and (c) the
rectangle stands for the time required to load the test
patterns of UDL. In both cases after the UDL has finished its
schedule, the load time for each of the remaining
test patterns for is .

Hypothetical SOC for test scheduling: To better illustrate
the major steps of the proposed test scheduling algorithm Light-
TRDesign in the following sections, we provide a hypothetical
SOC, called lightSOC, with five IEEE 1500-wrapped cores and
three light-wrapped cores (predefined by the system integrator),
as shown in Fig. 6.3

B. Determine the TestRail Architecture

In procedure DesignTestRail, we determine the set of Tes-
tRails and the width of each TestRail by optimizing Tes-
tRail architecture only for IEEE 1500-wrapped cores. Since the
testing time of light-wrapped cores is dependent on its test part-
ners’ shifting time, we need to consider it in this step in order to
get an initial TestRail architecture more suitable for assigning
light-wrapped cores in the following steps of the top-level Al-
gorithm 1. Therefore, we use BuildCostFunction to try different
costs in every iteration of Algorithm 1. Given a TestRail with
IEEE 1500-wrapped cores and for each core the time
it serves as test partners is and its number of wrapper cells is

, the cost function is ,
where is the test application time for the TestRail, and

is a cost weighting scalar that is varied by the system inte-
grator in solution space exploration. In our implementation,
is selected to be incremented by 0.1 in each iteration (e.g., for a

varies from 0 to 49.9), which gives us good
results with execution time of seconds.4

2Wrapper scan chains are built by concatenating core internal scan chains and
WBR cells.

3PC stands for IEEE 1500-wrapped core, while LC denotes light-wrapped
core.

4We have also tried with� = 0:01 and loopCnt = 5000 in our experiments,
and the average improvement in terms of testing time when compared to � =
0:1 and loopCnt = 500 is significantly less than one percent.
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Fig. 5. Schedule of UDLs on different TestRails. (a) UDL to-be-scheduled. (b) UDL scheduled on TestRail 1. (c) UDL scheduled on TestRail 2.

Fig. 6. Example SOC for TAM design and test scheduling.

TR-Architect [6] is revised to optimize TtlCost instead of
testing time only in procedure DesignTestRail for the test archi-
tecture exploration. Therefore, we briefly discuss this algorithm
here. For the sake of self-containment, however, please refer
to [6] for more details and terminology. TR-Architect has four
main steps. The basic idea is to divide the total TAM width over
multiple cores based on their test data volume. The algorithm
first creates an initial test architecture by assigning value 1 to
each core’s TAM width. Since the overall test application time
of the SOC equals the bottleneck TAM with the longest
test application time, in the second and the third steps, the
algorithm iteratively optimizes through merging TAMs
and distributing freed TAM resources. Either two nonbottleneck
TAMs are merged with less TAM width to release freed TAM
resources to the bottleneck TAM, or the bottleneck TAMs is
merged with another TAM to decrease . In the last step, the
algorithm tries to further minimize by placing one of the
cores assigned to the bottleneck TAM to another TAM.

It should be noted that, after step DesignTestRail, the number
of TestRails and the width of each TestRail cannot be changed,
only the cores assigned to each TestRail can be modified by
the following steps. The variation of TtlCost in each iteration,
however, leads to different initial test architectures and hence
increases the flexibility of our test scheduling algorithm.

For the example lightSOC depicted in Fig. 6, after the De-
signTestRail step, its test schedule is shown in Fig. 7(a). It can
be seen that only IEEE 1500-wrapped cores are scheduled on
them to determine the initial TestRail architecture, and there are
three TestRails in this example.

C. Schedule Light-Wrapped Cores

The procedure ScheduleLightCores, as shown in Fig. 8,
schedules the light-wrapped cores onto a given TestRail ar-

Fig. 7. Test schedule for lightSOC after (a) DesignTestRail and
(b) ScheduleLightCores.

chitecture and tries to reduce the overall test application time.
It takes the set of TestRails and the light-wrapped core set

as inputs, and it outputs the updated TestRail set
with all the light-wrapped cores scheduled on them and the
overall test application time of the light-wrapped cores .
Algorithm 2 lists the pseudocode for this procedure. In this
procedure, we schedule all the light-wrapped cores in front of
IEEE 1500-wrapped cores in each TestRail, and there is no
schedule overlap between any IEEE 1500-wrapped cores and
light-wrapped cores so that we do not need to consider the
Partner-CUT conflicts. In lines 1 and 2, we initialize , the
unscheduled core set and the currently sched-
uled core set . Inside the loop, the light-wrapped
cores are scheduled (line 3–23). The procedure first finds a
core compatible with (i.e., it does not have any
shared-partner conflicts with the cores in ) with
maximum test pattern count (line 4). Then if core is a non-
scanned core, it will not be assigned to any TestRail. In this
case the procedure only updates the schedule of all the affected
cores (line 6–7). If core is a scanned core, the procedure will
search through all the TestRails and try to assign the core to
the TestRail which leads to the minimum test application
time. The time must account for the sum of all of the affected
light-wrapped cores and the maximum test application
time for all the IEEE 1500-wrapped cores on the
affected TestRails (lines 10–17). Taking
into consideration is very important since it helps us to avoid
the assignment of the light-wrapped cores which will affect
badly the TestRail that already has a large testing time for the
IEEE 1500-wrapped cores. After scheduling core
and are updated (lines 18–19). If a compatible
core with cannot be found, the schedule of core

in with the minimum end time will be finished,
the number of finished test patterns and test application time
of all the other cores in are updated (lines 21–23).
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Fig. 8. Procedure for scheduling light-wrapped cores onto TestRail
architecture.

The procedure is repeated until all the light-wrapped cores
are scheduled. In line 25, the overall test application time of
light-wrapped cores is computed, which also gives the
begin time for IEEE 1500-wrapped cores in every TestRail.

For the example lightSOC depicted in Fig. 6, after the Sched-
uleLightCores step, its test schedule is shown in Fig. 7(b). It
can be seen the overall test schedule is divided into separate test
sessions for light-wrapped cores and IEEE 1500-wrapped cores,
and hence incurs a relatively large idle time. It can be also ob-
served that since and share the same test partner ,
and and share the same test partner , they are not
tested concurrently.

D. ReSchedule Wrapped Cores Within TestRail

The procedure RescheduleInRail, shown in Fig. 9, tries to
move the IEEE 1500-wrapped cores to the idle time created by
scheduling light-wrapped cores, in order to reduce the overall
test application time of the longest TestRail. Since the core set
on every TestRail will not change, this rescheduling will not
affect the core schedule on other TestRails. For each TestRail

Fig. 9. Procedure for rescheduling IEEE 1500-wrapped cores within TestRail.

, the procedure searches through all the idle ranges one by
one (controlled by upperLimit), to reschedule the IEEE 1500-
wrapped cores. First the idle time is computed (lines 4–8). If
the idle range ends at , then all the remaining IEEE 1500-
wrapped cores can move forward to the beginning of this idle
range. Hence is set as maximum value (lines 5–6). Then an
unscheduled core with maximum test application time which
can fit in the idle range is found and scheduled (lines 9–11). If
such a core cannot be found, will be updated to the
end time of this idle range so that the procedure will try the next
idle range (line 13). Once all the idle ranges are searched, the
procedure will update the schedule of the remaining IEEE 1500-
wrapped cores (line 16). The procedure for rescheduling IEEE
1500-wrapped cores in between different TestRails is shown in
Fig. 10, and it will be discussed in the following subsection.

As illustrated in Fig. 11(a), after the RescheduleInRail
step, for the example lightSOC depicted in Fig. 6, the IEEE
1500-wrapped cores on TestRail1 and on TestRail2
are rescheduled. As a consequence, the TestRail3 becomes the
new bottleneck TAM, which shortens the overall test applica-
tion time of the SOC.

E. ReSchedule Wrapped Cores in Between Different TestRails

The procedure RescheduleBetweenRails attempts to reduce
the test application time of a given TestRail architecture by
moving the IEEE 1500-wrapped cores from the bottleneck
TestRail to another TestRail, provided that it reduces the overall
test application time. If a IEEE 1500-wrapped core serves as
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Fig. 10. Procedure for rescheduling IEEE 1500-wrapped cores in between
different TestRails.

Fig. 11. Test Schedule for lightSOC after (a) RescheduleInRail and (b)
RescheduleBetweenRails.

a test partner for light-wrapped cores, placing it to a different
TestRail will affect core schedule on other TestRails. As a
result, we only consider moving those cores which do not serve
as test partners for any light-wrapped cores in this procedure.
The procedure is iterative. In each iteration, it first identifies
the bottleneck TestRail (line 3). Line 4 finds all the IEEE
1500-wrapped cores on which do not serve as test
partners of light-wrapped cores. Then the procedure searches
through other TestRails to see whether there is sufficient idle
time to fit in core , whose test application time is the shortest
in (lines 8–17). For each TestRail , the procedure searches
through every idle range. Note, the idle time between and

is also one of the idle ranges. If such a TestRail can be
found, core will be rescheduled on the new TestRail (line
14). The procedure exits when is empty or no beneficial
reassignment can be found.

For the example lightSOC depicted in Fig. 6, after step
RescheduleBetweenRails, the IEEE 1500-wrapped core ,

Fig. 12. Testing time variation for p34392 with different cost weight.

which originally sits on bottleneck TestRail3 and does not serve
as test partner for any light-wrapped cores, is rescheduled to
TestRail2, which reduces the overall SOC test application time,
as shown in Fig. 11(b).

IV. EXPERIMENTAL RESULTS

To analyze the effectiveness of the proposed solution on the
overall test application time, experiments were carried out for
three benchmark SOCs p22810, p34392, and p93791, originally
provided from the ITC02 SOC test benchmarking initiative [27].
Since the functional interconnects are not provided in the bench-
mark files, we have randomly generated them to support the pro-
posed approach as in [39]. For the generated interconnects, at
most 12 cores in p22810, 8 cores in p34392 and 12 cores in
p93791 can be light-wrapped.

First, for p34392 and , we analyze the test ap-
plication time variation with different values of the cost weight

(from 0 to 4.5), used by procedure BuildCostFunction. As
shown in Fig. 12 that the variation can be large, which justifies
the need to try different starting TestRail architectures for each
of the iterations of the top-level Algorithm 1.
These irregular variations of testing time are also observed for
other TAM widths and other SOCs. The large number of trials
for the initial architecture effectively compensates for the lack
of optimization in the DesignTestRail step.

Tables II–IV show the test application time comparison be-
tween the proposed approach , the Test Bus-based ap-
proach presented in [39] , and the strategy that uses se-
rial ExTest after the test of all the wrapped cores using [15].

and are computed as
and , respectively. Note that the first
step of our algorithm (DesignTestRail) creates a configuration
which is equivalent to the case where parallel ExTest with ac-
cess to internal scan chains is applied after testing the wrapped
cores. Consequently, because parallel ExTest (without access to
internal scan chains) is a particular case of our method (i.e., the
worst case scenario) the results for it are not reported. We have
used four different light-wrapped core configurations for bench-
mark SOCs p22810, p34392 and p93791. For each SOC, when
the number of light-wrapped cores is increased we keep
the light-wrapped cores from the previous experiments (with
the lower number of light-wrapped cores). Note, the functional
interconnects are generated randomly only once in this experi-
ment in order to have a fixed interconnect topology for all the

values.
It can be observed that, in most cases ( in this

experiment), is much higher than and , especially
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TABLE II
TEST APPLICATION TIME COMPARISON FOR p22810 WITH DIFFERENT LIGHT-WRAPPED CORE CONFIGURATIONS

TABLE III
TEST APPLICATION TIME COMPARISON FOR p34392 WITH DIFFERENT LIGHT-WRAPPED CORE CONFIGURATIONS

when the TAM width is high. This is expected because the se-
rial test of light-wrapped cores dominates the overall test ap-
plication time with the increase of TAM width. However, for

is close to or sometimes even better than .
This is mainly due to the following two reasons: (i) when the
TAM width is small, the time for testing 1500-wrapped cores
may dominate the entire SOC test application time; (ii) when the
TAM width is very small, the flexible-width architecture used in
[15] usually generates better schedules for 1500-wrapped cores
than the fixed-width architecture used in the proposed method-
ology.

When the overall TAM width is small ( or
in this experiment), in almost all of the cases, the test applica-
tion time for the proposed method is lower than the one reported
in [39]. This is because, for the producer/CUT/consumer archi-
tecture from [39], separate producer and consumer TAMs have
to be designed to shift in/out the test stimuli/responses to/from
the producers and consumers of the light-wrapped cores. This

leads to a decrease in the number of TAM resources for the
CUT TAM group, which are used to shift in/out all the test
data for IEEE 1500-wrapped cores and the internal scan chains
in light-wrapped cores. In contrast, for the method proposed
in this paper, and based on the TestRail architecture, all the
TAM resources are used to load the test data for both IEEE
1500-wrapped cores and the internal scan chains of the light-
wrapped cores. For [39], when is small, the CUT TAM
group dominates the test application time of the entire SOC,
since its available bandwidth is low. When increasing ,
CUT TAM width no longer determines the bottleneck for the
SOC test schedule, as it can be observed in Tables I, II, and III.
Therefore, the improvements of the proposed solution disappear
when increasing the and we attribute the few contradic-
tory cases to the fact that the fast heuristics cannot always lead
to near-optimal results.

From Tables II–IV, it can also be seen that, when the number
of light-wrapped cores is small, the proposed method leads to
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TABLE IV
TEST APPLICATION TIME COMPARISON FOR p93791 WITH DIFFERENT LIGHT-WRAPPED CORE CONFIGURATIONS

shorter test application time, while [39] gives better results when
is large. This is because, again, in the TestRail-based method

presented in this paper, there are no dedicated producer and con-
sumer TAM groups. When is small, the test data to be shifted
for the light-wrapped cores is small. In this case, the load time
for all the light-wrapped cores that are scheduled at the same
time is low and thus the testing time is dominated by the time
needed to load data in the internal scan chains. When is large,
whenever a light-wrapped core is scheduled, it is very likely that
the schedule of several other concurrently tested light-wrapped
cores will be affected (and hence the TAM resources cannot be
used to test other cores). In addition, when considering all of
the loading time for all the test partners for all the light-wrapped
cores scheduled at the same time, the test application time for
the overlapped patterns is significantly increased (see Example
1). For [39], since dedicated producer and consumer TAMs are
used to shift in/out the test data for the light-wrapped cores, the
CUT TAM resources can be fully exploited to test the wrapped
cores, and hence [39] is more efficient when is large. For
SOC p34392 when , the result obtained in [39] is
better even when or . This is because, in these
two cases, core 18, which is quite large and dominates the test
application time of the entire SOC, is IEEE 1500-wrapped. If
the proposed method places the schedule of the light-wrapped
cores in front of core 18, the test application time will further
increase.

V. CONCLUSION

This paper has discussed our investigation into the reuse
of the TestRail architecture for rapid and concurrent test of
wrapped cores and unwrapped logic blocks using only the test
control mechanism and the test modes and instructions avail-
able through IEEE SECT. It was found that, when the available
number of test pins or tester channels and/or the number of
unwrapped logic blocks are small, the test scheduling algorithm
proposed in this paper outperforms the previous solution based

on extending the Test Bus architecture [39]. The method pro-
posed in this paper is particularly suitable when rapid testing
is an objective and a small number of logic blocks (either em-
bedded cores or user defined logic) cannot be wrapped due to
methodology constraints, timing violations or area constraints.
In addition, the proposed approach is preferable when the SOC
design has a constrained number of I/O pins available for test
or when tester channels are limited. In summary, because from
the practical standpoint usually only a limited number of un-
wrapped logic blocks exist in a complex SOC, and at the same
time multisite testing is gaining acceptance to reduce SOC test
cost in the industry, the proposed solution can improve the time
the chip spends on the tester.
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