
4

SOC Test-Architecture Optimization
for the Testing of Embedded Cores and
Signal-Integrity Faults on Core-External
Interconnects

QIANG XU and YUBIN ZHANG

The Chinese University of Hong Kong

and

KRISHNENDU CHAKRABARTY

Duke University

The test time for core-external interconnect shorts and opens is typically much less than that for

core-internal logic. Therefore, prior work on test-infrastructure design for core-based system-on-

a-chip (SOC) has mainly focused on minimizing the test time for core-internal logic. However, as

feature sizes shrink for newer process technologies, the test time for signal integrity (SI) faults on

interconnects cannot be neglected. The test time for SI faults can be comparable to, or even larger

than, the test time for the embedded cores. We investigate the impact of interconnect SI tests on SOC

test-architecture design and optimization. A compaction method for SI faults and algorithms for

test-architecture optimization are also presented. Experimental results for the ITC’02 benchmarks

show that the proposed approach can significantly reduce the overall testing time for core-internal

logic and core-external interconnects.

Categories and Subject Descriptors: B.7.3 [Integrated Circuits]: Reliability and Testing—

Testability

General Terms: Reliability, Design, Algorithms

Additional Key Words and Phrases: Core-based system-on-chip, interconnect testing, test-access

mechanism (TAM), test scheduling

A preliminary version of this article was published in Proceedings of the 2007 IEEE/ACM Design
Automation Conference (DAC), 676–681.

Q. Xu is also affiliated with CAS-CUHK Shenzhen Institute of Advanced Integration Technology.

This work was supported in part by the Hong Kong SAR RGC Earmarked Research Grant 417406

(to Q. Xu, with K. Chakrabarty as a named collaborator) and 417807 and in part by Hi-Tech

Research and development Program of China (863) under grant No. 2007AA01Z109.

Authors’ addresses: Q. Xu and Y. Zhang, Department of Computer Science & Engineering, The

Chinese University of Hong Kong, N.T., Hong Kong; K. Chakrabarty, Department of Electrical and

Computer Engineering, Duke University, Durham, NC 27708.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1084-4309/2009/01-ART4 $5.00 DOI 10.1145/1455229.1455233 http://doi.acm.org/

10.1145/1455229.1455233

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:2 • Q. Xu et al.

ACM Reference Format:
Xu, Q., Zhang, Y., and Chakrabarty, K., 2009. SOC test-architecture optimization for the testing of

embedded cores and signal-integrity faults on core-external interconnects, ACM Trans. Des. Autom.

Electron. Syst. 14, 1, Article 4 (January 2009), 27 pages, DOI = 10.1145/1455229.1455233 http://doi.

acm.org/10.1145/1455229.1455233

1. INTRODUCTION

As feature sizes shrink and clock frequencies increase for high-performance
system-on-a-chip (SOC) designs, signal integrity (SI), that is, the ability of an
input signal to generate correct responses in a circuit [Guler and Kilic 1999], is
becoming a major concern for the interconnects between embedded cores [Kao
et al. 2001]. SI problems, typically caused by capacitance and inductance be-
tween interconnects, include overshoots, undershoots, glitches, oscillations, ex-
cessive signal delay, and even signal speedup [Kundu et al. 2005]; see Figure 1.
SI-related problems are aggravated in core-based SOC designs because inter-
connects transporting signals between embedded cores tend to be long, hence
they suffer more from crosstalk effects [Nordholz et al. 1998]. If the noise-
induced voltage swing and timing skews depart from the noise-immune region,
functional error may occur.

Traditionally, SI problems have been treated as design errors, and a number
of physical design and fabrication solutions [Becer et al. 2004; Chen et al. 2004;
Massoud et al. 2002; Zhang and Sapatnekar 2004] have been proposed in the lit-
erature to tackle them. These design techniques rely on accurate simulation of
SI effects, which are affected by many parameters (e.g., characteristics of inter-
connects and transistors, input data and environmental noise). Unfortunately,
these parameters are interdependent and our lack of complete knowledge of
this interdependence leads to uncertainty and inaccuracies in the simulation
of SI loss [Wang et al. 2007]. Moreover, process variations and manufacturing
defects may aggravate the SI-related problems [Natarajan et al. 1998]. Since it
is unacceptable to over-design the circuit to tolerate signal integrity loss in all
cases and it is impossible to predict the occurrence of defects, manufacturing
test strategies are essential for detecting SI-related errors [Cuviello et al. 1999;
Sirisaengtaksin and Gupta 2002; Tehranipour et al. 2003].

Various SI fault models [Cuviello et al. 1999; Kundu et al. 2005; Tehranipour
et al. 2004] and associated test methodologies [Bai et al. 2000; Tehranipour
et al. 2003] have been proposed in the literature. SI-related problems are ag-
gravated in core-based SOC designs because interconnects carrying signals
between embedded cores tend to be long and hence they suffer more from par-
asitic effects [Nordholz et al. 1998]. Despite this problem, most prior work in
SOC test-architecture optimization has focused on core-internal test (InTest)
only [Ebadi and Ivanov 2003; Goel and Marinissen 2002; Iyengar et al. 2002;
Larsson and Peng 2002; Larsson and Fujiwara 2003; Nahvi and Ivanov 2004;
Xu and Nicolici 2004; Zhao and Upadhyaya 2005; Zou et al. 2003] and neglected
the problem posed by core-external interconnect SI faults. The test time for SI
faults is long because of the need to exercise a large number of signal-state com-
binations for the interconnects [Sirisaengtaksin and Gupta 2002; Tehranipour

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:3

Fig. 1. Illustration of signal-integrity loss.

et al. 2003]. For nanometer SOCs running at speeds of several hundred MHz
and higher, the test time for SI faults can be as high as or even exceed the test
time for the embedded cores. Therefore, the goal of this article is to study, for
the first time, the impact of SI faults on SOC test-architecture design. The main
contributions of this article are as follows:

—We present a two-dimensional SI test pattern compaction strategy to reduce
the interconnect SI test data volume.

—We develop algorithms for SOC test-architecture optimization to minimize
the overall SOC testing time for both interconnect SI faults and core-internal
faults.

—We show that for the ITC 2002 SOC Test benchmarks, the test time obtained
using the proposed method is significantly less than that using two baseline
methods: (i) a test access architecture optimized for core-internal test and
then used for core-external SI fault testing; (ii) a test-access architecture
optimized for both core-internal test and core-external test, but where only
pattern count reduction is employed for the tests for SI faults.

The remainder of this article is organized as follows. Section 2 reviews re-
lated prior work and provides motivation for the work described in this paper.
Section 3 presents the proposed test pattern compaction method for SI faults.
In Section 4, SOC test-architecture optimization techniques for handling both
core-internal faults and core-external SI faults are described. Experimental re-
sults for benchmark SOCs [Marinissen et al. 2002] are presented in Section 5.
Finally Section 6 concludes this article.

2. RELATED WORK AND MOTIVATION

Early attempts for testing SI-related problems modeled crosstalk at the circuit
level [Attarha and Nourani 2002; Chen et al. 1999]. Although more accurate
than gate-level models, the complexity of the associated test-pattern generation

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:4 • Q. Xu et al.

procedures limits its usefulness for SOC interconnects. Cuviello et al. [1999]
proposed a behavioral-level SI fault model, called the maximal aggressor (MA)
model. This approach assumes that all aggressors1 make the same simultane-
ous transition (in the same direction) and act collectively to generate a glitch
when the victim is quiescent, or a delay error when the victim makes an oppo-
site transition. Therefore, 6N test-vector pairs are needed to detect SI faults for
a set of N interconnects. Since in reality, inter-core interconnects in SOC can
be of any arbitrary topology, to reduce test pattern count, Sirisaengtaksin and
Gupta [2002] extended the MA fault model to the so-called maximum-affecting-
line (MAL) fault model by taking the physical layout information into account.
If all the physical defects are capacitive or resistive, all MA/MAL faults can be
targeted using a pattern count that is linear in the number of interconnects.
When inductance is considered, however, such test patterns may not be able to
generate maximum noise/delay on the victim line [Chen et al. 1999; Naffziger
1999]; hence, Tehranipour et al. [2004] presented a multiple transition (MT)
fault model that covers all transitions on victim and multiple transitions on
aggressors. The number of test patterns for this MT fault model, however, is
exponential in the number of interconnects under test. To address this prob-
lem, an empirically-determined locality factor k showing how far the effect of
aggressors remains significant, was introduced. For a set of N interconnects,
the number of test patterns for the reduced-MT fault model is approximately
N · 22k+2.

Built-In Self-Test (BIST) has been a popular test method used to detect SI-
related errors [Sekar and Dey 2002; Tehranipour et al. 2004]. In this approach,
driver side of interconnects are equipped with test generators to generate tran-
sitions on the aggressors and victims, while at the receiver side, various types
of integrity-loss sensor (ILS) cells are embedded to detect SI-related errors. Bai
et al. [2000] introduced on-chip test generators and error detectors at the core
boundaries, based on the MA fault model [Cuviello et al. 1999]. Nourani and
Attarha [2001] presented two ILS cell designs to detect voltage distortions and
timing violations, respectively. Later, several other ILS designs [Caignet et al.
2001; Tabatabaei and Ivanov 2002] were introduced, which are more accurate
in measuring voltage and/or timing violations, at the cost of large area over-
heads. Assuming the existence of logic BIST structures in an SOC, Sekhar and
Dey [2002] presented a self-test solution, called LI-BIST, for both the core in-
ternal logic and the SOC interconnects. Zhao et al. presented an online testing
technique to capture noise-induced logic failures in functional buses [Zhao et al.
2004]. Yang et al. [2001] used boundary scan and IDDT to test functional buses.
Finally, Chen et al. [2001] discussed how to test SI defects on the data bus and
the address bus by executing a test program on the microprocessor.

A test method that relies on hardware-based test generators may cause over-
testing and/or under-testing since not all test patterns generated in the test
mode are valid in the normal functional mode of the SOC. In addition, since
the SOC interconnect topology can be arbitrary (see Figure 2) and it is hard

1An interconnect on which the error effect takes place is defined as the victim, while the affecting

interconnects are referred to as its aggressors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:5

Fig. 2. An arbitrary interconnect topology in an SOC, with a victim and the corresponding

aggressors.

Fig. 3. Wrapper cell design for SI test (redrawn from Tehranipour et al. [2003]).

to predict it during test-hardware insertion, the interconnects between several
cores may be close enough to result in SI errors [Sirisaengtaksin and Gupta
2002]. It is very difficult, if not impossible, to take interconnect proximity into
account for these hardware-based test techniques. Therefore, in this work, we
assume that the test stimuli are loaded from an external tester to the core-test
wrapper. To apply SI test at the core-level, as shown in Figure 3 [Tehranipour
et al. 2003], the wrapper-output cell (WOC) should be able to provide the nec-
essary consecutive transitions to interconnects; the wrapper-input cell (WIC)
needs to be equipped with a signal integrity loss sensor [Bai et al. 2000;
Tehranipour et al. 2003] to capture the signal with noise and/or delay error.

Most prior work in SOC test-architecture optimization [Xu and Nicolici 2005]
only takes core internal testing into account, which is mainly because testing
interconnect shorts/opens requires little time and therefore core-external (Ex-
Test) testing can be ignored in the test-architecture optimization process. How-
ever, when high SI fault coverage is desired for today’s SOCs, the testing time
for SOC interconnects can be comparable to or even higher than the testing time
for the core-internal logic. To understand this issue, let us estimate the inter-
connect SI testing time for a representative video-processing SOC [Dutta et al.
2001; Goel et al. 2004], which contains two 32-bit programmable interconnect
(PI) buses, each connecting to a number of embedded cores (e.g., MIPS/TriMedia
processor, mpeg-2 decoder, transport stream processor, and IEEE 1394 con-
troller). Without loss of generality, suppose ten cores connect to each PI buses
and assume that each core on average sends data to two other cores on the
bus. Hence the number of victim interconnects under test on each PI bus is
N = 2 × 10 × 32 = 640. Based on the previous discussion, without test set
compaction, 6N ×2 = 7680 test vector pairs are needed for the MA fault model;

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:6 • Q. Xu et al.

Table I. Format of the SI Test Patterns

core1 W OC . . . corei W OC . . . coren W OC Bus
p0 . . . x ↑ x x ↓ . . . x 1 ↑ . . . x . . . x x x . . . x x 1 . . .

p1 . . . ↑ x ↓ x x . . . x x x . . . ↑ . . . x x ↑ . . . x x 1 . . .

.

px . . . x x x x x . . . 0 x ↓ . . . x . . . ↓ x x . . . 1 x x . . .

while roughly N ·22k+2×2 = 327680 test vector pairs are needed for the reduced-
MT fault model with the locality factor k = 3. Since the total numbers of all the
core I/Os for a typical SOC is in the range of several thousand, the test time for
MA faults is in the range of millions of clock cycles for serial ExTest, while the
test time for reduced-MT faults is two orders of magnitude higher. On the other
hand, as reported in Goel et al. [2004], the SOC test time for core-internal logic
is less than two million clock cycles when the total number of test access mech-
anism (TAM) wires is 140, which in turn is less than the testing time for the
previous SI faults. Moreover, with shrinking feature sizes of deep-submicron
technology, short interconnects may also suffer from SI problems [Nordholz
et al. 1998]. Therefore, it is likely that we need to test for SI faults on hundreds
or even thousands of interconnects in the SOC. Prohibitively high test time
is needed if an effective test-pattern compaction scheme is not employed and
the SOC test-architecture is not optimized for both core-internal logic test and
interconnect SI test.

Three important conclusions can be drawn from this discussion:

—Effective test set compaction strategy should be utilized to reduce the volume
of test data for interconnect SI faults;

—Parallel external testing is required in order to reduce the test time for in-
terconnect SI faults;

—The SOC test-architecture needs to minimize the overall testing time for both
core-internal logic and core-external interconnects.

These observations motivate the work presented in this article.

3. TWO-DIMENSIONAL SI TEST-SET COMPACTION

We assume that the test stimuli for SI faults are given to us a priori; these stim-
uli can take the form of functional patterns, pseudorandom patterns, and/or
patterns generated for various SI fault models [Cuviello et al. 1999; Sirisaeng-
taksin and Gupta 2002; Tehranipour et al. 2004]. Since a victim interconnect
is mainly affected by its neighboring aggressors [Kundu et al. 2005], the signal
integrity test patterns typically feature a large number of don’t-care bits. The
format of the SI test vector pairs applied at the wrapper output cells of the
embedded cores is shown in Table I. The entry ‘x’ represents a don’t-care bit;
‘0/1’ indicates that the corresponding core output terminal stays at 0/1 in con-
secutive cycles, and ↑ (↓) represents a positive (negative) transition. For each
test pattern, we also add a postfix to denote whether this test pattern utilizes a
shared bus line (as discussed in the following paragraph)—a ‘1’ indicates that
the specific bus line is utilized while ‘x’ implies that it is a “don’t-care”.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:7

Fig. 4. Procedure for SI test pattern count reduction.

Test-pattern-count reduction. Because of the large number of don’t-care bits
in each test pattern, it is possible to reduce the volume of test data by compact-
ing multiple test vectors into one vector when they are compatible (i.e., their
intersection is nonempty). Note that since bus lines are shared by the cores
and they may connect many cores at the same time, several SI test patterns
may trigger the same bus line from different core boundaries; these patterns
cannot be compacted into one test pattern. The postfix that we add to each SI
test pattern is used to identify such situations. If the bit values for a specific
position in the postfix of two SI test patterns are both ‘1’, they are marked as
incompatible (e.g., p0 and p1 in Table I). The problem of finding a compacted
test set of minimum size for a given test set is very similar to the traditional test
compaction problem and can be formulated as a maximal clique-partitioning
problem [Jha and Gupta 2003]. The pattern compaction problem is mapped
to a graph, where each vertex corresponds to a test pattern and an edge is
added between two vertices if the corresponding test patterns are mutually
compatible. A set of compatible SI test patterns form a clique in this graph;
our objective to find a minimum number of disjoint cliques that cover all the
vertices in the graph. The clique partitioning problem, however, is known to be
NP-complete [Garey and Johnson 1979], and approximation algorithms, that
is, those with bounded approximation error, suffer from high computational
complexity [Arora 1998].

To reduce computation time, we use a simple greedy heuristic as shown in
Figure 4. The algorithm takes the original test set Po as input. A compacted test
pattern is generated in each inner loop (Lines 4–7) by merging the first pattern
p1 in the uncompacted test set Pu with the compatible patterns that follow
in one pass. The algorithm terminates when all test patterns are compacted,
and it outputs the compacted test set Pc. Obviously this greedy strategy is not
optimal, and the quality of the resulting Pc depends on the order of the test
patterns. To address this problem, we randomize the order of test patterns
several times, apply our greedy heuristic, and select the best result, that is, the
ordering that leads to the smallest compacted set Pc. Suppose the number of

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:8 • Q. Xu et al.

original test patterns is n and the test pattern width is m. In the worst case, no
test pattern is compatible with any other pattern. The time complexity of the
above heuristic is O(mn2).

The preceeding compaction scheme to reduce test pattern count can be
viewed as reducing the volume of the test data in a vertical manner.

Test-pattern-length reduction. If we compact all the test patterns together,
the length of every compacted pattern will be very large—it will be equal to
the sum of the number of WOCs for the different cores. Since each SI test
pattern involves only a few cores’ terminals (referred to as care cores of the SI
test pattern), we can bypass the boundaries of the remaining don’t-care cores
(e.g., Core 1 for px in Table I) and reduce the length of this test pattern. The
above strategy can be viewed as compacting the test pattern in a horizonal
manner.

That is, instead of compacting all the test patterns together, we first partition
the set of cores into several smaller groups of cores (say, Ng groups). Next we
classify the SI test patterns in such way that the test patterns, whose care cores
are all within the same core group, form an SI test group. The length of each test
pattern is now reduced to the sum of the number of WOCs of this core group,
instead of the WOCs of all cores. Let woci denote the number of WOCs for core
group i. For the remaining test patterns whose care cores fall into multiple core
groups, we simply group them as a whole and their length remains the sum
of the lengths of the WOCs for all the cores, denoted as wocSOC. The test data
volume Vc after two-dimensional compaction is as follows:

Vc =
(

Ng∑
i=1

pi × woci + pr × wocSOC

)
× 2, (1)

where pi and pr represent the number of compacted test patterns in SI test
group i and the number of compacted remaining test patterns, respectively.
The value ‘2’ in this equation is added because each SI test pattern contains
two vectors.

To achieve better compression, we should minimize the number of remain-
ing patterns, and at the same time, balance the test-pattern lengths for the
partitions. This problem can be formulated as a hypergraph partitioning prob-
lem, with each vertex in the hypergraph corresponding to a core. The weight
of each vertex is the number of WOCs of the core corresponding to the ver-
tex and it is used to balance the partitions. A hyperedge is added for each
test pattern that connects all its care cores (vertices). Since there might be
multiple test patterns having the same care cores, we use the weight of each
hyperedge to represent this information. The hypergraph partitioning prob-
lem has been well-researched in the literature and we use the hMetis package
[Selvakkumaran and Karypis 2003] to solve this problem. As shown in Figure 5,
for the horizontal SI test pattern compaction of a hypothetical SOC containing
seven cores, the patterns corresponding to the cut hyperedge 7-4-6 need to load
the WOCs for all the cores, while the other patterns can be applied with shorter
pattern lengths. For simplicity, the vertex and edge weights are not shown in
the figure.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:9

Fig. 5. Hypergraph partitioning for SI test pattern length reduction.

The main objective of the hMetis package is to minimize the number of hy-
peredges that are cut (i.e., the remaining patterns in our problem), while our
objective is to achieve the minimum test data volume as shown in Equation (1).
To obtain better results, we use the partitioning result obtained from hMetis
as an initial solution, and on top of it employ the FM partitioning algorithm
[Fiduccia and Mattheyses 1982] with the cost function shown in Equation (1) to
refine the original solution. That is, we try to move one core at a time between
partitions, and check whether the test data volume is reduced. If this is indeed
the case, we fix this movement; otherwise, we try an alternative movement.
Our experiments show that the above refinement step is able to further reduce
test data volume by 3 ∼ 5 percent when compared to the solution obtained from
hMetis.

4. TEST-ACCESS ARCHITECTURE DESIGN AND OPTIMIZATION

We consider, as a starting point, that every core in the SOC uses wrapper cells
as shown in Figure 3 [Tehranipour et al. 2003]. These wrappers are compatible
with the IEEE 1500 standard [IEEE Std. 1500 2004] with some additional
hardware added to the wrappers for signal integrity test, including a new
wrapper instruction to enter the signal-integrity test (SITest) mode. In addi-
tion, the user-defined logic (e.g., the glue logic between embedded cores) is also
treated as a wrapped core. In other words, the SOC is assumed to contain only
wrapped logic blocks and interconnect wires that are affected by signal integrity
faults.

In addition, we use the TestRail TAM architecture in this work [Marinissen
et al. 1998]. While it is possible to use the alternative Test Bus architecture
[Varma and Bhatia 1998] to support parallel external testing [Xu and Nicolici
2003], the TestRail architecture is more amenable for core-external testing
[Goel and Marinissen 2002].

4.1 SI Test-Architecture Optimization: Problem Formulation

As discussed in Section 2, the testing time for interconnect SI faults can be com-
parable to or even higher than the testing time for core-internal logic. Therefore,
it is necessary for system integrators to optimize the SOC test-architecture for
both kinds of tests in order to reduce the overall testing time. The optimization
problem addressed in this section can be formulated as follows:

Problem PSI opt : Given the maximum TAM width Wmax for the SOC, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:10 • Q. Xu et al.

—the test set parameters for each embedded core, including the number of
input and output terminals, the number of test patterns for core internal
logic, the number of scan chains and the length of each scan chain;

—the test set parameters for each group of compacted interconnect SI tests
obtained using the method proposed in Section 3, including the set of cores
involved and the number of SI test patterns;

Determine the wrapper design for each core, the TAM resources assigned to
each core and a test schedule for the entire SOC such that: (i) the sum of the
TAM width used at any time does not exceed Wmax ; (ii) the total SOC testing
time TSOC is minimized.

One of the subproblems of PSI opt is to design and optimize the test wrapper
for each core. Since the test application time of a core is dependent on the length
of the maximum wrapper scan chain,2 the main objective in wrapper design and
optimization is to build balanced wrapper scan chains. This is a well-researched
problem [Marinissen et al. 2000; Iyengar et al. 2002], and we use the Combine
procedure from [Marinissen et al. 2000] for solving it in InTest mode. For a
core wrapper in SI test mode, wrapper scan chains contains wrapper cells only
and we can therefore assume that balanced wrapper input/output scan chains
are achieved. Based on the TestRail architecture, we propose to solve Problem
PSI opt in two steps. First, we describe how to schedule SI tests for a given TAM
design, as shown in Section 4.2. Next, we describe our solution for the general
problem of how to design and optimize the SOC test-architecture from scratch
by adapting an existing method [Goel and Marinissen 2002]; this approach is
presented in Section 4.3.

4.2 SI Test Scheduling for a Given TAM Design

Wrapper cells are used for both core-external interconnect SI test and core-
internal logic test at the same time. Hence, to avoid test-resource conflicts, we
schedule the two types of tests at different times. Therefore, TSOC = Tin

SOC+T si
SOC,

where Tin
SOC and T si

SOC denote the test time for the core-internal logic and the
test time of the core-external interconnects, respectively.

The need for combining interconnect SI test with core-internal test makes
test-architecture optimization more difficult compared to the case when only
core-internal test is considered. This difficulty results from the fact that inter-
connect SI test patterns may involve multiple TAMs at the same time, since
victim and aggressors in a crosstalk environment may link cores connected to
different TAMs. To highlight this problem, we examine how TSOC can be calcu-
lated for a given TAM design.

Consider the hypothetical SOC shown in Figure 2. Suppose that after two-
dimensional test compaction, the SI test has been placed in three groups, where
the SI1 group involves all the five embedded cores (these are the remaining
test patterns after partitioning), SI2 group involves Core1, Core4 and Core5,
and SI3 group involves Core2 and Core3. Two possible TAM designs and their

2Wrapper scan chains are constructed by concatenating core-internal scan chains and WBR cells

for InTest.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:11

Fig. 6. Example TAM designs and their corresponding test schedules.

corresponding test schedules are shown in Figure 6. Let Tin
corei

denote the core-
internal test time for of Core i, and let T si j

corei denote the interconnect test time
for SI test group j contributed by core i. For the schedule shown in Figure 6(a),

Tin
SOC = Tin

tam1
= Tin

core1
+ Tin

core2

T si
SOC = Tsi1 + Tsi2 + Tsi3

Tsi1 = max
{
T si1

core1
+ T si1

core2
, T si1

core3
+ T si1

core4
, T si1

core5

}
= T si1

core1
+ T si1

core2

Tsi2 = max
{
T si2

core1
, T si2

core4
, T si2

core5

}
= T si2

core4

Tsi3 = max
{
T si3

core2
, T si3

core3

}
= T si3

core2

For the second test schedule shown in Figure 6(b),

Tin
SOC = Tin

tam2
= Tin

core3
+ Tin

core4
+ Tin

core5

T si
SOC = Tsi1 + max

{
Tsi2 , Tsi3

} = Tsi1 + Tsi2

Tsi1 = max
{
T si1

core1
+ T si1

core4
+ T si1

core5
, T si1

core2
+ T si1

core3

}
= T si1

core1
+ T si1

core4
+ T si1

core5

Tsi2 = T si2
core1

+ T si2
core4

+ T si2
core5

Tsi3 = T si3
core2

+ T si3
core3

In this example, Tin
SOC is the maximum core-internal test time of the individ-

ual TAMs for a given TAM architecture. The sequence of the core internal tests
does not affect the value of Tin

SOC, hence the test time can easily calculated from

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:12 • Q. Xu et al.

Fig. 7. Data structures for SI test and TestRail.

the TAM architecture. The calculation of T si
SOC, however, is less straightforward

because multiple TAMs may be involved. First, we need to calculate Tsi j for each
SI test group j , which is determined by a single TAM denoted as the bottleneck
TAM for this SI test (e.g., T AM2 for SI test SI2). Second, we need to schedule
the SI tests to minimize T si

SOC. We next elaborate on these two steps.

Data structure. The data structures that we use to store the SI test group
information and the TestRail configuration are presented in Figure 7. The two
data structures are updated whenever the SOC TAM design is changed. In
particular, in data structure for TestRail r, we use timein(r), timesi(r) and
timeused (r) to denote the internal testing time, the SI testing time and the
utilized testing time on TAM r, respectively. For example, for T AM3 shown in
Figure 6(a):

— timein(r) = Tin
core5

;

—timesi(r) = T si1
core5

+ T si2
core5

;

—timeused (r) = timein(r) + timesi(r) = Tin
core5

+ T si1
core5

+ T si2
core5

.

We use timeused (r) to compare the actual utilization of TAM resources for dif-
ferent TAMs.

Calculation of test time for individual SI test. The pseudocode for the proce-
dure to calculate the testing time for each SI test group is shown in Figure 8.

The procedure takes the TestRail architecture RSOC and all the SI test groups
SSOC as inputs and calculates timesi(si) for each SI test group si. In the inner
loop (Lines 3–8), we check all the TAMs that are involved in SI test si to identify
the TAM that determines timesi(si). Line 4 finds out Cinvolved, that is, all the cores
on TAM r j that are involved in SI test si. Line 5 then calculates timesi(r j), the
signal integrity testing time contributed by TAM r j . We record the SI testing
time timesi(si) (Line 7) and the bottleneck TAM rbtn(si) for SI test si (Line 8).
Finally the procedure returns the SI tests with updated SI testing time (Line 9).

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:13

Fig. 8. Procedure for calculate SI testing time.

To calculate the time of an SI test group, the test time of each of the cores
and each of the TAMs involved in this SI test needs to be computed. Therefore,
the complexity of the CalculateSITestTime algorithm is O(NSINc NTAM), with
NSI, Nc and NTAM corresponding to the number of SI test groups, the number
of cores and the number of TAMs, respectively.

Scheduling of SI tests. Once timesi(si) for each individual SI test si is known,
we can schedule the SI tests to acquire the SOC signal integrity testing
time T si

SOC. This procedure is shown in Figure 9. Line 1 performs procedure
CalculateSITestTime to calculate the testing time for each SI test. Line 2 ini-
tializes unSchedSI, the unscheduled SI tests and currSchedTAMs, the TAMs
that are utilized by the SI tests currently under schedule. Line 3 initializes
currTime, that is, the begin time for to-be-scheduled SI test. After the initializa-
tion, the following loop schedule SI test one by one (Lines 4-17). Inside the loop,
we first try to find a SI test s∗ that can be scheduled with begin time currTime,
that is, s∗ does not utilize any TAM in currSchedTAMs (Line 5). If such s∗ can
be found, we schedule it by updating begin(s∗), end(s∗), currSchedTAMs, and
unSchedSI (Lines 7–10). If s∗ is the last scheduled SI test, we shall update
T si

SOC as the end time of TAM end(s∗). If all the unscheduled SI tests utilize the
TAM resources in currSchedTAMs and hence cannot be scheduled with begin
time currTime, we find nextTime, that is, the time for the first SI test that is
expected to end after currTime (Line 14). We then update the begin time of the
to-be-scheduled SI tests (Line 15) and currSchedTAMs based on the SI tests
still under schedule (Line 16). Finally the procedure returns the SOC SI testing
time T si

SOC and the SI tests with updated schedule information.
Let us take the test architecture and test schedule shown in Figure 6(b) as

an example to demonstrate the ScheduleSITest algorithm. After the internal
tests have been scheduled, all the TAM resources are available and we choose to
schedule SI test SI1. However, before SI1 is completed, there is no TAM available
because SI1 uses them to shift test patterns to all cores’ wrapper cells. Therefore,
the other SI tests have to wait for the completion of SI1. Afterwards, the TAM
resources occupied by SI1 are released and SI2 and SI3 can be scheduled with
TAM2 and TAM3 in parallel.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:14 • Q. Xu et al.

Fig. 9. Procedure for scheduling SI tests.

During the initialization process of the ScheduleSITest procedure, we need to
conduct procedure CalculateSITestTime with complexity O(NSINc NTAM). Then
in the inner loop, we schedule every SI test and the complexity is O(N 2

SINTAM)
because the complexity to find an unscheduled SI test and to check the TAM
availability and to update the occupancy information of this SI test is pro-
portional to NSINTAM. Since we have NSI ≤ Nc, the overall complexity of the
ScheduleSITest procedure is O(NSINc NTAM).

4.3 TAM Design and Optimization

The preceeding discussion for calculating T si
SOC is based on a given TAM archi-

tecture. What makes Problem PSI opt more difficult is that the testing time for
a SI test timesi(s) is not known until the SOC test-architecture is determined
This makes PSI opt fundamentally different from the problem of designing and
optimizing an SOC test-architecture for core internal-logic only. In the latter
case, the testing time for each core can be pre-determined for a given TAM
width [Xu and Nicolici 2005]. Unlike many test scheduling algorithms that
schedule cores one after another and terminate after all cores are scheduled,
the TR—Architect algorithm proposed in [Goel and Marinissen 2002] generates
an initial test-architecture with all cores assigned to TAMs in the beginning
and then optimizes this architecture in an iterative manner. This strategy is
particularly attractive for interconnect SI test, since we are able to calculate
the SI testing time in each optimization step. Therefore, we propose to adapt
the TR—Architect algorithm for solving Problem PSI opt in this article. At the

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:15

Fig. 10. Procedure for identifying bottleneck TAMs of the SOC.

same time, this adaptation is not straightforward, as described in the following
paragraphs.

Identifying bottleneck TAMs. The basic idea of the TR—Architect algorithm
is to optimize Tin

SOC at the TAM level by merging TAMs and/or distributing free
TAM wires to the bottleneck TAM, that is, the TAM with the longest Tin

tam. As
a result, we define the bottleneck TAMs of the SOC (in contrast to the single
bottleneck TAM for an SI test) to be those which are critical to the test time;
TSOC is reduced if extra wires are assigned to them; the remaining TAMs are
referred to as non-bottleneck TAMs of the SOC. In TR—Architect, there exists
only a single bottleneck TAM at a time during the optimization process. Either
two non-bottleneck TAMs are merged with less TAM width to release freed
TAM resources to the bottleneck TAM, or the bottleneck TAMs is merged with
another TAM to decrease Tin

SOC [Goel and Marinissen 2002].
In our problem, as we try to minimize TSOC = Tin

SOC + T si
SOC, it is possible that

multiple bottleneck TAMs exist at the same time. That is, in addition to the
bottleneck TAM for core-internal logic test, each SI test has its own bottleneck
TAM, which may affect the total SOC testing time TSOC. For example, for the
schedule shown in Figure 6(a), the bottleneck TAM for SI2 (i.e., T AM2) is a
bottleneck TAM for the SOC; on the other hand, for the schedule shown in
Figure 6(b), the bottleneck TAM for SI3 (i.e., TAM1) is not a bottleneck TAM
for the SOC. For the schedule shown in Figure 6(a), T AM1 and T AM2 are
bottleneck TAMs and TAM3 is a non-bottleneck TAM, while for the schedule
shown in Figure 6(b), TAM2 is a bottleneck TAM and TAM1 is a non-bottleneck
TAM.

The procedure to identify SOC bottleneck TAMs is shown in Figure 10. The
bottleneck TAM for core-internal logic test is guaranteed to affect TSOC. There-
fore, in Line 1 and Line 2, we find this bottleneck TAM r ′ and it is identified
as a SOC bottleneck TAM (e.g., TAM1 in Figure 6(a)). Next, in Line 3, we find
the TAM r∗ with the longest SI test time. Each core on r∗ might be involved in
several SI tests. For every one of these SI tests, we identify its bottleneck TAM
rbtn. Since the SI test bottleneck TAMs identified in this way must affect the
total SOC testing time TSOC, we treat each of them as the bottleneck TAM of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:16 • Q. Xu et al.

Fig. 11. Procedure for distributing free TAM wires.

SOC (Lines 4–7). From this procedure, it can be seen that the bottleneck TAM
for those SI tests that are not involved with any core on r∗ can be ignored, for
example, the bottleneck TAM for SI3 shown in Figure 6(b). For the test archi-
tecture and test schedule in the example of 6(a), TAM1 is the bottleneck TAM
for internal test. On the other hand, both TAM1 and TAM2 are bottleneck TAMs
for SI tests. Therefore, the bottleneck TAM set for this schedule is composed of
TAM1 and TAM2.

In the IdentifyBtnTAMs algorithm, every SI test involving a core on the TAM
with the longest SI test time is checked for its bottleneck TAM . Therefore, the
complexity of this algorithm is O(NSINc).

Algorithm for problem PSI opt . Next we introduce our algorithm for Problem
PSI opt . Similar to the TR—Architect algorithm, we first create an initial Tes-
tRail architecture and optimize it by merging TAMs and distributing free TAM
wires afterwards. There are two key questions during the optimization process,
namely, How to find out the merging candidate and merge them and How to
distribute free TAM wires. Because there may exist multiple bottleneck TAMs
at the same time in our problem, the answers to these two questions highlight
the main differences between our algorithm and the TR—Architect algorithm
proposed in [Goel and Marinissen 2002].

The procedure for distributing free TAM wires is shown in Figure 11. The
procedure takes the given TestRail architecture RSOC, all the SI tests SSOC and
the number of free TAM wires numFreeWires as inputs. The free TAM wires are
distributed iteratively to the bottleneck TAMs (Lines 2–6). Since we may have
multiple bottleneck TAMs at the same time, we select one of them based on the
criteria that TSOC is the minimum after obtaining the extra TAM wire (Line
4). Because RSOC is changed whenever a free TAM wire is assigned (Line 5),
timesi(r) and timeused (r) for every r ∈ RSOC are updated (Line 6). Finally the
procedure outputs the new TestRail architecture R ′

SOC with all free TAM wires
assigned.

Let us take the test architecture and test schedule shown in Figure 6(a) as
an example to explain the distributeFreeWires algorithm. Suppose there is one
more free wire to be distributed to one of the three TAMs. The algorithm tries to
distribute it to either TAM1 or TAM2 (they are the bottleneck TAMs), compares

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:17

Fig. 12. Procedure for merging TAMs.

the overall SOC testing time for the two choices, and finally selects the one with
smaller testing time.

To distribute a free wire, we need to identify all bottleneck TAMs at the cur-
rent time and schedule the SI tests with one of the bottleneck TAMs added with
one more wire, which means that we need to run SI test scheduling O(NTAM)
times in the worst case. Therefore, if the number of free wires is NFW, the overall
complexity of the distributeFreeWires procedure is O(NFWNSINc N 2

TAM).
The procedure for merging TAMs is shown in Figure 12. In this procedure,

with the given TestRail architecture RSOC, all the SI tests SSOC and one of the
merging candidate r1 as inputs, we look for another TAM candidate in Rfind =
RSOC \ {r1}, which leads to the lowest testing time after merging with r1. After
initialization (Lines 1 and 2), we enumeratively try every TAM ri in Rfind as the
other merging candidate (Lines 3-14). What’s more, we also try to merge ri and r1

with different TAM width in the range of widthmin = max{width(ri), width(r1)}
(Line 4) and widthmax = width(ri) + width(r1) (Line 5). The intuition behind
this is that we may be able to merge two TAMs with less TAM width and
the extra free TAM wires can be assigned to other bottleneck TAMs to reduce
TSOC. The procedure outputs the TestRail architecture R ′

SOC with the lowest
testing time after merging (Line 15). It is also possible that we cannot find a
merging plan to reduce TSOC. In such case, the original TestRail architecture is
returned.

Again, let us take the test architecture and test schedule shown in Figure
6(a) as an example to explain the mergeTAMs procedure. Consider the case that
TAM1 is the candidate TAM and we need to find another TAM to be merged
with TAM1 and redistribute the TAM wires. We try each and every one of
the other TAMs (TAM2 and T AM3 in this case) to be merged with TAM1. If

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:18 • Q. Xu et al.

TAM1 is merged with T AM2, the newly merged TAM, TAM12, will be assigned
max{width(r1), width(r2)} wires initially. By now there are two TAMs (TAM12

and TAM3) and width(r1) + width(r2) − max{width(r1), width(r2)} free wires.
We then distribute these free wires to the two TAMs one wire at a time to
achieve maximum total test time reduction. The merging of TAM1 and TAM3

is similar to the above procedure. We will then select the merging with smaller
test time and the corresponding TAM architecture will be generated from the
mergeTAMs algorithm.

In the mergeTAM procedure, to find a TAM to be merged with the candidate
TAM for maximum test time reduction, we need to try all other TAMs (i.e.,
NTAM−1 times). For each of these TAMs, we need to call the distributeFreeWires
procedure multiple times (the worst case complexity is O(Wmax) times). Since
the worst-case complexity for the utilized distributeFreeWires procedure is
O(Wmax NSINc N 2

TAM), the overall complexity of the mergeTAM procedure is

O(W 2
max NSINc N 3

TAM).
The pseudocode for our top-level algorithm T AM Optimization for Problem

PSI opt is presented in Figure 13, which is adapted from the TR—Architect
algorithm [Goel and Marinissen 2002]. First, we create a start solution (Lines
1–16). This mainly consists of three steps. In Step 1 (Lines 2–5), we assign each
core to a one-bit wide TAM and we calculate the testing time of core internal
logic timein(r), the testing time of interconnects timesi(r) and the actual utilized
testing time timeused (r) for every r ∈ RSOC. In case Wmax < |RSOC|, we do not
have enough TAM wires and hence we need to merge TAMs together (Lines
7–13). We first sort RSOC based on the total utilized testing time in each TAM
(Line 9), then rWmax+1 is merged iteratively with another TAM ri. We select
this merging candidate ri based on the criteria that TSOC is the minimum after
merging with rWmax+1 (Line 10). Since RSOC is changed after merging, timesi(r)
and timeused (r) for every r ∈ RSOC are updated (Line 13). In the case Wmax >

|RSOC|, we have extra free TAM wires left and procedure distributeFreeWires is
called to distribute them.

Next, we optimize the TAM architecture by merging the TAM with the lowest
timeused with another TAM (Lines 17-23). We first sort RSOC in nonincreasing
order and we select r|RSOC| as one of the merging candidate r1, then we call
procedure mergeTAMs to search for another TAM to merge with r1 and possibly
redistribute TAM resources to reduce TSOC. This is an iterative procedure and it
stops when no reduction in TSOC can be achieved (Lines 22–23). Afterwards, we
try to further optimize the TAM architecture by trying to merge the TAM with
the longest timeused with another TAM (Lines 25–30) and merging other TAMs
(Lines 31-36). Finally, TAM Optimization tries to minimize TSOC by iteratively
moving one core from bottleneck TAMs of the SOC to another TAM, if possible
(Line 37).

As can be observed in Figure 13, the computational complexity of the
TAM Optimization algorithm is mainly determined by the bottom-up and top-
down optimization procedures, which require the mer geT AM procedure to be
carried out O(Wmax) times in the worst case. Therefore, the complexity of the
overall algorithm is O(W 3

max NSINc N 3
TAM).

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:19

Fig. 13. Algorithm for solving PSI opt .

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:20 • Q. Xu et al.

Table II. Comparison of Compressed Test Data Volume with Different SI Test Pattern Counts

and Different Core Groups

Nr = 1,000 Nr = 5,000

Ng Nc Ds �Ds (%) Nc Ds �Ds (%)

1 35 383950 / 156 1711320 /

SOC g1023 2 39 324230 15.55 161 1347898 21.24

4 47 314018 18.21 170 1235982 27.78

8 58 311198 18.95 192 1233058 27.95

Nr = 10,000 Nr = 50,000

Ng Nc Ds �Ds (%) Nc Ds �Ds (%)

1 258 1486596 / 1247 7185214 /

SOC p34392 2 285 1196228 19.53 1294 5748670 19.99

4 316 1221490 17.83 1375 5394738 24.92

8 376 1185938 20.22 1555 5371424 25.24

Nr = 10,000 Nr = 50,000

Ng Nc Ds �Ds (%) Nc Ds �Ds (%)

1 270 5750460 / 1266 26963268 /

SOC p93791 2 285 4715026 18.01 1304 21219284 21.30

4 308 4355544 24.26 1355 19734208 26.81

8 317 3944650 31.40 1401 19067892 29.28

Nr : Initial interconnect test pattern count; Ng : Number of partitions;
Nc: Number of compacted patterns; Ds: Test data volume;

�Ds = Ds(Ng =1)−Ds
Ds(Ng =1)

× 100%.

5. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed solution, experiments were carried
out for three ITC’02 benchmark SOCs from Marinissen et al. [2002], namely,
g1023, p34392, and p93791. Without loss of generality, we do not consider hier-
archy in the testing of core-internal logic. Since the topology of these benchmark
SOCs and the connection between embedded cores are not available, we can-
not obtain the test patterns for core-external interconnect SI faults for these
benchmark SOCs. Therefore, we generate random test patterns for our experi-
ments in the following manner. For the smaller SOC g1023, we generate 1, 000
and 5, 000 random patterns, respectively. For p34392 and p93791 we generate
10, 000 and 50, 000 random patterns, respectively. Each test pattern targets
one victim and Na (2 ≤ Na ≤ 6) random aggressors. Suppose the victim wire
connects two cores Corea and Coreb. Then at least Na − 2 aggressor lines are
between these two cores. In addition, we assume that a 32-bit bus is utilized
in all the three SOCs. The probability that the bus is used by a test pattern is
set to 50%. If the bus is used for a particular pattern, we randomly generate
1 ∼ Na specified bits in the postfix of the pattern (see Section 3).

Table II shows the results for our two-dimensional test compaction scheme.
We partition the SOCs in Ng parts using the hMetis package [Selvakkumaran
and Karypis 2003]. Therefore, the row with Ng = 1 is for the case when the
test set is compressed without partitioning. The parameters Nc and Ds denote
the compacted test pattern count and test data volume (calculated as the sum
of the test pattern length times the test pattern count in each SI test group),
respectively. �Ds is the percentage reduction in test data volume compared

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:21

Table III. Test Application Time Comparison for SOC g1023

SOC g1023

Nr = 1, 000

Wmax TTR-Arch (cc) Tg1
(cc) Tg2

(cc) Tg4
(cc) Tg8

(cc) Tmin (cc) �TT R−Arch (%) �Tg (%)

8 119791 93913 92723 94519 92708 92708 22.61 1.28

16 70161 50349 52073 50842 50840 50349 28.24 0.00

24 44603 33652 35038 34998 33900 33652 24.55 0.00

32 35145 26196 27290 26045 24895 24895 29.16 4.97

40 28619 22697 22672 21163 21619 21163 26.05 6.76

48 28619 20989 20618 18920 18184 18184 36.46 13.36

56 28619 20986 20618 19255 19213 19213 32.87 8.45

64 28619 20941 20618 18998 19139 18998 33.62 9.28

Nr = 5, 000

Wmax TTR-Arch (cc) Tg1
(cc) Tg2

(cc) Tg4
(cc) Tg8

(cc) Tmin (cc) �TT R−Arch (%) �Tg (%)

8 296814 182173 175354 160032 155091 155091 47.75 14.87

16 197211 92026 103685 84900 80199 80199 59.33 12.85

24 111395 67172 60975 59042 56124 56124 49.62 16.45

32 100249 51278 43629 43750 43261 43261 56.85 15.63

40 98098 40350 39222 38528 35343 35343 63.97 12.41

48 98098 35835 32088 31921 30212 30212 69.20 15.69

56 98098 32780 31435 28758 29737 28758 70.68 12.27

64 98098 32260 29947 25770 27246 25770 73.73 20.12

Nr : Initial interconnect test pattern count; Wmax : Given SOC TAM width;
TT R−Arch: Test time obtained by optimizing the SOC TAM architecture for InTest only;
Tgi : Test time obtained using the proposed T AM Optimization algorithm

with the SOC cores partitioned into i groups;

Tmin = mini{Tgi }; �TT R−Arch = TT R−Arch−Tmin
TT R−Arch

× 100%; �Tg = Tg1
−Tmin

Tg1
× 100%.

to the case when Ng = 1. It can be observed from the table that, with test
pattern merging only, the compaction over the original test set is only �V = 3%
(i.e., Nc

Nr
× 100% when Ng = 1). With test-pattern-length reduction by SI test

grouping, we are able to further reduce the test data volume by more than 20%
on top of �V .

Tables III, IV, and V present results for the SOC test application time, mea-
sured in terms of the number of clock cycles. We compare between the following
cases: (i) optimizing Tin

SOC using only the TR—Architect algorithm [Goel and
Marinissen 2002] (TTR-Arch); (ii) optimizing TSOC using our proposed algorithm
TAM Optimization for several SI test pattern counts Nr and the SI test group-
ing strategy. Note that T[Goeland Marinissen 2002] is determined by optimizing the
SOC TAM architecture in terms of core-internal test time Tin

SOC only, and then
computing the total test time TSOC by adding to Tin

SOC the time needed for SI
test. The parameter Tgi denotes the SOC test time obtained using the pro-
posed TAM Optimization algorithm when the SI tests are partitioned into i
parts; Tmin = mini{Tgi }, which corresponds to the test-architecture that we
choose; �TTR-Arch and �Tg are computed as �TT R−Arch = TT R−Arch−Tmin

TT R−Arch
× 100%

and �Tg = Tg1
−Tmin

Tg1

× 100%, respectively. Note that �Tg quantifies the ben-

efit derived from our two-dimensional compaction strategy over the one-
dimensional compaction scheme that reduces only the test-pattern count. We
can see that more than 20% test-time reduction can be achieved in some cases

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:22 • Q. Xu et al.

Table IV. Test Application Time Comparison for SOC p34392

SOC p34392
Nr = 10, 000

Wmax TT R−Arch (cc) Tg1
(cc) Tg2

(cc) Tg4
(cc) Tg8

(cc) Tmin (cc) �TT R−Arch (%) �Tg (%)

8 2499024 2460860 2189687 2154845 2153117 2153117 13.84 12.51

16 1215631 1100901 1157715 1094507 1097405 1094507 9.96 0.58

24 863107 801474 828945 816120 793520 793520 8.06 0.99

32 644122 612926 636092 674518 609820 609820 5.33 0.51

40 604177 583720 564348 563295 601969 563295 6.77 3.50

48 604177 563253 558339 559762 558829 558339 7.59 0.87

56 604177 561607 556440 556910 556972 556440 7.90 0.92

64 604177 561607 556404 556430 555728 555728 8.02 1.05

Nr = 50, 000

Wmax TT R−Arch (cc) Tg1
(cc) Tg2

(cc) Tg4
(cc) Tg8

(cc) Tmin (cc) �TT R−Arch (%) �Tg (%)

8 2862976 2582663 2685154 2523919 2477706 2477706 13.46 4.06

16 1436474 1323698 1313744 1312050 1385386 1312050 8.66 0.88

24 1120118 1035895 950950 910648 955818 910648 18.70 12.09

32 872581 720887 714779 700121 704810 700121 19.76 2.88

40 832636 657092 652525 633428 641855 633428 23.92 3.60

48 832636 638850 624037 607619 610755 607619 27.02 4.89

56 832636 619399 607829 599433 600075 599433 28.01 3.22

64 832636 619399 601601 593223 600177 593223 28.75 4.23

Table V. Test Application Time Comparison for SOC p93791

SOC p93791

Nr = 10, 000

Wmax TT R−Arch (cc) Tg1
(cc) Tg2

(cc) Tg4
(cc) Tg8

(cc) Tmin (cc) �TT R−Arch (%) �Tg (%)

8 4695241 4064748 4144176 4034628 4075377 4034628 14.07 0.74

16 2298848 2072745 2029390 2018862 2037524 2018862 12.18 2.60

24 1622729 1412641 1392753 1434277 1392762 1392753 14.17 1.41

32 1217985 1039646 1030373 1057084 1026253 1026253 15.74 1.29

40 1041244 841096 829314 856368 832855 829314 20.35 1.40

48 959503 708385 713458 710631 697217 697217 27.34 1.58

56 808771 606411 600039 611748 590176 590176 27.03 2.68

64 784023 528642 527789 521335 497329 497329 36.57 5.92

Nr = 50, 000

Wmax TT R−Arch (cc) Tg1
(cc) Tg2

(cc) Tg4
(cc) Tg8

(cc) Tmin (cc) �TT R−Arch (%) �Tg (%)

8 6037849 5407578 5106050 5124448 5044333 5044333 16.45 6.72

16 3286880 3134458 2579717 2588326 2506449 2506449 23.74 20.04

24 2374697 1825802 1782340 1759197 1700872 1700872 28.38 6.84

32 1943073 1432611 1405361 1389043 1344381 1344381 30.81 6.16

40 1485965 1124129 1138165 1075325 1080395 1075325 27.63 4.34

48 1522634 945505 923041 906744 883350 883350 41.99 6.57

56 1665028 836821 814316 824757 751578 751578 54.86 10.19

64 1902274 708727 675423 707474 654393 654393 65.60 7.67

(e.g., for SOC g1023, when Wmax = 64 and Nr = 5, 000). The magnitude of
this reduction depends on the initial SI test set and the core configurations. It
should be noted that the maximum value of Ng does not necessarily lead to
minimum testing time. This is mainly because, when we have a large value of
Ng , we have more SI tests to schedule and conflicts are more likely to arise
during the scheduling process, thus leading to longer testing time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:23

Fig. 14. Test time comparison with different SI test pattern counts.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:24 • Q. Xu et al.

From Tables III, IV, and V, we note that obliviously optimizing SOC test-
architectures, without considering interconnect SI faults, leads to much higher
test time. This gap grows with an increase in the pattern count for the SI faults
and the associated percentage of SI testing time in TSOC. We can also see that
when Wmax is small, there is no significant advantage in using proposed algo-
rithm; in a few cases, worse results are obtained compared to SI-oblivious TAM
optimization (e.g., for SOC p34392, when Wmax = 8 and Nr = 10, 000). This
is mainly because the TAM design solution space is small for smaller values
of Wmax , therefore, similar TAM architectures are obtained with different opti-
mization criteria. When Wmax is higher, we have more freedom during the TAM
design process and hence the improvement offered by the new optimization
procedure is more noticeable. We can also observe that, for SOC p34392, when
Wmax > 32, Tmin remains nearly the same. This is because the testing time for
Core18, the largest embedded core, dominates TSOC.

We attribute the few exceptions to the nature of the heuristics that explore
a limited part of the solution space.

When the number of SI test pattern grows, it is more important to optimize
the test-architecture for both core-internal faults and interconnect SI faults. In
Figure 14, we vary the original SI test-pattern count while keeping the TAM
width at 32 bits. We compare the test time obtained using the proposed method
with the test time for the baseline method based on Goel and Marinissen
[2002]. The number of (given) SI test patterns is increased from 100 to 5,000 for
SOC g1023, and from 1,000 to 50,000 for SOC p34392 and p93791, respectively.
It can be observed that the gap between the two solutions becomes larger when
the number of SI test patterns increases, which highlights the importance
of optimizing the SOC test-architecture for interconnect SI faults for newer
technology generations.

6. CONCLUSION

As feature sizes shrink with newer process technologies, and clock frequencies
increase, the test cost due to interconnect signal integrity faults can be consid-
erable. To cope with this problem, we have presented a new TAM optimization
flow for core-based SOCs that considers test times for both core-internal logic
and core-external signal integrity faults on interconnects. This is in contrast to
prior work on test infrastructure design for core-based system-on-a-chip, which
has focused on minimizing only the test time for core-internal logic. We have
investigated the impact of interconnect SI tests on SOC test-architecture de-
sign and optimization. We have also presented a compaction method for SI test
sets such that the test data volume is reduced. Experimental results for the
ITC’02 benchmarks show that the proposed approach can significantly reduce
the overall testing time for core-internal logic and core-external interconnects.
The test times obtained using this approach are noticeably less than that ob-
tained by a baseline based on the TR—Architect algorithm, which only con-
siders the core-internal test time during optimization. As part of future work,
we are considering the role of different core frequencies for reducing the test
time [Xu and Nicolici 2006]. We are also investigating how interconnect layout
information can be used for more effective test-infrastructure optimization.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:25

ACKNOWLEDGMENTS

The authors thank Professor Nicola Nicolici of McMaster University for moti-
vating discussions and insightful comments.

REFERENCES

ARORA, S. 1998. The approximability of NP-hard problems. In Proceedings of the Annual ACM
Symposium on Theory of Computing. 337–348.

ATTARHA, A. AND NOURANI, M. 2002. Test pattern generation for signal integrity faults on long

interconnects. In Proceedings of the IEEE VLSI Test Symposium (VTS). 336–341.

BAI, X., DEY, S., AND RAJSKI, J. 2000. Self-test methodology for at-speed test of crosstalk in chip

interconnects. In Proceedings of the ACM/IEEE Design Automation Conference (DAC). 619–624.

BECER, M., VAIDYANATHAN, R., OH, C., AND PANDA, R. 2004. Crosstalk noise control in an SoC phys-

ical design flow. IEEE Trans. Comput. Aid. D. 23, 4, 488–497.

CAIGNET, F., DELMAS-BENDHIA, S., AND SICARD, E. 2001. The challenge of signal integrity in deep-

submicrometer CMOS technology. In Proceedings of the IEEE 89, 4, 556–573.

CHEN, L., BAI, X., AND DEY, S. 2001. Testing for interconnect crosstalk defects using on-chip em-

bedded processor cores. In Proceedings of the ACM/IEEE Design Automation Conference (DAC).
317–322.

CHEN, T.-S., LEE, C.-Y., AND KAO, C.-H. 2004. An efficient noise isolation technique for SOC appli-

cation. IEEE Trans. Electr. Dev. 51, 2, 255–260.

CHEN, W.-Y., GUPTA, S. K., AND BREUER, M. A. 1999. Test generation for crosstalk-induced delay

in integrated circuits. In Proceedings of the IEEE International Test Conference (ITC). 191–200.

CUVIELLO, M., DEY, S., BAI, X., AND ZHAO, Y. 1999. Fault modeling and simulation for crosstalk in

system-on-chip interconnects. In Proceedings of the International Conference on Computer-Aided
Design (ICCAD).

DUTTA, S., JENSEN, R., AND RIECKMANN, A. 2001. Viper: a multiprocessor SOC for advanced set-top

box and digital TV systems. IEEE Des. Test Comput. 18, 5, 21–31.

EBADI, Z. S. AND IVANOV, A. 2003. Time domain multiplexed TAM: implementation and comparison.

In Proceedings of the Design, Automation, and Test in Europe (DATE) 732–737.

FIDUCCIA, C. M. AND MATTHEYSES, R. M. 1982. A linear-time heuristic for improving network par-

titions. In Proceedings of the ACM/IEEE Design Automation Conference (DAC). 175–181.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman Publishers.

GOEL, S. K., CHIU, K., MARINISSEN, E. J., NGUYEN, T., AND OOSTDIJK, S. 2004. Test infrastructure

design for the nexperiaTM home platform PNX8550 system chip. In Proceedings of the Conference
Design, Automation, and Test in Europe (DATE). 108–113.

GOEL, S. K. AND MARINISSEN, E. J. 2002. Effective and efficient test architecture design for SOCs.

In Proceedings of the IEEE International Test Conference (ITC), 529–538.

GULER, M. AND KILIC, H. 1999. Understanding the importance of signal integrity. IEEE Circuits
Devic. 15, 6, 7–10.

IEEE STD. 1500. 2004. IEEE Standard for Embedded Core Test—IEEE Std. 1500-2004. IEEE,

New York.

IYENGAR, V., CHAKRABARTY, K., AND MARINISSEN, E. J. 2002. Co-optimization of test wrapper and

test access architecture for embedded cores. J. Elect. Test. 18, 2, 213–230.

JHA, N. AND GUPTA, S. 2003. Testing of Digital Systems. Cambridge University Press.

KAO, W. H., LO, C.-Y., BASEL, M., AND SINGH, R. 2001. Parasitic extraction: current state of the art

and future trends. In Proceedings of the IEEE 89, 5, 729–739.

KUNDU, S., ZACHARIAH, S. T., CHANG, Y.-S., AND TIRUMURTI, C. 2005. On modeling crosstalk faults.

IEEE Trans. Comput. Aid. D. 24, 12, 1909–1915.

LARSSON, E. AND FUJIWARA, H. 2003. Test resource partitioning and optimization for SOC designs.

In Proceedings of the IEEE VLSI Test Symposium (VTS). 319–324.

LARSSON, E. AND PENG, Z. 2002. An integrated framework for the design and optimization of SOC

test solutions. J. Elect. Test. 18, 4/5, 385–400.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

4:26 • Q. Xu et al.

MARINISSEN, E. J. ET AL. 1998. A structured and scalable mechanism for test access to embedded

reusable cores. In Proceedings of the IEEE International Test Conference (ITC), 284–293.

MARINISSEN, E. J., GOEL, S. K., AND LOUSBERG, M. 2000. Wrapper design for embedded core test.

In Proceedings of the IEEE International Test Conference (ITC), 911–920.

MARINISSEN, E. J., IYENGAR, V., AND CHAKRABARTY, K. 2002. A set of benchmarks for modular testing

of SOCs. In Proceedings of the IEEE International Test Conference (ITC), 519–528.

MASSOUD, Y., MAJORS, S., KAWA, J., BUSTAMI, T., MACMILLEN, D., AND WHITE, J. 2002. Managing

On-Chip Inductive Effects. 10, 6 (December), 789–798.

NAFFZIGER, S. 1999. Design methodologies for interconnects in GHz+ICs. In Proceedings of the
International Solid State Circuits Conference (ISSCC).

NAHVI, M. AND IVANOV, A. 2004. Indirect test architecture for SoC testing. IEEE Trans. Comput.
Aid. 23, 7, 1128–1142.

NATARAJAN, S., BREUER, M. A., AND GUPTA, S. K. 1998. Process variations and their impact on circuit

operation. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems (DFT). 73–81.

NORDHOLZ, P., TREYTNAR, D., OTTERSTEDT, J., GRABINSKI, H., NIGGEMEYER, D., AND WILLIAMS, T. W. 1998.

Signal integrity problems in deep submicron arising from interconnects between cores. In Pro-
ceedings of the IEEE VLSI Test Symposium (VTS). 28–33.

NOURANI, M. AND ATTARHA, A. 2001. Built-in self-test for signal integrity. In Proceedings of the
ACM/IEEE Design Automation Conference (DAC). 613–618.

SEKAR, K. AND DEY, S. 2002. LI-BIST: a low-cost self-test scheme for SoC logic cores and inter-

connects. In Proceedings of the IEEE VLSI Test Symposium (VTS). 417–422.

SELVAKKUMARAN, N. AND KARYPIS, G. 2003. Multi-objective hypergraph partitioning algorithms for

cut and maximum subdomain degree minimization. In Proceedings of the International Confer-
ence on Computer-Aided Design (ICCAD). 726–733.

SIRISAENGTAKSIN, W. AND GUPTA, S. K. 2002. Enhanced crosstalk fault model and methodology to

generate tests for arbitrary inter-core interconnect topology. In Proceedings of the IEEE Asian
Test Symposium (ATS). 163–169.

TABATABAEI, S. AND IVANOV, A. 2002. An embedded core for sub-picosecond timing measurements.

In Proceedings of the IEEE International Test Conference (ITC). 129–137.

TEHRANIPOUR, M. H., AHMED, N., AND NOURANI, M. 2003. Testing SoC interconnects for signal

integrity using bounary scan. In Proceedings of the IEEE VLSI Test Symposium (VTS). 158–

163.

TEHRANIPOUR, M. H., AHMED, N., AND NOURANI, M. 2004. Testing SoC interconnects for signal

integrity using extended JTAG architecture. IEEE Trans. Comput. Aid. D. 23, 5, 800–811.

VARMA, P. AND BHATIA, S. 1998. A structured test re-use methodology for core-based system chips.

In Proceedings of the IEEE International Test Conference (ITC), 294–302.

WANG, L.-T., STROUND, C. E., AND TOUBA, N. A., Eds. 2007. System-on-Chip Test Architectures:
Nanometer Design for Testability. Morgan Kaufmann Pub.

XU, Q. AND NICOLICI, N. 2003. On reducing wrapper boundary register cells in modular SOC

testing. In Proceedings of the IEEE International Test Conference (ITC), 622–631.

XU, Q. AND NICOLICI, N. 2004. Multi-frequency test access mechanism design for modular SOC

testing. In Proceedings of the IEEE Asian Test Symposium (ATS), 2–7.

XU, Q. AND NICOLICI, N. 2005. Resource-constrained system-on-a-chip test: a survey. In Proceed-
ings of the IEEE Conference on Computers and Digital Techniques 152, 1, 67–81.

XU, Q. AND NICOLICI, N. 2006. Multifrequency tam design for hierarchical socs. IEEE Trans. Com-
put. Aid. D. 25, 1, 181–196.

YANG, S.-Y., PAPACHRISTOU, C. A., AND TAIB-AZAR, M. 2001. Improving bus test via IDDT and bound-

ary scan. In Proceedings of the ACM/IEEE Design Automation Conference (DAC). 307–312.

ZHANG, T. AND SAPATNEKAR, S. S. 2004. Simultaneous shield and buffer insertion for crosstalk noise

reduction in global routing. In Proceedings of the International Conference on Computer Design
(ICCD). 93–98.

ZHAO, D. AND UPADHYAYA, S. 2005. Dynamically partitioned test scheduling with adaptive TAM

configuration for power-constrained SoC testing. IEEE Trans. Comput. Aid. D. 24, 6, 956–

965.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

SOC Test-Architecture Optimization • 4:27

ZHAO, Y., DEY, S., AND CHEN, L. 2004. Double sampling data checking technique: an online testing

solution for multisource noise-induced errors on on-chip interconnects and buses. IEEE Trans.
VLSI Syst. 12, 7, 746–755.

ZOU, W., REDDY, S. M., POMERANZ, I., AND HUANG, Y. 2003. SOC test scheduling using simulated

annealing. In Proceedings of the IEEE VLSI Test Symposium (VTS), 325–330.

Received December 2007; revised May 2008; accepted September 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 4, Pub. date: January 2009.

