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Abstract—Existing approaches for modular manufacturing test of core-based system-on-a-chip (SOC) devices do not provide any

explicit mechanism for delivering two-pattern tests in the broadside mode, which is necessary to achieve reliable coverage of delay and

stuck-open faults. Although wrapper input cells can be enhanced with two memory elements to address this problem, this will incur a

large test area overhead. This paper proposes a novel architecture for broadside two-pattern test of core-based SOCs without any loss

in fault coverage and without increasing the size of the wrapper input cells. The proposed solution combines the dedicated bus-based

test access mechanism and functional interconnects for test data transfer in order to provide full controllability of the wrapper input cells

in the two consecutive clock cycles required by two-pattern testing. New algorithms for test access mechanism design and test

scheduling are proposed and design trade-offs between test area and testing time are discussed using experimental results.

Index Terms—System-on-a-chip, embedded core delay test.
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1 INTRODUCTION

ONE way to model digital integrated circuits’ (ICs)
physical defects is to abstract them as stuck-at faults

[4]. The stuck-at fault model has been extensively studied
and was shown to be effective in verifying the logic
correctness of digital circuits. However, digital ICs are
generally synchronized using clock signals, which may also
lead to timing failures without logic errors, i.e., circuits fail
to operate at the specified speed but can produce correct
outputs at a slower or faster speed. Although application of
stuck-at fault tests at rated-speed can uncover some delay
defects, it was shown in [6], [30] that this technique is not
sufficient. Functional testing can be used to address timing
verification and even detection of unmodeled defects;
nevertheless, its main drawback lies in the low fault
coverage for today’s complex circuits, whose transistor to
pin ratio is continuing to increase. Moreover, with the
shrinking feature size of the very large scale integration
(VLSI) technology, more timing-related defects are emer-
ging [7]. As a result, to increase circuit reliability and
manufacturing yield through speed sorting, semiconductor
manufacturers are constrained to develop delay fault tests
and the associated testing strategies.

To apply delay fault tests, at least two ordered patterns

in consecutive clock cycles are necessary: The first launch

(initialization) pattern V1 initializes the circuit to a certain

state and then the second capture (excitation) pattern V2

provokes the fault and captures its effect on the outputs. In

addition to testing delay faults, two-pattern tests can also be

used to detect the CMOS stuck-open faults, which are used
to model the defects that cause the transistors to be
permanently off [34]. It should be noted, however, when
applying two-pattern tests for delay faults, the outputs
must be sampled close to its operating frequency, while, for
stuck-open faults, they can be applied at slower speed.

There are three main approaches to extend the main-
stream scan-based testing technique to handle two-pattern
tests [33]: 1) enhanced scan, which requires two sequential
elements in every scan cell, 2) skewed-load testing (also called
launch-on-shift, launch-from-shift, or last-shift-launch),
which uses the last-shifted pattern in the scan chain as the
excitation vector, and 3) broadside testing (also called launch-
on-capture, launch-from-capture, or functional justifica-
tion), where the sequential (pseudo-input) part of the
second pattern is generated through the combinational
block. It is important to note that primary inputs (PIs) are
assumed to be fully controllable in all three techniques.

Although enhanced scan can apply any arbitrary vector
pairs and, hence, test generation is easier than the other two
techniques, it is rarely used because of its large area and
performance overhead [36]. Both skewed-load testing and
broadside testing, however, work with standard scan
design (each scan cell contains only one memory element)
and are widely accepted in practice. On the one hand,
skewed-load testing offers an advantage over broadside
testing mainly in the ease of test generation and less test
pattern count. However, its main drawback is that the scan
enable (SE) signal must operate at rated speed because it
must toggle before and after the capture edge of the high-
speed clock [24], [25], [32]. The strict delay and skew design
requirements for SE signal pose a big challenge for physical
design of the circuit. On the other hand, the timing of SE in
broadside testing is not critical because both launch and
capture occur in normal functional mode. In addition, test
application via skewed-load testing delivers tests that may
not be sensitizable in the normal operation, which can cause
unnecessary yield loss [33]. In contrast, broadside testing
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limits the space of the possible consecutive patterns to only
those that affect the timing in the normal mode, thus
covering the worst-case operational behavior of the manu-
factured circuit. Therefore, in this paper, we focus on the
broadside testing technique.

Since there has been extensive research on design for test
(DFT) and automatic test pattern generation (ATPG) for
two-pattern tests over the last couple of decades [4], the
question is how do the existing methods adapt to core-
based SOCs [43]? This adaptation is an open issue since, in
addition to the standard test-quality problems, core-based
SOCs present new challenges, in particular, in terms of test
development for core providers and test access mechanism
(TAM) design for system integrators. Furthermore, as
pointed out in [22] by Kapur and Williams, a higher test
quality for each core is required to achieve acceptable overall
quality of the SOC, when compared to the case that the core itself
is a chip.

Although IEEE Std. 1500 (i.e., the IEEE standard for
embedded core test) [14], [29] and recent research advances
[41] support structural scan tests, to the best of our knowl-
edge, most prior work in this domain is based on one-pattern
test. In this paper, we propose a novel test architecture for two-
pattern test of core-based SOCs with limited DFT area using the
broadside testing approach, where test data is transferred through
both the dedicated bus-based TAMs and functional interconnects
between cores. We also adapt an existing approach to optimize
the new test architecture in terms of test application time
(TAT). Experiments on the ISCAS89 [3] and ITC’02 [28]
benchmark circuits are presented to show the benefits of the
proposed methodology.

The rest of this paper is organized as follows: Section 2
reviews the related work on testing core-based SOC and
Section 3 motivates the research presented in this paper.
The proposed SOC test architecture for two-pattern test and
the necessary core-level DFT support are presented in
Section 4. Next, in Section 5, we adapt an existing wrapper/
TAM cooptimization algorithm to optimize the proposed
architecture at the system level. Section 6 contains our
experimental results. Finally, Section 7 concludes this
paper.

2 PRIOR WORK

Zorian et al. [43] proposed a conceptual SOC test
architecture (as illustrated in Fig. 1) that employs a modular
test approach in which special TAMs are built to transport
test data between test sources/sinks (e.g., tester) and the
core under test (CUT). Embedded cores are isolated from

surrounding logic and connected to the TAMs using core
wrappers. This “divide and conquer” test strategy helps to
reduce the test generation time and facilitates test reuse.

2.1 Test Access to Embedded Cores

One of the major challenges for SOC testing is to design an
efficient TAM to link the test sources and sinks to the CUT.
There are a number of solutions for accessing the embedded
cores from chip’s I/O pins [43]:

1. direct parallel access via pin muxing,
2. serial access and core isolation through a boundary

scan-like architecture (also called isolation ring
access mechanism),

3. functional access through functional buses or trans-
parency of embedded cores, and

4. access through a combination of core wrappers and
dedicated test buses.

Direct access strategy [15] introduces a large routing
overhead and does not scale well when the number of
embedded cores and/or core terminals is large. Isolation
ring access [35], [39] solved the above problems, however,
at the cost of very long test application time. Functional
access [5], [8], [31], [42] significantly reduce the DFT
hardware cost by introducing core transparency or using
the existing functional paths as test paths. These test
strategies, however, dramatically increase the system
integrator’s test planning effort, especially for complex
SOCs with a large number of cores and, hence, are not
widely accepted in industry.

Since time-to-market is the overriding goal of core-based
design, the ease with which cores can be designed and
tested is crucial. Therefore, the increased size of the logic
and routing resources consumed by dedicated test infra-
structure is acceptable for large SOC designs. Aerts and
Marinissen [1] described three basic types of bus-based test
architectures: 1) the Multiplexing architecture, 2) the
Daisychain architecture, and 3) the Distribution architecture.
In the Multiplexing and the Daisychain architecture, all cores
get full access to all TAMs, while, in the Distribution
architecture, the total TAM wires are distributed over all
cores. Two more popular architectures that support more
flexible test schedules are proposed based on the above
architectures: The Test Bus architecture presented in [37] can
be seen as a combination of the multiplexing and the
distribution architectures, while the TestRail architecture
proposed in [26] is a combination of the daisychain and the
distribution architecture.

Most of the relevant research on SOC testing, as shown
in the following sections, has been focused on dedicated test
bus access, where the embedded cores are connected to the
TAM wires using core wrappers, due to its modularity,
scalability, and flexibility.

2.2 Embedded Core Wrapper Design and
Optimization

Marinissen et al. [26] described a scalable core wrapper
called TestShell, which forms the basis for the IEEE Std. 1500
core wrapper [14]. Wrapper boundary register (WBR) cell is
used in the wrapper to provide controllability and
observability for each core terminal. In the INTEST mode,
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Fig. 1. Conceptual infrastructure for SOC testing [43].



used for testing the core’s internal logic, the input WBR cells

act as primary inputs to the CUT, while the output

WBR cells act as primary outputs. In the EXTEST mode,

when all the embedded cores are wrapped, the goal is to

test the interconnect wires or logic between the cores. Thus,

the output WBR cells provide stimuli and the input WBR

cells capture responses from the interconnect, which are

blocked in the input WBR cells and do not get propagated

to the core’s internal logic. A typical wrapper input cell

(WIC) implementation is shown in Fig. 2, which contains

only one flip-flop and, hence is not able to provide two-

pattern tests in consecutive clock cycles. It is important to

note, however, that IEEE Std. 1500 standardizes only the

wrapper interface and, hence, the internal structure of the

wrapper can be adapted to the specific SOC test require-

ments.
To the best of our knowledge, Vermaak and Kerkhoff

[38] presented the only 1500-compatible wrapper design for

delay fault testing in the literature, based on the digital

oscillation test method introduced in [2]. To be able to use

this method, they introduced extra multiplexers and a cell

address register to each WBR cell. Consequently, this

method is expensive in terms of DFT area. In addition, this

approach is only suitable for combinational cores because

only paths between the core’s inputs and outputs are tested.
Since the TAT of a core is dependent on the maximum

wrapper SC length, the main objective in wrapper optimi-

zation is to build balanced wrapper scan chains (wrapper

SCs). Marinissen et al. [27] addressed this problem by

describing a COMBINE heuristic for hard cores. Later,

Iyengar et al. [17] proposed the Design wrapper algorithm

based on the Best Fit Decreasing heuristic for the Bin

Packing problem, which tries to minimize the core’s TAT

and required TAM width at the same time. They also

showed an important feature of wrapper optimization for

hard cores, i.e., the TAT varies with TAM width as a

“staircase” function. According to this feature, only a few

TAM widths between 1 and Wttl (the total TAM width) are

relevant when assigning TAM resources to hard cores and

these discrete widths are called pareto-optimal TAM widths.

2.3 SOC Test Architectures

Based on the TAM lines assignment strategy, the modular
test architectures (i.e., Test Bus and TestRail architectures)
can be further categorized into the following two types [20]:

. Fixed-width test bus architecture (Fig. 3a), in which the
total TAM width is partitioned among several test
buses with fixed-width TAM wires. It operates at the
granularity of TAM buses and each core in the SOC
is assigned to exactly one of them.

. Flexible-width test bus architecture (Fig. 3b), in which
TAM wires are allowed to fork and merge instead of
just partitioning into TAM buses. It operates at the
granularity of TAM wires and each core in the SOC
can get assigned any TAM width as needed.

A vast body of research has been undertaken for
optimizing both types of architectures [41]. For fixed-width
test architectures, Iyengar et al. [17] first formulated the
integrated wrapper/TAM cooptimization problem and
broke it down into a progression of four incremental
problems in order of increasing complexity. An integer
linear programming (ILP) model was then presented to
solve the problem. To decrease the CPU running time, the
same authors combined efficient heuristics and ILP meth-
ods in [18]. Koranne [23] formulated the test scheduling
problem as a network transportation problem and pre-
sented a 2-approximation algorithm to solve it. While the
above approaches concentrate on Test Bus architecture,
Goel and Marinissen [9] presented an efficient heuristic,
TR�Architect, which works for both Test Bus and TestRail
architectures. In [10], [11], TR�Architect was extended to
account for the wire length cost and test control, respec-
tively. For flexible-width test architectures, Huang et al. [13]
first mapped the test architecture optimization to the well-
known two-dimensional bin packing problem and pro-
posed a heuristic method based on the Best Fit Decreasing

472 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 2. A regular wrapper input register cell implementation [29].

Fig. 3. Modular SOC test architecture categorization. (a) Fixed-width

TAM bus. (b) Flexible-width TAM bus.



algorithm to solve it. Iyengar et al. [20] presented an
improved heuristic for the rectangle packing problem,
when cores are supplied with fixed-length scan chains.
Next, in [19], the same authors extended their algorithm to
incorporate precedence and power constraints, while
allowing a group of tests to be preemptable. Later, in [21],
they considered minimizing the tester buffer reloads and
multisite testing. In [44], Zou et al. used sequence pairs to
represent the placement of the rectangles, borrowed from
the place-and-route literature and then employed a simu-
lated annealing technique to find a better test schedule.

All the above modular test architectures and their
optimization approaches consider only one-pattern tested
cores. In the next section, we discuss how to adapt the
existing methodologies for two-pattern tests, which moti-
vates our proposed test architecture.

3 MOTIVATION

No explicit mechanism for two-pattern test of core-based
SOC is provided in the public domain. One possible method
is to exploit SOC’s architecture-specific information and to
reuse on-chip functional interconnect as a test access
mechanism [5], [8], [31], [42]. Regardless of their potential
benefits in the long term, unless implemented automatically
using a reliable test tool flow, these architecture-specific

DFT methodologies do not provide reusability, flexibility,

and interoperability. Therefore, we only consider how to

apply two-pattern test for the modular bus-based SOC test

architecture in this paper. The main challenge here lies in

the fact that the cores’ inputs are difficult to be fully

controlled in consecutive clock cycles with regular IEEE Std.

1500 wrapper cells, thus resulting in fault coverage loss if

broadside delay testing is used.
In broadside testing, the pseudo-input part of the

excitation vector (i.e., the part that is loaded in the internal

flip-flops) is generated through functional justification.

However, in order to emulate the functional core behavior,

we analyze two options for controlling the PIs of the

embedded core that can reuse the existing algorithms for

TAM design and test scheduling:

. Non-Controlled Primary Inputs (NC-PI): This test
scenario assumes that PIs are scanned for fully
controlling the initialization vector, however, they
keep the same value (frozen) for the excitation
vector by asserting wsc to 1 during the launch cycle;
the control of the input WBR cells and the
associated broadside ATPG model are shown in
Fig. 4a and Fig. 4c, where labels on the wsc and wci
multiplexer controls show the values during the
launch/capture cycle;
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Fig. 4. Wrapper input cells and combinational ATPG models for broadside testing when adapting existing approaches to control embedded core’s

primary inputs. (a) NC � PI standard WIC control. (b) SC � PI standard WIC control. (c) NC � PI two-pattern ATPG model. (d) SC � PI two-

pattern ATPG model.



. Serially Controlled Primary Inputs (SC-PI): After the
PIs are scanned in for the initialization vector, in
order to obtain the excitation vector, they are
updated through an extra shift by resetting wsc to
a 0 (using TAM data as input for the first WBR cell)
during the launch cycle; the control of the input
WBR cells and the associated broadside ATPG
model are shown in Fig. 4b and Fig. 4d.

Since the NC � PI and SC � PI control mechanisms can
reuse the existing TAM design and test scheduling
algorithms, an obvious question is why do we need a new
test architecture? The answer lies in the quality of delay tests.
While the delay fault coverage loss caused by the connec-
tion between pseudo-output (PSO) 1 and pseudo-input
(PSI) 2 must be ignored (these are redundant faults and will
never be activated during functional operation, which is an
advantage of broadside testing over skewed-load testing
and enhanced-scan [33]), the coverage loss due to PI sharing
between the two time frames (see both NC � PI and SC �
PI in Fig. 4c and Fig. 4d, respectively) is unacceptable. In
addition, another difficulty to using the SC � PI control
mechanism (but not the NC � PI control mechanism) is
that core providers might not be able to provide the SC �
PI test set because they need to tune their ATPG engine to
support this scenario.

The limitation of the NC � PI and SC � PI control
mechanisms can be easily illustrated by testing the b and
b0 inputs of the OR and AND gates for falling and rising
transitions, respectively (see Fig. 5). For example, if OR
input b precedes input a in the wrapper scan chain, then the
falling transition on input b is untestable by NC � PI and
SC � PI since either freezing (NC � PI) or shifting
(SC � PI) the PI value, b ¼ 1 required for initialization will
conflict with a ¼ b ¼ 0 necessary for excitation in the
following second capture cycle. One might argue that this
problem can be solved by structural modifications (i.e.,
wrapper cell reordering), however, this may be prohibited
due to routing constraints and it also brings additional
design effort due to its test set-dependence. In addition,
two-pattern test set compaction for NC � PI and SC � PI
control mechanisms will introduce additional constraints
(caused by freezing and shifting), which are difficult to
satisfy when the care-bit density in each vector is increasing
(i.e., when test set size decreases).

Based on the analysis in [22], if the system integrator
wants to achieve 90 percent delay fault coverage, when there
are five cores requiring delay tests, each core requires a
delay fault coverage of about 98 percent. Therefore, to
achieve such high fault coverage, a Parallelly-Controlled
Primary Inputs (PC-PI) ATPG model, as shown in Fig. 6a, is
necessary. This PC � PI ATPG model guarantees that any
primary input value can be justified for both initialization
and excitation vectors. The easiest way to implement such an

ATPG model is to double-buffer the core’s wrapper input
cells (called enhanced wrapper input cell), as depicted in Fig. 6b.
When the CUT is in one-pattern test mode (e.g., stuck-at
test), the load through two flip-flops will incur a needless
clock cycle for each core input. Hence, a multiplexer, TP
mux, is introduced to bypass FF2 in one-pattern test mode
to reduce its loading time. As observed in Fig. 6b, each
enhanced WIC introduces an extra flip-flop and an extra
multiplexer (that is, an extra scanned flip-flop (SFF))
compared with regular WIC design. Since embedded cores
have no pin constraints and may have a large number of
I/Os, the enhanced WIC cell may incur a large DFT area
overhead.

To lower the DFT area overhead without loss of fault
coverage, in this paper, we describe an approach that is
able to implement the PC-PI ATPG model with standard
WIC design. The proposed PI control mechanism (as
shown in Fig. 6c), in which the second test vector V2 is
justified through a parallel load from the core’s producer1

cores, leads to a producer=CUT test architecture (discussed
in detail in the next section). In each test session, the
active cores are divided into producers (cores that provide
PI values for excitation) and CUTs (cores tested in the
current session through broadside test).

4 PROPOSED ARCHITECTURE FOR

TWO-PATTERN TEST

The proposed approach considers, as a starting point, that
each core in the SOC is part of the IEEE Std. 1500
architecture and, hence, it is 1500-wrapped [14]. In addition,
user defined logic (UDL) is also treated as a 1500-wrapped
core. In this section, we first introduce the generic two-
pattern testing process using the proposed architecture and
then we discuss the necessary DFT support for the
proposed methodology.

4.1 The Two-Pattern Testing Process

The proposed approach uses the input WBR cells of the
CUT to control the PIs of the launch vector and it exploits its
producers’ output WBR cells to control the PIs of the
excitation vector. As shown in Fig. 7, this test session-level
producer/CUT dichotomy leads to a division of the SOC’s
TAM into producer TAMs and CUT TAMs, which will be
detailed in Section 5.

The proposed broadside two-pattern testing process can
be explained as follows: The IEEE Std. 1500 instruction set is
extended to support two custom modes, LOADPROD for
producer cores and TPTEST for the two-pattern tested CUT.
In the TPTEST mode, the loading of the initialization vector
into the internal scan chains and the application of the
initialization vector are done in the same way as for the
INTEST mode. However, since TPTEST requires another
capture cycle, an internal control mechanism for applying
the excitation vector must be provided. On the one hand,
the PSI of the excitation pattern (the internal scan chain
part) is generated through functional justification. On the
other hand, the PI part is provided using the functional
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1. For a given Corei, the producers are the cores which feed its primary
inputs in the normal (functional) mode.

Fig. 5. Fault coverage loss with the NC � PI and SC � PI ATPG

models.



inputs by setting the provider cores in the producer

LOADPROD mode. Although simply configuring the

producers in EXTEST mode can finish the same mission,

it requires extra time to go through their input WBR cells.

As a result, we propose that only the output WBR cells are

connected as scan chains in the producer TAM lines to

speed up this loading time. This can be seen in Fig. 7a and

Fig. 7b, where two test sessions are required to test a

hypothetical SOC for delay faults or stuck-open faults. To

ensure two consecutive controllable PI vectors, the CUT’s

WBR multiplexer control signals are switching between the

input WBR cells of the CUT for initialization and the output
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Fig. 6. PC-PI ATPG model and the two corresponding wrapper input cell designs. (a) PC � PI two-pattern ATPG model [12]. (b) PC � PI enhanced

WIC control. (c) PC � PI standard WIC control.

Fig. 7. Proposed approach for two-pattern test of core-based SOCs. (a) Session 1 for TPTEST of core 3. (b) Session 2 for TPTEST of cores 1 and 2.



WBR cells of the producers for excitation. By exploiting the
existing producers’ output WBR cells for storing the PI part
of the excitation vector, an emulation of the enhanced-scan is
provided only for the PIs of each core. It is important to note
that, to provide at-speed delay fault testing, the multiplexer
control signals for WBR cells must switch at-speed, while,
for stuck-open faults, they can switch at lower speed.

4.2 1500-Compatible Core Wrapper Design

Additional DFT hardware is necessary to decode the newly
introduced instructions for two-pattern test and ensure the
proper activities of the core wrapper in TPTEST or
LOADPROD mode.

To support the proposed TPTEST mode, which applies
two consecutive test patterns as in the PC-PI ATPG model,
in the CUT core wrapper, we need to add some logic to
decode the newly introduced TPTEST instruction. It is
important to note, however, the at-speed switch of the
wci signal (see Fig. 6c) for delay fault testing requires the
core test wrapper to be controlled by a rated-speed clock
signal. To support the proposed LOADPROD mode for the
producer cores, however, in addition to the extra logic to
decode the new LOADPROD instruction, the wrapper
needs to be revised to be able to load test data into the
output wrapper boundary cells. As shown in Fig. 8, for the
example core A, two producer TAM lines are used to load
test data into its output WBRs in LOADPROD mode (the
real lines indicate which paths are enabled). In any other
mode (Fig. 8b shows Bypass mode), the producer TAM lines
bypass core A through PBY registers. Hence, four extra
multiplexers and a 2-bits bypass register PBY are added to
the wrapper in this example, which is much smaller when
compared to the enhanced WIC design that implements an
extra SFF for each core input terminal. In addition, buffers
may need to be inserted to increase the driving strength of

the wci signal for at-speed switching purposes. The DFT
cost of the buffer insertion is quite small when compared to
the enhanced WIC design. It should also be noted that
when, in between cores, there is some unwrapped logic in
addition to wires (this situation is not the focus of this
paper), we can let the CUT inputs that are not driven from
producers directly be wrapped with enhanced wrapper
input cells and let the other inputs be wrapped with IEEE
Std. 1500 regular wrapper input cells. The above does not
affect the operation of the proposed test architecture.

In summary, when compared to a standard IEEE
Std. 1500 wrapper implementation (i.e., INTEST, EXTEST,
and BYPASS), only several logic gates to decode the new
TPTEST and LOADPROD instructions, a few multiplexers
to chain the output WBR cells in LOADPROD mode, and a
small number of buffers for wci signal at-speed switching
need to be introduced to support two-pattern test, which is
usually negligible.

5 TAM DESIGN AND TEST SCHEDULING

Having introduced the producer=CUT test architecture
supported by the new LOADPROD and TPTEST instructions,
the PC � PI ATPG model, and the wrapper design required
on the core provider’s side, this section concentrates on the
TAM design and test scheduling for two-pattern test, which is
necessary on the system integrator’s side.

5.1 Test Conflicts

It is known that, in the INTEST mode, embedded cores can
be tested concurrently as long as they use different TAM
lines; however, this is not the case for the proposed TPTEST
mode because the CUT needs the cooperation of its
producers to supply the excitation vector. Two new types
of test conflicts are introduced as follows:
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Fig. 8. An example producer core in (a) LOADPROD and (b) Bypass modes.



. Producer-CUT Conflict: Producers and the CUT
cannot be tested at the same time. This is because,
the producer needs to utilize its output WBRs to
capture its test responses; however, at the same time,
the CUT needs the producer’s output WBRs to
provide test stimuli. If they are tested concurrently,
the test data will be corrupted. For example, in Fig. 7,
Core 3 should not be tested with Core 1 and Core 2
concurrently.

. Shared-Producer Conflict: Two cores which directly
connect to the same producer(s) for the excitation
vector cannot be tested at the same time; this is
because both of them require the output WBRs of the
same producer(s) to provide the test stimuli. For
example, in Fig. 7, if Core 2 also gets inputs from
Core 3, then Core 1 and Core 2 should not be tested
concurrently.

When two cores are not directly connected, but they
communicate through functional buses, they may imply the
test conflicts described above and, hence, may not be able to
be tested concurrently. For example, as shown in Fig. 9,
since Core 1, Core 2, and Core 4 all can transmit data to the
bus, it is possible to select any of them to be the producer of
the other cores on bus to provide the excitation vector. We
name this type of producer a bus producer. A different
selection of bus producers will generate different test
conflicts between each other, as shown in the following
example.

Example 1. Suppose Core2 is selected to be the producer of
Core1 and Core4 serves as the producer of Core3,
obviously Core1 and Core2, Core3 and Core4 cannot be
tested concurrently because of the producer-CUT test
conflict. However, Core1 and Core3 can be tested at the
same time; this is because their producer (Core2 and
Core4, respectively) can be loaded at the same time and
only during the launch/capture cycles does the func-
tional bus need to be shared. Therefore, the additional
testing time penalty is determined by serializing the
capture cycles for Core1 and Core3 tested through the
functional bus. The added couple of clock cycles cause
negligible penalty on scan time. However, if both Core1

and Core3 get test stimuli from Core2, there is shared-
producer conflict between them and they cannot be
tested concurrently.

If there are test conflicts between cores, then these cores are
called incompatible cores and they cannot be scheduled
concurrently during test. From Example 1, different bus
producer configurations will generate different test conflicts
between them and, hence, influence the SOC test schedule.
We propose the Assign Bus Producer algorithm for the
selection of bus producers, as shown in Fig. 10. The main idea

is to decrease the total test conflicts of the SOC. The first while

loop (lines 2-8) finds those cores that are already incompatible

on the bus and assigns bus producers to each other. This will

not introduce any more test conflicts in the SOC. Afterward,

for the remaining cores that do not have an already

incompatible producer on the same bus, the second while

loop (lines 9-16) simply assigns bus producers for them in

sequence. After analyzing the test conflicts between each

core, we construct a test incompatibility graph (TIG) by

treating each core as a node and by adding an edge between

two nodes if the cores are incompatible. This TIG is used in

the test scheduling Algorithm (Adapted_TAM_Schedule_

Optimizer) described in the following sections.

5.2 TAM Division into Producer/CUT Groups

Producers and CUTs should be fed from two separate TAM

groups, otherwise additional indirect test conflicts may be

introduced. This can be seen from the following example:

Example 2. Suppose the test data is transferred using

shared TAM lines between producers and CUTs during

two-pattern test. Core1 and Core2 are connected to

separate TAM lines, however, Core1 shares its TAM

lines with Core3, which is a producer to Core2. To test

Core2 in TPTEST mode, we need Core3 in LOADPROD

mode since it shares TAM lines with Core1. Loading a

pattern in Core1 is prohibited at this time, although it

uses separate TAM lines to Core2. Hence, this indirect

resource conflict leads to test conflict between Core1 and

Core2.
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Fig. 9. Test conflicts for multiple cores on the same bus.

Fig. 10. Procedure for assigning producer cores on functional buses.



A neat solution to this problem, which is important in
particular for complex SOCs with a large number of two-
pattern tested cores, is to divide the TAM lines into two
groups: Gprod for loading the PIs of the excitation patterns in
the producers’ outputs and GCUT for loading the initializa-
tion patterns and unloading the test responses from the
CUT. In this way, for the above example, Core3 in
LOADPROD mode does not affect loading Core1 since they
use TAM lines from different TAM groups (hence, no
additional test conflict between Core1 and Core2 exists).

For the GCUT group, a flexible-width test bus architecture
is used to support efficient test scheduling. For the Gprod

group, however, we use a daisychain architecture, i.e., long
scan chains are constructed over the output terminals of the
cores that serve as producers during test, as shown in Fig. 7.
Bypasses are introduced in order to shorten the loading
time because only a few cores serve as producers at a
specific test session. The main reason for using the
daisychain architecture for the Gprod group is to simplify
the control complexity. When a producer core is in the
LOADPROD mode, the producer TAM lines go through the
core’s output wrapper boundary cells; otherwise, they go
through bypass registers (note that it is unnecessary to
introduce extra producer bypass instruction because it is
compatible with the standard 1500 Bypass mode). As a
result, although the two-pattern test of CUT involves
several producers, these producers can be controlled by
the LOADPROD instructions independently and no extra
control signals need to be supplied. In addition, the
daisychain architecture for Gprod can almost always give a
near optimal loading time for a given producer TAM width
Wprod. Suppose the number of the outputs of a producer is
No, then its loading time will be d No

Wprod
e. As long as Wprod �

No (which is realistic in most of the cases), there is no waste
for Gprod TAM resources except the few bypass cycles. This
leads to a near optimal loading time for producers in each
test session.

5.3 Two-Pattern Test Scheduling

The introduction of producer/CUT model and TAM
division into the Gprod and GCUT groups, leads to new test
scheduling algorithms, as explained in this section. Note
that this paper does not directly address the design of
hierarchical TAMs since we assume that the SOC hierarchy
is flattened during TAM design (hierarchical cores are
considered as being at the same level in test mode). This
paper also does not consider test scheduling constraints
introduced by precedence relationship, preemption, and
power, as in [16].

Problem PTP�opt. Given the test set parameters for each core
(including the number of primary inputs, primary outputs,
bidirectional I/Os, test patterns and scan chains, and each scan
chain length), the functional relationships between cores R, the
total TAM width Wttl for the SOC, determine the width of
each TAM group (Wprod, WCUT corresponding to Gprod,
GCUT ), the assigned TAM width and the wrapper design for
each core and a test schedule for the entire SOC such that:
1) the total number of TAM lines used at any time does not
exceed Wttl and 2) the overall SOC testing time is minimized.

The proposed algorithm TAM_Division_And_Schedule to
solve PTP�opt is shown in Fig. 11. The inputs are the set of
cores (Cset), the total TAM width (Wttl), and the functional
interconnect relationship between cores (R). The outputs
are the number of TAM lines allocated to each group Wprod

and WCUT , the wrapper design for each core, SOC test
schedule schedule, and the overall test application time
TATsoc. The optimal TAM division, i.e., the combination of
Wprod and WCUT that gives the minimum TATsoc of the SOC,
is acquired through enumeration. The enumerative algo-
rithm begins by assigning bus producers for those cores on
buses (line 1), then, based on the test conflicts determined
by the functional interconnect relationship between cores
(R), a test incompatibility graph (TIG) (discussed in
Section 5.1) is created (line 2). Next, inside the loop (lines
3 to 7), the algorithm will find the optimal TAM division
and the system TAT TATsoc by enumerating WCUT from the
maximum possible value Wttl � 1 down to 1.

It should be noted that, during the enumeration process,
we do not need to do TAM design for the Gprod group
because it is already fixed using the daisychain architecture.
To optimize the GCUT TAM group, we adapt an existing
generalized rectangle packing algorithm TAM_Schedule_
Optimizer [20]. TAM_Schedule_Optimizer first finds out the
pareto-optimal TAM widths for all cores. Next, a “preferred
TAM width” [20] for each core is identified from these
pareto-optimal TAM widths such that the core’s TAT is
within a small percentage of its testing time at a maximum
allowable TAM width. The test for each core is then
scheduled using the preferred width as long as there are
enough TAM lines available. If the number of available
TAM lines is insufficient to schedule any new tests, the
resulting idle time is filled using several heuristics that
insert tests to minimize the idle time. Whenever a currently
running test completes, the number of available TAM lines
is incremented and the algorithm repeats the scheduling
process for the remaining tests. This is a rather simple
description of the algorithm. The reader is referred to [20]
for more details and terminology. The key novel feature in
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Fig. 11. Pseudocode for wrapper/TAM cooptimization.



our approach is that, due to the usage of daisychain
architecture for loading producers’ outputs, a dynamic
adaptation of the existing algorithms is necessary, as
discussed in the following paragraphs.

Dynamic Rectangle Representation: For one-pattern test
of a 1500-wrapped core, if the assigned TAM width is given,
the TAT to apply the entire test set Tp is determined by (1)
[27], in which siðsoÞ is the longest wrapper scan-in (scan-
out) chain for the core and p is the number of test patterns.
When using the Design wrapper algorithm from [17] for
wrapper optimization, siðsoÞ has a fixed value for a given
TAM width and, hence, the core test can be represented as a
static rectangle.

Tp ¼ ð1þmaxfsi; sogÞ � pþminfsi; sog: ð1Þ

However, when reusing functional interconnect to transfer
test data for two-pattern tested cores, its TAT not only
depends on the time to load its own producers (Lprod),
wrapper scan-in chains (si), and unload its wrapper scan-
out chains (so). The TAT also depends on the time necessary
to load/unload all the other concurrently tested cores’
producers and wrapper scan in/out chains. To keep the
control and computational complexity low, we propose
aligning test patterns for all of the concurrently tested two-
pattern tested cores. That is, if several two-pattern tested
cores are scheduled at the same time, then the overlapped
test patterns for these cores will have the same start times
and have the same loading/unloading time for each
pattern, which we call the LoadSize.

LoadSize ¼ max
X

Lprod þ Lbypass � 1;maxfsig;maxfsog
n o

;

ð2Þ

in which Lbypass is the number of bypass clock cycles on the
unused producers. Obviously, the core which needs the
least time to load its test stimuli will wait for all the
currently scheduled cores to complete loading, thus leading
to an increase in the TAT of other cores currently under test.
Hence, if, for the given core, the test schedule changes
s times, then, for each subset of patterns ps (for the s distinct
divisions of the time allocated to the given core), the testing
time will be computed based on the two-pattern tested
cores scheduled in each of these s divisions. Since the
loading time for each tested core is variable with its
schedule, the rectangles cannot be precomputed in the
proposed TPTEST mode. This can be observed from the
following example.

Example 3. Suppose Core1, Core2, and Core3 are two-
pattern tested cores and they are scheduled as in Fig. 12,

the loading time for their producers and internal scan
chains is shown in the figure. Since the producers and
CUTs are connected using the daisychain architecture,
without considering Lbypass, for the first 50 patterns, the
LoadSize for all the three cores will be

maxfLprod 1 þ Lprod 2 þ Lprod 3 � 1; si 1; si 2; si 3; so 1;

so 2; so 3g ¼ 44

clock cycles. However, for the next 30 patterns, once the
test for Core3 has been completed, the LoadSize will be
maxfLprod 1 þ Lprod 2 � 1; si 1; si 2; so 1; so 2g ¼ 25 clock
cycles. The same reasoning is applied for the last
20 patterns, when Core1 is not concurrently tested with
any other cores, where the LoadSize will be 10 instead.

Adapted Dynamic Rectangle Packing: Fig. 13 shows
the pseudocode for algorithm Adapted_TAM_Schedule_

Optimizer. The algorithm takes the core list Cset, TIG, and
the TAM division as inputs and it generates the schedule for
each core and the SOC testing time TATsoc. The proposed
algorithm is based on a generalized rectangle packing
algorithm [20] and we only show the differences with
respect to the original algorithm.

As described earlier, for two-pattern tested cores, the test
cannot be precomputed and represented as a static
rectangle. Its TAT (the width of the rectangle) varies with
its schedule and, hence, its rectangle representation is
computed dynamically (line 7). For the same reason, there
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Fig. 12. Loading time for different patterns (Lprod=si=so).

Fig. 13. Procedure for test scheduling with given widths for each TAM

group.



are also no “preferred TAM widths” for two-pattern tested
cores. In [20], the procedure Initialize is used to compute the
preferred width for each core. The parameters d and p are
used to select appropriate “preferred width” for each core
and are usually manually selected for SOCs with different
available TAM widths to get a better result. Since we need
to call this procedure many times with different WCUT (see
Algorithm 1), it is unlikely that a manual selection will lead
to an optimal value. Consequently, in our implementation,
we have fixed the two parameters to d ¼ 2 and p ¼ 1:0. This
may result in a different schedule and a slightly longer
testing time in some cases when compared to the result
from [20]. Whenever a core is scheduled (lines 9 and 10), the
available TAM width w avail will be deducted with the
value of the assigned GCUT TAM width for the core. Once a
two-pattern tested core is scheduled, Lprod, loadSize for the
currently scheduled cores in TPTEST mode needs to be
updated (line 11) and their TATs are recalculated (line 12).
Once there is no available TAM resources for current test
session (i.e., w avail ¼ 0), the currently scheduled core with
the minimum TAT will complete (line 15), its TAM
resources will be released, and the algorithm will try to
find another unscheduled core which can use the freed
TAM lines.

6 EXPERIMENTAL RESULTS

The proposed two-pattern test architecture is based on the
observation that the PC � PI ATPG model offers better test
quality than the NC � PI and SC � PI ATPG models. To
prove this, we first compare the fault coverage of the three
two-pattern ATPG models by performing experiments on
the ISCAS89 benchmark circuits [3]. Then, to investigate the
implication of the proposed approach on the DFT area
overhead and the SOC TAT, experiments are also carried
out on a revised version of ITC’02 SOC benchmark circuits
[28] whose specifications detailed in Section 6.1. We
compare the experimental results with its counterpart when
enhanced WICs are used for two-pattern test. As described
in Section 5, the total TAM lines are divided into producer/
CUT TAM groups in the proposed test architecture. Since
different divisions (configurations) will generate different
test schedules, we need to obtain the optimal configuration
which leads to the minimum TAT. The above issues are
investigated in the following four experiments:

Experiment 1 compares the fault coverage of the NC-PI,
SC-PI, and PC-PI two-pattern ATPG models (Section 6.2).

Experiment 2 discusses the DFT area savings of the
proposed test architecture (Section 6.3).

Experiment 3 illustrates the variable TAT with different
producer/CUT TAM configurations (Section 6.4).

Experiment 4 describes the TAT changes when using the
new TPTEST methodology (Section 6.5).

6.1 SOC Specifications

Four SOCs, g1023, p22810, p34392, and p93791, which are
originally part of the ITC’02 SOC test benchmarking initiative
[28], are used in experiments 2, 3, and 4. g1023 is a
comparatively small hypothetical SOC, while p22810,
p34392, and p93791 are large industrial SOCs. Since the
functional interconnects are not provided in the benchmark
files, we have decided to randomly generate them to
support the proposed approach [40], including the direct
connection between cores and functional buses. We have
assumed that the SOCs have RoundðNc

10Þ buses and each bus
has a random number p ð3 � p � minðNc; 8ÞÞ of cores
attached to it, where Nc is the total number of cores in the
SOC. In addition, all cores on buses are assumed to be able
to transfer data to and from the bus and, hence, each one of
them can be a bus producer to others. We have also
assumed that every core has a random number of qð1 �
q � 3Þ producers. In addition, we assume that all the cores
with internal scan chains are tested using the proposed
TPTEST modes, while the remaining nonscanned cores are
tested using INTEST mode. Hence, 12 of 14 cores in g1023,
22 of 28 cores in p22810, 4 of 19 cores in p34392, and 13 of
32 cores in p93791 are selected to be tested in TPTEST mode.
In addition, we assume that the number of test patterns is
equal to the one provided in [28] when cores are two-
pattern tested. It should be noted, however, that, in reality,
the number of patterns for delay faults is usually much
higher than when targeting single stuck-at faults.

6.2 Experiment 1: Fault Coverage Comparison

Table 1 presents the fault coverage and test pattern count
for the three two-pattern ATPG models (acquired from a
commercial ATPG tool—Synopsys TetraMAX). In addition,
the number of inputs and internal flip-flops of the circuit
are also shown in the table, denoted as Nin and Nff ,
respectively. Since TetraMAX does not automatically sup-
port the SC � PI ATPG model, we revised the circuit so
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TABLE 1
Comparison of the Three Two-Pattern ATPG Fault Models on ISCAS89 Benchmark Circuits



that all the original primary data inputs (i.e., except clock

and reset signals, if any) work as an internal shift register in

the functional mode of the revised circuit and we introduce

a single data input to the circuit to be hooked up at the

beginning of the shift register. By revising the circuit as

above, the initialization/excitation pair is acquired the same

way as for the SC � PI ATPG model.
It can be observed from the table that the average fault

coverage improvement of thePC � PI ATPG model over the

NC � PI and the SC � PI ATPG models is 12 � 13 percent

and 2 � 3 percent, respectively. As a result, to ensure a high

test quality, the PC � PI ATPG model is preferred. We can

also observe that, for some circuits, the fault coverage

difference between the SC � PI and the PC � PI ATPG

models is quite small (e.g., for s38417). Therefore, for such

circuits, the system integrator can select using the SC � PI
ATPG model in order to reduce the DFT area overhead;

however, the ATPG tools utilized by the core provider to

generate their test patterns must support this SC � PI
ATPG model. If this is the case, the system integrator can

select some cores tested using the PC � PI ATPG model,

while others are tested using the SC � PI ATPG model,

based on a quick analysis of their fault coverage difference. It

is important to note that any loss in coverage forPC � PIwill

not influence the yield since the undetectable faults can never

affect the native mode, which is not the case forNC � PI and

SC � PI, as stressed before in Section 3. Besides, if the system

integrator receives a core with theSC � PI test set from a core

provider, then the order of the input WBR cells (including the

number of TAM lines) will be predefined, which will impose

additional constraints on the TAM design.

6.3 Experiment 2: DFT Area Savings

The area of the core wrapper is mainly determined by the
size of the WBR cells. As discussed in Section 3, the
enhanced WIC design introduces an extra SFF when
compared to the standard WIC design. The area of a typical
SFF implementation is about 10 equivalent 2-input NAND
gates. Therefore, the DFT savings of the proposed archi-
tecture can be calculated as

PNtp

i fNi
in þNi

big � 10, in which
Ntp, N

i
in, and Ni

bi are the number of two-pattern tested cores,
the number of inputs for two-pattern tested core Corei, and
the number of bidirectionals for Corei. Based on the above
formula, using the proposed test architecture, SOC g1023,
p22810, p34392, and p93791 save 14; 910, 23; 820, 4; 840, and
31; 320 equivalent 2-input NAND gates, respectively, when
the introduced DFT logic of the proposed methodology is
neglected (in the range of hundreds of gates). Because these
savings do not come at no expense, the implications on the
SOC TAT are discussed in the following sections.

6.4 Experiment 3: Optimal Producer/CUT TAM
Configuration

Fig. 14 presents the TATs of the four SOCs, for different
widths of the producer TAM (Wprod), when the total TAM
width Wttl is fixed to 8. To give an exact TAM width
division, the functional interconnects are fixed in this
experiment (i.e., we have randomly generated the func-
tional interconnect only once). It can be seen that the TAT of
g1023 is minimum when Wprod is 3, the TAT of p22810 is
minimum when Wprod is 2, while the TAT for p93791, and
p34392 is minimum when Wprod is 1. This variation is due to
the relationship between the total number of the producers’
outputs and the internal SFF in the SOCs. On the one hand,

XU AND NICOLICI: DFT INFRASTRUCTURE FOR BROADSIDE TWO-PATTERN TEST OF CORE-BASED SOCS 481

Fig. 14. SOC TATs with variable producer/CUT TAM width configurations. (a) TAT for SOC g1023. (b) TAT for SOC p22810. (c) TAT for SOC

p34392. (d) TAT for SOC p93791.



in the case of g1023, the number of SFF is comparable to the
number of the producers’ outputs, hence, a large amount of
TAT is necessary to load producers’ outputs, thus leading to
a higher number of producer TAM lines. On the other hand,
for p93791 and p34392, the SFF number is significantly
larger than the number of producers’ outputs. As a result,
the time necessary to load the internal scan chains
dominates the SOC TAT and, hence, only one TAM line is
necessary to load the producers’ outputs. The number of
SFFs in SOC p22810 is larger than the producer’s outputs,
but the difference is not as large as in the case of p34392 and
p93791. Hence, two TAM lines are used to load producers’
outputs to give the optimum SOC TAT. It should also be
noted that the SOC TAT variation with Wprod is a convex
function based on our observation, i.e., it decreases until it
reaches its minimum for the optimal Wprod, after which
point, if Wprod is further increased, then the TAT will grow
as well. This is because, once sufficient TAM resources are
used to load producers’ outputs, the SOC TAT will be
dominated by the loading of the internal scan chains (i.e.,
the GCUT group). Hence, the further decrease of WCUT will
obviously lead to an increase of the overall TAT of the SOC.

6.5 Experiment 4: Test Schedule and Test
Application Time

Table 2, Table 3, Table 4, and Table 5 present results for
TPTEST of the four benchmark SOCs g1023, p22810,
p34392, and p93791 when varying the total TAM width
Wttl (note that only results for the optimal TAM division
are reported). Since the SOC TAT is affected by the

functional interconnects, we ran the algorithm for
100 randomly generated interconnects. Tave, Tmax, and
Tmin denote the average, maximum, and minimum TAT
separately. The percentage change in TAT using the
proposed test architecture is calculated using the formula
�T ð%Þ ¼ Tave�T

T � 100, where T is the result for two-pattern
test with enhanced WICs, using the algorithm from [20].

It can be seen that the average SOC TAT increases about
68 percent for SOC g1023, 43 percent for SOC p22810,
42 percent for SOC p34392, and 14 percent for SOC p93791,
respectively. The increase is due to: 1) Wprod TAM lines used
to load the excitation vector and 2) test resource conflicts
between cores, as described in Section 5.1. Note that the
increase varies based on the SOC structure (including the
functional interconnects, the number of cores in the TPTEST
mode, and the core sizes).

Having reported the average TAT increase for the four
SOCs with 100 random functional interconnects, we present
the different test schedules of the four SOCs for INTEST and
TPTEST in Fig. 15. To get the exact schedule, the functional
interconnect is also fixed in this experiment and only the
schedule with optimal producer/CUT TAM width config-
uration is shown. For SOC g1023, the total TAM width is 16
and four TAM lines are used to load producers’ outputs in
the TPTEST mode. This obviously increases TAT, in
addition to the reason that the loading time for each core
is not solely dependent on its assigned TAM width, but also
depends on the other producers of the other cores that are
scheduled at the same time. For SOC p22810 with a total
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TABLE 2
TAT Comparison of the Two Two-Pattern Test Methodologies

for SOC g102

TABLE 3
TAT Comparison of the Two Two-Pattern Test Methodologies

for SOC p22810

TABLE 4
TAT Comparison of the Two Two-Pattern Test Methodologies

for SOC p34392

TABLE 5
TAT Comparison of the Two Two-Pattern Test Methodologies

for SOC p93791
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Fig. 15. Test schedule comparison of the two two-pattern test methodologies for benchmark SOCs (figures not drawn to scale). (a) g1023 schedule

with enhanced WICs. (b) g1023 TPTEST schedule. (c) p22810 schedule with enhanced WICs. (d) p22810 TPTEST schedule. (e) p34392 schedule

with enhanced WICs. (f) p34392 TPTEST schedule. (g) p93791 schedule with enhanced WICs. (h) p93791 TPTEST schedule.



TAM width of 16, producers’ outputs are loaded from three
TAM lines. Because many two-pattern tested cores are
scheduled to be tested concurrently, the load size for those
cores may increase. The TAT increases in this case by
approximately 32 percent. For SOC p34392, only one TAM
line is used to load producers’ outputs for a total TAM
width of 32 to get the optimal TAT in TPTEST mode.
Although there are only four cores in TPTEST mode in this
SOC, the TAT increases by 85 percent (from 544,579 to
1,009,879). This is because these four cores are the largest
cores inside the SOC and the time spent on testing them
dominates the overall TAT of the SOC. For this specific
functional interconnect in our experiment, Core1 and Core2,
and Core10 and Core18 are incompatible, from Fig. 15f, a
good part of the testing time (from 153,844 to 545,326) is
wasted in TPTEST mode, which is used to test in INTEST
mode, however (see Fig. 15e). As shown in Section 6.3, the
savings in DFT area for p34392 are not significant and, as a
result, the system integrator may prefer to use the enhanced
WIC design for p34392 to decrease SOC TAT. Nevertheless,
unlike p34392, for SOC p93791, the sizes of the cores are
similar and, consequently, none of the cores will dominate
the whole SOC TAT. As a result, although test conflicts exist
between cores, the size of idle rectangles is not too large
(Fig. 15h). In this case, two of 32 TAM lines are used to
transfer producers’ outputs and TAT increases by only
12 percent.

7 CONCLUSION

Motivated by the difficulty in applying delay fault tests to
embedded cores in broadside testing, this paper has
presented a new test architecture for SOCs containing fully
wrapped cores that need to be two-pattern tested. It was
shown how IEEE Std. 1500 can be extended with a
LOADPROD instruction for producer cores and a TPTEST
instruction for CUT cores which ensure full controllability
of the two-pattern tested core’s primary inputs in two
consecutive cycles. Solutions to address TAM design and
test scheduling have also been elaborated. When compared
to the case where enhanced WICs are used for two-pattern
test, it was demonstrated that the proposed architecture can
deliver the same test quality with less DFT area overhead
and limited SOC TAT penalty.
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