
SOC Test Architecture Optimization for Signal Integrity
Faults on Core-External Interconnects

Qiang Xu†, Yubin Zhang† and Krishnendu Chakrabarty‡

† Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
‡ Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

{qxu,ybzhang}@cse.cuhk.edu.hk; krish@ee.duke.edu

ABSTRACT
The test time for core-external interconnect shorts/opens is typically
much less than that for core-internal logic. Therefore, prior work on
test infrastructure design for core-based system-on-a-chip (SOC) has
mainly focused on minimizing the test time for core-internal logic.
However, as feature sizes shrink for newer process technologies, the
test time for interconnect signal integrity (SI) faults cannot be ne-
glected. We investigate the impact of interconnect SI tests on SOC
test architecture design and optimization. We present a compaction
method for SI faults and algorithms for test architecture optimization.
Experimental results for the ITC’02 benchmarks show that the pro-
posed approach can significantly reduce the overall testing time for
core-internal logic and core-external interconnects.

Categories and Subject Descriptors
B.7.3 [Integrated Circuits]: Reliability and Testing

General Terms
Reliability, Design, Algorithms.

Keywords
Signal Integrity, Interconnects, Test Architecture Optimization

1. INTRODUCTION
As feature sizes shrink and clock frequencies increase for high-

performance system-on-a-chip (SOC) designs, signal integrity (SI),
the ability of an input signal to generate correct responses in a cir-
cuit [9], has become a major concern for the interconnects between
embedded cores. Signal integrity problems, caused by cross-coupling
capacitance and inductance between interconnects, include overshoot,
undershoot, glitches, oscillation, excessive signal delay and even sig-
nal speedup [13]. If the noise-induced voltage swing and/or timing
skew depart from the noise-immune region, functional error may oc-
cur. In addition, process variation and manufacturing defects may
aggravate the coupling effects between interconnects [18]. A number
of physical design and fabrication solutions (e.g., [3]) have been pro-
posed in the literature to tackle signal integrity problems. Since it is
unacceptable to over-design the circuit to tolerate all possible process
variations and it is impossible to predict the occurrence of defects,
manufacturing test strategies are essential for detecting SI-related er-
rors [5, 22, 23].

Various signal integrity fault models (e.g., [5, 13, 24]) and associ-
ated test methodologies (e.g., [2, 23]) have been proposed in the liter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

ature. The test time for SI faults is high because of the need to exercise
a large number of signal-state combinations for the interconnects [22,
23]. SI-related problems are aggravated in core-based SOC designs
because interconnects carrying signals between embedded cores tend
to be long and hence they suffer more from parasitic effects [19]. De-
spite this problem, most prior work on the testing of core-based SOCs
has focused on core-internal test (InTest) only [26] and neglected the
problem posed by core-external interconnect SI faults. For nanometer
SOCs running at speeds in the range of hundreds of MHz and higher,
the test time for SI faults can be as high as or even exceed the test time
for the embedded cores. Therefore, the goal of this paper is to study,
for the first time, the impact of SI faults on SOC test architecture de-
sign. The main contributions of this paper are as follows:

• We present a two-dimensional SI test compaction strategy to
reduce the interconnect SI test data volume.

• We develop algorithms for SOC test architecture optimization
to minimize the overall SOC testing time for both SI faults and
core-internal faults.

The remainder of this paper is organized as follows. Section 2 re-
views prior work in this domain and motivates the work described in
this paper. Section 3 presents the proposed test compaction method
for SI faults. In Section 4, SOC test architecture optimization tech-
niques for handling both core-internal faults and core-external SI faults
are introduced. Experimental results for benchmark SOCs [16] are
presented in Section 5. Finally Section 6 concludes this paper.

2. RELATED WORK AND MOTIVATION
Early attempts for testing SI-related problems modeled crosstalk at

the circuit level [1, 4]. Although more accurate than gate-level mod-
els, the complexity of the test pattern generation procedures limits its
usefulness for SOC interconnects. Cuviello et al. [5] proposed a be-
havioral level SI fault model, called maximal aggressor (MA) model.
This approach assumes that all aggressors make the same simultane-
ous transition in the same direction and act collectively to generate
the glitch when the victim is quiescent or the delay error when the
victim makes an opposite transition. (An interconnect on which the
error effect takes place is defined as the victim, while the affecting
interconnects are referred to as its aggressors.) Therefore, only 6N
test vector pairs are needed to detect SI faults for a set of N intercon-
nects. If all the physical defects are capacitive or resistive, all MA
faults can be targeted using a pattern count that is linear in the num-
ber of interconnects. When inductance is considered, however, such
test patterns may not be able to generate maximum noise/delay on the
victim line [4, 17], hence Tehranipour et al. [24] presented a multiple
transition (MT) fault model that covers all transitions on victim and
multiple transitions on aggressors. The number of test patterns for this
MT fault model, however, is exponential in the number of intercon-
nects under test. To address this problem, an empirically-determined
locality factor k showing how far the effect of aggressors remains sig-
nificant, was introduced. For a set of N interconnects, the number of
test patterns for the reduced MT fault model is roughly N ·22k+2.

Built-In Self-Test (BIST) has been the primary test method used to
detect SI-related errors [20, 24]. At the driver side, test generators

Core1 Core2

Core3 Core4
Core5

victimaggressor

aggressor

Figure 1: An arbitrary SOC interconnect topology.

are embedded to generate transitions on aggressors and the victim.
At the receiver side, various types of integrity loss sensor (ILS) cells
(e.g., [2, 23]) are designed to detect SI-related errors. Hardware-based
test generators, however, may cause over-testing and/or under-testing
since not all test patterns generated in the test mode are valid in the
normal functional mode of the SOC. In addition, because the SOC
interconnect topology can be arbitrary (see Fig. 1), the interconnects
between several cores may be close enough to result in SI error [22].
It is very difficult, if not impossible, to take this into account for these
hardware-based techniques. As a result, in this work, the test stimuli
are assumed to be loaded from an external tester.

Most prior work in SOC test architecture optimization [26] only
considers core internal testing. This is mainly because testing inter-
connect shorts/opens requires little time, hence core-external (ExTest)
testing can be ignored for test architecture optimization. However,
when high SI fault coverage is desired, the testing time for SOC inter-
connects can be comparable to the testing time for the core-internal
logic. To understand this issue, let us estimate the SI testing time
for an on-chip 32-bit functional bus, based on the popular MA and
reduced MT fault models, when serial ExTest is used. Suppose ten
cores connect to the bus, and let us assume that on average, each core
sends data to two other cores on the bus. Hence, the number of vic-
tim interconnects under test is N = 2×10×32 = 640. Based on the
above discussion, without test set compaction, 3840 test vector pairs
are needed for the MA fault model; while roughly 163840 test vector
pairs are needed for the reduced MT fault model before test set com-
paction when the locality factor k = 3. Since the sum of the numbers
of all the core I/Os for a typical SOC is in the range of several thou-
sand, the test time for MA faults is in the range of millions of clock
cycles for serial ExTest, while the test time for reduced MT faults is
two orders of magnitude higher. As reported in [7], the test time for a
representative video processing SOC is less than 2 million clock cy-
cles when the total number of test access mechanism (TAM) wires is
140, which in turn is less than the testing time for the above SI faults.
Moreover, with shrinking feature sizes of deep-submicron technology,
short interconnects may also suffer from SI problems [19]. There-
fore, it is likely that we need to detect SI faults for hundreds or even
thousands of interconnects in the SOC. Prohibitively high test time
is needed if the SOC test architecture is not optimized for both core-
internal logic test and interconnect SI test.

Three conclusions can be drawn from the above discussion:

• Effective test set compaction strategy should be utilized to re-
duce the volume of test data for SI faults;

• Parallel external testing is required in order to reduce the test
time for interconnect SI faults;

• The SOC test architecture needs to minimize the overall test-
ing time for both core-internal logic and core-external intercon-
nects.

The above observations motivate the work presented in this paper.
We use the TestRail architecture [14] because, in contrast to the Test
Bus architecture [25], it naturally supports parallel external testing.
To apply SI test at the core-level, the wrapper output cell (WOC)
should be able to provide the necessary consecutive transitions. The
wrapper input cell (WIC) needs to include a signal integrity loss sen-
sor (e.g., [2, 23]), to capture the signal with noise and/or delay. This
paper considers, as a starting point, that every core in the SOC uses

core1 WOC . . . corei WOC . . . coren WOC Bus
p1 . . . x ↑ x x ↓ . . . x 1 ↑ . . . x . . . x x x . . . x x 1 . . .
p2 . . . ↑ x ↓ x x . . . x x x . . . ↑ . . . x x ↑ . . . x x 1 . . .
.
px . . . x x x x x . . . 0 x ↓ . . . x . . . ↓ x x . . . 1 x x . . .

Table 1: Format of the SI test patterns.

such wrappers [23]. These wrappers are compatible with the IEEE
1500 standard [10] — some additional hardware is added to the wrap-
pers for signal integrity test. In addition, the user-defined logic is also
treated as a wrapped core. In other words, the SOC is assumed to con-
tain wrapped cores and interconnect wires (or simple glue logic) that
are affected by signal integrity faults, without large blocks of logic
between the embedded cores.

3. TWO-DIMENSIONAL SI TEST SET COM-
PACTION

Since a victim interconnect is mainly affected by its neighboring
aggressors [13, 22], the SI test patterns typically feature a large num-
ber of don’t-care bits [24]. The format for test patterns is shown in
Table 1, where ‘x’ represents the “don’t-care” bit; ‘0’ or ’1’ indicates
that the corresponding core output terminal stays at ‘0’ or ’1’ in con-
secutive cycles; while ↑ and ↓ represent a positive transition and a
negative transition respectively. For each test pattern, we also add a
postfix to denote whether this test pattern utilizes a shared bus line (as
discussed in the following paragraph). A ‘1’ indicates that the specific
bus line is utilized while ‘x’ represents that the choice of the bus line
is a “don’t-care”.

Test Pattern Count Reduction. Multiple test patterns are com-
pacted into one pattern if they are compatible (i.e., their intersection
is non-empty) to reduce the pattern count. Since bus lines are test re-
sources that are shared by multiple cores, it is possible that several SI
test patterns trigger the same bus line from different core boundaries
and these patterns should not be compacted into one pattern. The
problem of finding the minimum compacted test set for a given test
set can be formulated as the clique covering problem [12]. A graph
is created such that each vertex corresponds to a test pattern and an
edge is added between two vertices if the corresponding two test pat-
terns are compatible. Then a set of compatible SI test patterns form
a clique in this graph which represents a compacted pattern. The ob-
jective is to find minimum number of cliques covering all the vertices
in the graph. The clique covering problem is NP-complete [6]. To
reduce computational complexity, we use a greedy heuristic which
merges the first uncompacted pattern with its following compatible
patterns in each cycle. Experiments show that we can achieve similar
compaction ratios as approximation algorithms for the clique cover-
ing problem with significantly less computation time.

Test Pattern Length Reduction. The above compaction scheme
to reduce test pattern count can be viewed as reducing the volume of
the test data in a vertical manner. As each SI test pattern involves only
a few cores’ terminals (denoted as care cores of the SI test pattern),
we can bypass the boundaries of those don’t-care cores (e.g., core
1 for px in Table 1) and reduce the length of this test pattern. This
strategy can be viewed as compacting the test pattern in a horizontal
manner. That is, instead of compacting all the test patterns as a whole
and hence the length of every compacted test pattern remains the sum
of all cores’ WOCs, we propose to partition the entire SI test set into
several groups and compress them separately so that the test pattern
length for each group can be less.

We classify the SI test patterns in such a way that, the test patterns
whose care cores are all within the same core group form a SI test
group, in which the length of each test pattern is reduced to be the sum
of the WOCs of this core group. For the remaining test patterns whose
care cores fall into multiple core groups, we simply group them as a
whole and their length remains the sum of the lengths of the WOCs
for all the cores. To achieve maximum compression, the objective is
to minimize the number of remaining patterns and at the same time
each partition has roughly balanced test pattern length. This problem

1

2
3

4

5
6

7

Figure 2: Hypergraph partitioning for SI test pattern length re-
duction.

can be formulated as a hypergraph partitioning problem, with each
vertex in the hypergraph corresponding to a core (the weight of each
vertex is the number of WOCs for the core). A hyperedge is added
for each test pattern that connects all its care cores (vertices). Since
there might be multiple test patterns having the same care cores, we
use the weight of each hyperedge to represent this information.The
hypergraph partitioning problem has been well-researched in the lit-
erature and we reuse the hMetis package [21] to solve our problem.
As shown in Fig. 2, for the horizontal SI test pattern compaction of a
hypothetical SOC containing seven cores, the patterns corresponding
to the cut hyperedge 7-4-6 need to load the WOCs for all the cores,
while the other patterns can be applied with shorter pattern lengths
(vertex and edge weights are not shown in the figure). Our experi-
ments show that the proposed two-dimensional SI test set compaction
strategy is able to reduce test data volume significantly.

4. TEST ARCHITECTURE OPTIMIZATION

As discussed in Section 2, the testing time for interconnect SI faults
can be comparable to or even higher than the testing time for the
core-internal logic. Therefore, system integrators need to optimize
the SOC test architecture, i.e., design the TAM, for both types of tests
in order to reduce the overall testing time. The TAM optimization
problem can be stated as follows:

Problem PSI opt : Given the maximum TAM width Wmax for the
SOC, and

• the test set parameters for each embedded core, including the
number of input and output terminals, the number of test pat-
terns for core internal logic, the number of scan chains and the
length of each scan chain;

• the test set parameters for each group of compacted SI tests, in-
cluding the set of cores involved and the number of interconnect
SI test patterns;

Determine the wrapper design for each core, the TAM resources as-
signed to each core and a test schedule for the entire SOC such that:
(i) the sum of the TAM width used at any time does not exceed Wmax;
(ii) the total SOC testing time Tsoc is minimized.

One of the subproblems of PSI opt is to design and optimize the
test wrapper for each core. Since the test application time of a core
is dependent on the length of the maximum wrapper scan chain1, the
main objective in wrapper design and optimization is to build bal-
anced wrapper scan chains. This is a well-researched problem [15,
11], and we use the Combine procedure from [15] for solving it in
InTest mode. For a core wrapper in SI test mode, wrapper scan chains
contain wrapper cells only and we assume without loss of generality
that balanced wrapper input/output scan chains are achieved.

As the same wrapper cells are used for both core-internal logic test
and core-external interconnect SI test, these two kinds of tests are
scheduled at different times to avoid test resource conflict. Therefore,
Tsoc = T in

soc + T si
soc, where T in

soc and T si
soc denote the core-internal test-

ing time for all the cores and the total core-external interconnects test
for all the SOC, respectively. For a given TAM architecture, T in

soc is
the maximum internal logic testing time on any partition of the TAM.
The schedule for the core-internal tests, i.e., the sequence in which

1Wrapper scan chains are built by concatenating core internal scan chains and WBR cells
for InTest.

Core1 Core2

Core3 Core4

Core5

Core3 Core2

Core1 Core4 Core5

idle

SI3

SI2

SI3

SI1

SI1 SI2

SI1

idle

TAM1

TAM2

TAM3

TAM1

TAM2

Testing Time

TAM width

TAM width

Testing Time

in
socT si

socT

(a)

(b)

in
socT si

socT

1

5

si
coreT 2

5

si
coreT

1siT
2siT

3siT

5

in
coreT

Figure 3: Example TAM designs and their corresponding test
schedules.

the cores are tested for a given TAM architecture, does not affect T in
soc.

However, the calculation of T si
soc, is complicated by the fact that multi-

ple TAM partitions may be involved in one SI test. Before introducing
our data structure and algorithms, let us use the following example to
calculate the SI testing time for two TAM designs:

Example 1: Two possible TAM designs and their corresponding
test schedules for the same SOC are shown in Fig. 3. The SI test has
been grouped into three groups, in which SI1 group involves all the
five embedded cores, SI2 group involves Core1, Core4 and Core5, and
SI3 group involves Core2 and Core3. T in

corei
stands for the time for the

internal logic test time of core i, while T
si j

corei denotes the interconnect
testing time due to core i for SI test group j. The value of Tsi j for
each SI test group j is determined by the bottleneck TAM (the TAM
with the maximum test time) for this SI test. Therefore, for the TAM
design and test schedule shown in Fig. 3(a),

Tsi1 = max{T si1
core1 +T si1

core2 ,T
si1

core3 +T si1
core4 ,T

si1
core5}

= T si1
core1 +T si1

core2 ;
while for the TAM design and test schedule shown in Fig. 3(b),

Tsi1 = max{T si1
core1 +T si1

core4 +T si1
core5 ,T

si1
core2 +T si1

core3}
= T si1

core1 +T si1
core4 +T si1

core5

It can be easily seen that, under different TAM architectures, even
for the same SI test involving the same TAM resources (i.e., SI1 in Fig.
3(a) and Fig. 3(b) using all TAM wires), their SI testing times can be
different. Therefore, based on TestRail architecture, we propose to
solve Problem PSI opt in two steps: First, in Section 4.1, we describe
how to schedule SI tests for a given TAM design. Next in Section 4.2,
we describe our solution for the general problem of designing and
optimizing the SOC test architecture based on [8].

4.1 SI Test Scheduling for a Given TAM Design

Data Structure. The data structures that we use to store the SI
test group information and the TestRail configuration are presented
in Fig. 4. The two data structures are updated whenever the SOC
TAM design is changed. In particular, in data structure for TestRail
r, we use timein(r), timesi(r) and timeused(r) to denote the internal
testing time, the SI testing time and the utilized testing time on TAM
r, respectively.

For example, for TAM3 shown in Fig. 3(a),

• timein(r) = T in
core5

• timesi(r) = T si1
core5 +T si2

core5

• timeused(r) = timein(r)+ timesi(r) = T in
core5

+T si1
core5 +T si2

core5

We use timeused(r) to compare the actual utilization of TAM re-
sources for different TAM partitions.

Calculating Testing Time for Individual SI Test. We use a pro-
cedure, called CalculateSITestTime, to calculate timesi(si) of each SI
test group si, given the TestRail architecture Rsoc and all the SI test

Data structure SI Test s

1. C(s); /* The set of cores involved */
2. pattern(s); /* Number of patterns */
3. begin(s); /* Schedule begin time */
4. end(s); /* Schedule end time */
5. timesi(s); /* SI Testing time */
6. Rtam(s); /* The set of TAMs involved */
7. rbtn(s); /* The bottleneck TAM for this SI test */

Data structure TestRail r

1. C(r); /* The set of cores on TestRail r */
2. width(r); /* TAM width of r */
3. timein(r); /* Internal testing time */
4. timesi(r); /* Utilized SI testing time */
5. timeused(r); /* Utilized total testing time */

Figure 4: Data structures for SI test and TestRail
groups Ssoc. For each SI test si, the SI testing time timesi(si) is the
longest SI testing time of all the TAMs involved in si while the testing
time of each TAM is the sum of the SI testing time of each core in that
TAM involved in si.

Scheduling of SI Tests. The procedure to schedule SI tests and
determine the SOC SI testing time T si

soc is shown in Fig. 5. It takes
the TestRail architecture Rsoc and all the SI test groups Ssoc as in-
puts. Line 1 calculates the testing time of each SI test (as in Exam-
ple 1). Line 2 initializes unSchedSI, the unscheduled SI tests and
currSchedTAMs, the TAMs that are utilized by the SI tests currently
under schedule. Line 3 initializes currTime, i.e., the begin time for to-
be-scheduled SI test. After initialization, the loop that follows sched-
ules SI test one by one (Lines 4-17). Inside the loop, we first try
to find a SI test s∗ that can be scheduled with begin time currTime,
that is, s∗ does not utilize any TAM in currSchedTAMs (Line 5). If
such s∗ can be found, we schedule it by updating begin(s∗), end(s∗),
currSchedTAMs, and unSchedSI (Lines 7-10). If s∗ is the last sched-
uled SI test, we shall update T si

soc as the end time of s∗, end(s∗). If all
the unscheduled SI tests utilize the TAM resources in currSchedTAMs
and hence cannot be scheduled with begin time currTime, we find
nextTime, i.e., the end time for the first SI test that is expected to
end after currTime (Line 14). We then update the begin time of the
to-be-scheduled SI tests (Line 15) and currSchedTAMs based on the
SI tests still under schedule (Line 16). Finally the procedure returns
the SOC SI testing time T si

soc and the SI tests with updated schedule
information.

4.2 TAM Design and Optimization
The above discussion for calculating T si

soc is based on a given TAM
architecture. What makes Problem PSI opt more difficult is that
timesi(s), the testing time for an SI test, is unknown until the fi-
nal SOC test architecture is in place. This is fundamentally differ-
ent from the problem optimizing the SOC test architecture for core-
internal logic test only, in which the test time for each core can be pre-
determined for a given TAM width [26]. Unlike many test schedul-
ing algorithms that schedule cores one after another, and stop after
all cores are scheduled, the T R−Architect algorithm proposed in [8]
generates an initial test architecture with all cores assigned to TAMs
and then optimizes this architecture. This strategy is particularly at-
tractive for interconnect SI test as we are able to calculate the SI test-
ing time during the optimization process. Therefore, we adapt this
algorithm for solving Problem PSI opt in this paper.

Identifying Bottleneck TAMs. The basic idea of the
T R − Architect algorithm is to optimize T in

soc at the TAM level by
merging TAMs and/or distributing free TAM wires to the bottleneck
TAM, i.e., the TAM with the longest T in

tam. Either two non-bottleneck
TAMs are merged with less TAM width to release freed TAM re-
sources to the bottleneck TAM, or the bottleneck TAMs is merged
with another TAM to decrease T in

soc.

Algorithm 1 - ScheduleSITest

INPUT: Rsoc, Ssoc
OUTPUT: S′soc, T si

soc

1. S′soc = CalculateSITestTime(Rsoc,Ssoc);
2. initialize unSchedSI = S′soc; currSchedTAMs = /0;
3. initialize currTime = 0;
4. while unSchedSI �= /0 {
5. find s∗ ∈ unSchedSI for which Rtam(s∗)∩currSchedTAMs = /0;
6. if found {
7. set begin(s∗) = currTime;
8. set end(s∗) = begin(s∗)+ timesi(s∗);
9. currSchedTAMs = currSchedTAMs∪Rtam(s∗);
10. unSchedSI = unSchedSI \{s∗};
11. if(unSchedSI == /0) {
12. T si

soc = end(s∗); }
13. } else {
14. calculate nextTime = end(s′) such that
. end(s′) > currTime and end(s′) is the minimum;
15. set currTime = nextTime;
16. update currSchedTAMs;
. }
. }
17. return S′soc, T si

soc;

Figure 5: Procedure for scheduling SI tests.

However, since we are minimizing Tsoc = T in
soc +T si

soc, it is possible
that multiple bottleneck TAMs exist at the same time. That is, in
addition to the bottleneck TAM for core internal logic test, each SI
test has its own bottleneck TAM, which may affect the total SOC
testing time Tsoc. As a result, we define the bottleneck TAMs of the
SOC to be those which are critical to the test time; Tsoc is reduced if
extra wires are assigned to them. The remaining TAMs are referred
to as non-bottleneck TAMs of the SOC. For the schedule shown in
Fig. 3(a), TAM1 and TAM2 are bottleneck TAMs and TAM3 is a
non-bottleneck TAM. For the schedule shown in Fig. 3(b), TAM2
is a bottleneck TAM and TAM1 is a non-bottleneck TAM. During
the TAM optimization procedure, whenever there are extra free TAM
wires, we should distribute them only to the bottleneck TAMs.

Algorithm for Problem PSI opt . As in T R−Architect, we first cre-
ate an initial TestRail architecture and optimize it by merging TAMs
and distributing free TAM wires afterwards. There are two key ques-
tions during the optimization process, namely, “How to find out the
merging candidate and merge them?” and “How to distribute free
TAM wires?”. Because there may exist multiple bottleneck TAMs
at the same time in our problem, the answers to these two ques-
tions highlight the main differences between our algorithm and T R−
Architect.

In our procedure for merging TAMs, referred to as mergeTAMs,
with the given TestRail architecture Rsoc, all the SI tests Ssoc and one
candidate TAM r1 to be merged as inputs, we look for another TAM
candidate in R f ind = Rsoc \ {r1}, which leads to the lowest testing
time after merging with r1. We enumerate every TAM ri in R f ind as a
candidate for merging, and attempt to merge ri and r1 with different
TAM widths in the range of widthmin = max{width(ri),width(r1)}
and widthmax = width(ri) + width(r1) and distribute these leftover
free TAM wires. The intuition behind this is that we may be able
to merge two TAMs with TAM width less than the sum of their ini-
tial TAM width and the freed TAM wires can be assigned to other
bottleneck TAMs to reduce Tsoc. The procedure outputs the TestRail
architecture with the lowest testing time after merging. It is also pos-
sible that we cannot find a merging plan to reduce Tsoc. In such case,
the original TestRail architecture is returned.

The procedure for distributing free TAM wires, namely distribute-
FreeWires, takes the given TestRail architecture Rsoc, all the SI tests
Ssoc and the number of free TAM wires as inputs. Each of these free
TAM wires is distributed iteratively to the bottleneck TAMs. Since

Algorithm 2 - TAM Optimization

INPUT: Csoc /* Set of embedded cores */
Wmax /* Given SOC TAM width */
Ssoc /* SI test groups */

OUTPUT: Rsoc /* TestRail architecture */

1. initialize Rsoc = /0;
. /* Create a start solution */
2. for all ci ∈Csoc {
3. create TAM ri such that C(ri) = {ci};
4. width(ri) = 1; timein(ri) = timein(ci);
5. Rsoc = Rsoc ∪{ri};
. }
6. calculate timesi(r) and timeused(r) for all r ∈ Rsoc;
7. if (Wmax < |Rsoc|) {
8. for(i = Wmax +1 to |Rsoc|) {
9. sort Rsoc such that timeused(r1) ≥
. timeused(r2) ≥ ... ≥ timeused(r|Rsoc|);
10. find ri(1 ≤ i ≤Wmax) such that
. Tsoc is the minimum when merging with rWmax+1;
11. ri = ri ∪ rWmax+1; update timein(ri);
12. Rsoc = Rsoc \ rWmax+1;
13. update timesi(r) and timeused(r) for all r ∈ Rsoc;
. }
14. } else if (|Rsoc| < Wmax) {
15. set numFreeWires = Wmax −|Rsoc|;
16. Rsoc = distributeFreeWires(Rsoc,Ssoc,numFreeWires);
. }
. /* Optimize the TestRail architecture from bottom up */
17. set ISIMPROVED=TRUE;
18. while(ISIMPROVED AND |Rsoc| > 1) {
19. set initTestingTime = Tsoc;
20. sort Rsoc such that
. timeused(r1) ≥ timeused(r2) ≥ ... ≥ timeused(r|Rsoc|);
21. Rsoc = mergeTAMs(Rsoc,Ssoc,r|Rsoc|);
22. if(Tsoc == initTestingTime) {
23. ISIMPROVED=FALSE; }
. }
. /* Optimize the TestRail architecture from top down*/
24. set ISIMPROVED=TRUE;
25. while(ISIMPROVED AND |Rsoc| > 1) {
26. set initTestingTime = Tsoc;
27. sort Rsoc such that
. timeused(r1) ≥ timeused(r2) ≥ ... ≥ timeused(r|Rsoc|);
28. Rsoc = mergeTAMs(Rsoc,Ssoc,r1);
29. if(Tsoc == initTestingTime) {
30. ISIMPROVED=FALSE; Rskip = {r1}; }
. }
31. while(Rskip �= Rsoc) {
32. set Rtemp = Rsoc \Rskip; initTestingTime = Tsoc;
33. find r∗ ∈ Rtemp such that timeused(r∗) is the maximum;
34. Rsoc = mergeTAMs(Rsoc,Ssoc,r∗);
35. if(Tsoc = initTestingTime) {
36. Rskip = Rskip ∪{r1}; }
. }
37. coreReshu f f le(Rsoc,Ssoc);
38. return Rsoc, Tsoc;

Figure 6: Overall procedure for solving PSI opt .

we may have multiple bottleneck TAMs at the same time, we select
one TAM based on the criterion that Tsoc is the minimum after this
TAM obtains the extra TAM wire. Because Rsoc is changed when-
ever a free TAM wire is assigned, timesi(r) and timeused(r) for every
r ∈ Rsoc should also be updated. Finally the procedure outputs the
new TestRail architecture R′

soc with all free TAM wires assigned.
The pseudocode for our algorithm TAM Optimization for Problem

PSI opt is presented in Fig. 6. First, we create a start solution (Lines

1-16). This mainly consists of three steps. In Step 1 (Lines 2-5), we
assign each core to a one-bit wide TAM and we calculate the testing
time of the core internal logic timein(r), the SI testing time of the
interconnects timesi(r) and the actual utilized testing time timeused(r)
for every r ∈ Rsoc. In case Wmax < |Rsoc|, we do not have enough
TAM wires and hence we need to merge TAMs together (Lines 7-13).
We first sort Rsoc based on the total utilized testing time in each TAM
(Line 9), then rWmax+1 is merged iteratively with another TAM ri. We
select this merging candidate ri based on the criteria that Tsoc is the
minimum after merging with rWmax+1 (Line 10). Since Rsoc is changed
after merging, timesi(r) and timeused(r) for every r ∈ Rsoc are updated
(Line 13). In the case Wmax > |Rsoc|, we have extra free TAM wires
left and procedure distributeFreeWires is called to distribute them.

Next, we optimize the TAM architecture by merging the TAM with
the lowest timeused with another TAM (Lines 17-23). We first sort
Rsoc in non-increasing order and we select r|Rsoc| as one of the merg-
ing candidate r1, then we call procedure mergeTAMs to search for an-
other TAM to merge with r1 and possibly redistribute TAM resources
to reduce Tsoc. This is an iterative procedure and it stops when no
reduction in Tsoc can be achieved (Lines 22-23). Afterwards, we try
to further optimize the TAM architecture by trying to merge the TAM
with the longest timeused with another TAM (Lines 25-30) and merg-
ing other TAMs (Lines 31-36). Finally, the algorithm tries to mini-
mize Tsoc by iteratively moving one core from bottleneck TAMs of
the SOC to another TAM, if possible (Line 37).

5. EXPERIMENTAL RESULTS
To analyze the effectiveness of the proposed solution, experiments

are carried out for two ITC’02 benchmark SOCs from [16], namely,
p34392 and p93791. Without loss of generality, we do not consider
hierarchy in the testing of core-internal logic. Since the benchmarks
do not include any functional interconnect information, it is not pos-
sible to generate tests for SI faults for them. Therefore, we generate
random test patterns for our experiments in the following manner. In
each test pattern there are one victim and Na (2 ≤ Na ≤ 6) random ag-
gressors, where at most two aggressors are outside of the victim core
boundary. The SOC-level TAM width Wmax is varied from 8 to 64, in
increments of 8. In addition, we assume that a 32-bit functional bus
is utilized in both SOCs. The probability that the bus is used by a test
pattern is set at 50%. If the bus is decided to be used in a particular
pattern, we randomly generate 1 ∼ Na occupied bits in the postfix of
the pattern (see Section 3).

Table 2 and Table 3 show the SOC overall test application time Tsoc
for our method compared to T R−Architect. We vary the initial inter-
connect test pattern count Nr and the SI test grouping strategy in the
experiments. The value for T[8] is obtained by optimizing the SOC

TAM architecture for core-internal testing time T in
soc only, and then

computing the total testing time Tsoc for both core-internal test and
core-external test. The testing times are reported in terms of the num-
ber of clock cycles (‘cc’ in the tables). The parameter Tgi denotes
the test time Tsoc obtained using the proposed TAM Optimization
algorithm when the SI tests are partitioned into i parts, and we de-
termine Tmin = mini{Tgi}, which corresponds to the the test archi-
tecture the we use. The parameters ∆T[8] and ∆Tg are computed as

∆T[8] = T[8]−Tmin

T[8]
× 100% and ∆Tg = Tg1−Tmin

Tg1
× 100%, respectively.

Note that ∆Tg quantifies the benefit derived from our two-dimensional
compaction strategy over the one-dimensional compaction scheme
that reduces only the test-pattern count. We can see that test time re-
duction is of over 10 percent in several cases (e.g., for SOC p93791,
when Wmax = 16 and Nr = 100,000). The magnitude of this reduction
depends on the initial SI test set and the core configurations.

From Tables 2 and 3, we note that obliviously optimizing SOC test
architectures without considering interconnect SI faults leads to much
higher test time. This gap grows with an increase in the pattern count
for the SI faults and the associated percentage of SI testing time in
Tsoc. We can also see that when Wmax is small, there is no significant
advantage in using proposed algorithm; in a few cases, worse results

SOC p34392
Nr = 10,000 Nr = 100,000

Wmax T[8] (cc) Tg1 (cc) Tg2 (cc) Tg4 (cc) Tg8 (cc) Tmin (cc) ∆T[8] (%) ∆Tg (%) T[8] (cc) Tg1 (cc) Tg2 (cc) Tg4 (cc) Tg8 (cc) Tmin (cc) ∆T[8] (%) ∆Tg (%)
8 2128642 2473012 2217506 2137599 2159634 2137599 -0.42 13.56 3316258 3303307 2999506 3034656 2845502 2845502 14.20 13.86

16 1197929 1120560 1124839 1174501 1166925 1120560 6.46 0 2487849 1643720 1595247 1650343 1567503 1567503 36.99 4.64
24 812192 816661 892412 821588 866507 816661 -0.55 0 1519424 1141199 1110321 1143510 1145184 1110321 26.92 2.71
32 693458 615984 633155 656570 641076 615984 11.17 0 1787666 853502 845838 835448 845474 835448 53.27 2.12
40 685291 607404 568070 566093 566156 566093 17.39 6.80 1779499 747495 757767 719065 720219 719065 59.59 3.80
48 685291 565157 564173 560084 561620 560084 18.27 0.90 1779499 731255 683135 683832 676463 676463 61.99 7.49
56 685291 563741 559948 558712 557692 557692 18.62 1.07 1779499 711369 669799 665245 658664 658664 62.99 7.41
64 685291 563741 559642 557004 556896 556896 18.74 1.21 1779499 700834 666176 635880 650688 635880 64.27 9.27

Nr : Initial interconnect test pattern count; Wmax: Given SOC TAM width; T[8]: Test time obtained by optimizing the SOC TAM architecture for InTest only;
Tgi : Test time obtained using the proposed TAM Optimization algorithm when the SI tests are partitioned into i parts; Tmin = mini{Tgi};

∆T[8] =
T[8]−Tmin

T[8]
×100%; ∆Tg =

Tg1 −Tmin
Tg1

×100%.

Table 2: Test application time comparison for SOC p34392

SOC p93791
Nr = 10,000 Nr = 100,000

Wmax T[8] (cc) Tg1 (cc) Tg2 (cc) Tg4 (cc) Tg8 (cc) Tmin (cc) ∆T[8] (%) ∆Tg (%) T[8] (cc) Tg1 (cc) Tg2 (cc) Tg4 (cc) Tg8 (cc) Tmin (cc) ∆T[8] (%) ∆Tg (%)
8 4226884 4179655 3979541 4066751 4054977 3979541 5.85 4.79 9279984 7157553 6629333 6482537 6308163 6308163 32.02 11.87

16 2191881 2073979 2056323 2034337 2036416 2034337 7.19 1.91 4935934 3650655 3382864 3231137 3170750 3170750 35.76 13.15
24 2150865 1413121 1373548 1370751 1391513 1370751 36.27 3.00 9532785 2459100 2258253 2190633 2187138 2187138 77.06 11.06
32 1076516 1040041 1050669 1061650 1026305 1026305 4.66 1.32 2177213 1882999 1732000 1668109 1650127 1650127 24.21 12.37
40 1016416 841403 838764 824816 829521 824816 18.85 1.97 2879472 1523711 1422586 1351591 1338896 1338896 53.50 12.13
48 1212780 708625 702850 696281 737059 696281 42.59 1.74 5969285 1256464 1176390 1169794 1160866 1160866 80.55 7.61
56 853904 606648 606572 594544 604312 594544 30.37 2.00 3479319 1071698 1008224 995447 985120 985120 71.69 8.08
64 784973 528843 539587 521242 520286 520286 33.72 1.62 3410388 923350 856743 848786 867541 848786 75.11 8.08

Table 3: Test application time comparison for SOC p93791

are obtained compared to SI-oblivious TAM optimization (e.g., for
SOC p34392, when Wmax = 8 and Nr = 10,000). This is mainly be-
cause the TAM design solution space is small for smaller values of
Wmax, therefore similar TAM architectures are obtained with different
optimization criterion. When Wmax is higher, we have more freedom
during the TAM design process and hence the improvement offered
by the new optimization procedure is more noticeable.

6. CONCLUSION
We have presented a TAM optimization flow for core-based SOCs,

which considers test times for both core-internal logic and core-
external signal integrity faults on interconnects. This is in contrast
to prior work on test infrastructure design for core-based system-on-
a-chip (SOC), which has mainly focused on only minimizing the test
time for core-internal logic. As feature sizes shrink for newer process
technologies, the test time for interconnect signal integrity (SI) faults
cannot be neglected. We have investigated the impact of intercon-
nect SI tests on SOC test architecture design and optimization. We
have also presented a compaction method for SI test sets such that the
test data volume can be reduced. Experimental results for the ITC’02
benchmarks show that the proposed approach can significantly reduce
the overall testing time for core-internal logic and core-external inter-
connects. The test times obtained using this approach are noticeably
less than that obtained by the T R Architect tool, which only considers
the core-internal test time during optimization.

7. ACKNOWLEDGEMENT
This work was supported in part by the Hong Kong SAR RGC Ear-

marked Research Grant 2150503. The authors thank Prof. Nicola
Nicolici of Mcmaster University for motivating discussions and in-
sightful comments.

8. REFERENCES
[1] A. Attarha and M. Nourani, “Test Pattern Generation for Signal Integrity Faults

on Long Interconnects,” in Proc. IEEE VLSI Test Symp., pp. 336–341, 2002.
[2] X. Bai, S. Dey, and J. Rajski, “Self-Test Methodology for At-Speed Test of

Crosstalk in Chip Interconnects,” in Proc. Design Automation Conf., pp. 619–624,
2000.

[3] M. Becer, et. al, “Crosstalk Noise Control in An SoC Physical Design Flow,” in
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
23(4):488–497, Apr. 2004.

[4] W.-Y. Chen, S. K. Gupta and M. A. Breuer, “Test Generation for
Crosstalk-Induced Delay in Integrated Circuits,” in Proc. International Test Conf.,
pp. 191–200, 1999.

[5] M. Cuviello, et al, “Fault Modeling and Simulation for Crosstalk in
System-on-Chip Interconnects,” in Proc. International Conf. on Computer-Aided
Design, pp. 297–303, 1999.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman Publishers, 1979.

[7] S. K. Goel, et al, “Test Infrastructure Design for the NexperiaTM Home Platform
PNX8550 System Chip,” in Proc. Design, Automation and Test in Europe, Vol. 3,
pp. 108–113, 2004.

[8] S. K. Goel and E. J. Marinissen, “Effective and Efficient Test Architecture Design
for SOCs,” in Proc. International Test Conf., pp. 529–538, 2002.

[9] M. Guler and H. Kilic, “Understanding the Importance of Signal Integrity,” in
IEEE Circuits and Devices Magazine, 15(6):7–10, Nov. 1999.

[10] IEEE Standard for Embedded Core Test - IEEE Std. 1500-2004. IEEE, 2004.
[11] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Co-Optimization of Test

Wrapper and Test Access Architecture for Embedded Cores,” in Springer Journal
of Electronic Testing: Theory and Application, 18(2):213–230, Apr. 2002.

[12] N. Jha and S. Gupta, Testing of Digital Systems, Cambridge University Press,
2003.

[13] S. Kundu, et al, “On Modeling Crosstalk Faults,” in IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, 24(12):1909–1915, Dec. 2005.

[14] E. J. Marinissen, et al, “A Structured And Scalable Mechanism for Test Access to
Embedded Reusable Cores,” in Proc. International Test Conf., pp. 284–293, 1998.

[15] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper Design for Embedded
Core Test,” in Proc. International Test Conf., pp. 911–920, 2000.

[16] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of Benchmarks for
Modular Testing of SOCs,” in Proc. International Test Conf., pp. 519–528, 2002.

[17] S. Naffziger, “Design Methodologies for Interconnects in GHz+ ICs,” in Proc.
IEEE International Solid State Circuits Conf. short course, Feb. 1999.

[18] S. Natarajan, M. A. Breuer, and S. K. Gupta, “Process Variations and Their
Impact on Circuit Operation,” in Proc. IEEE International Symp. on Defect and
Fault Tolerance in VLSI Systems, pp. 73–81, 1998.

[19] P. Nordholz, et al, “Signal Integrity Problems in Deep Submicron Arising from
Interconnects between Cores,” in Proc. IEEE VLSI Test Symp., pp. 28–33, 1998.

[20] K. Sekar and S. Dey, “LI-BIST: A Low-Cost Self-Test Scheme for SoC Logic
Cores and Interconnects,” in Proc. IEEE VLSI Test Symp., pp. 417–422, 2002.

[21] N. Selvakkumaran and G. Karypis, “Multi-Objective Hypergraph Partitioning
Algorithms for Cut and Maximum Subdomain Degree Minimization,” in Proc.
International Conf. on Computer-Aided Design, pp. 726–733, 2003.

[22] W. Sirisaengtaksin and S. K. Gupta, “Enhanced Crosstalk Fault Model and
Methodology to Generate Tests for Arbitrary Inter-core Interconnect Topology,”
in Proc. Asia Test Symp., pp. 163–169, 2002.

[23] M. H. Tehranipour, N. Ahmed, and M. Nourani, “Testing SoC Interconnects for
Signal Integrity Using Bounary Scan,” in Proc. IEEE VLSI Test Symp., pp.
158–163, 2003.

[24] M. H. Tehranipour, N. Ahmed, and M. Nourani, “Testing SoC Interconnects for
Signal Integrity Using Extended JTAG Architecture,” in IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 23(5):800–811, May
2004.

[25] P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for Core-Based
System Chips,” in Proc. International Test Conf., pp. 294–302, 1998.

[26] Q. Xu and N. Nicolici, “Resource-Constrained System-on-a-Chip Test: A
Survey,” in IEE Proc. Computers and Digital Techniques, Vol. 152, No. 1, pp.
67–81, 2005.

