
Vulnerability Analysis for Crypto Devices against Probing
Attack

Lingxiao Wei†, Jie Zhang†, Feng Yuan†, Yannan Liu†, Junfeng Fan‡ and Qiang Xu†

†CUhk REliable Computing Laboratory (CURE)
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

‡Open Security Research, Shenzhen, China

ABSTRACT
Probing attack is a severe threat for the security of hardware
cryptographic modules (HCMs). In this paper, we make
the first step to evaluate the vulnerability of HCMs against
probing attack, wherein we investigate the probing complex-
ity and the key candidate reduction capability for probing
attack on every signal in the circuit. We also present approx-
imate solutions for the calculation of the proposed metrics
to reduce computational complexity. Experimental results
demonstrate that the proposed evaluation metric is both ef-
fective and efficient.

1. INTRODUCTION
Driven by the increasing demand for secure computation

and communication in the era of internet of things (IoT),
hardware cryptographic modules (HCMs) are widely used
nowadays, ranging from dedicated secure applications such
as smartcards to all sorts of“smart”devices connected to the
Internet. As HCMs provide the“root of trust” in the system,
it is essential to ensure its own security. However, while the
cryptographic algorithms themselves are extremely difficult
(if not impossible) to break mathematically, their implemen-
tations are often not. That is, the internal computational
information can be eavesdropped either directly or indirectly
by side channels, such as power [1] or timing [2]. Among all
side-channel attacks (SCAs), probing attack is a simple yet
severe threat, which cracks the secret key by directly spy-
ing those key-related internal signals with metal needles and
then guessing the key according to the observed information.

Probing attack was first introduced by Handschuh et al. [3],
wherein they successfully found the secret key of various
tamper-resistant HCMs including SM-1, DES and RC5 im-
plementations. Later, Schmidt et al. [4] adopted probing
attack to crack the key of AES implementation. In [5],
Ishai et al. developed several efficient techniques against
probing attacks by building private circuits. However, due
to the hardware overhead of private circuits, their approach
could only selectively protect some of circuits. This raises an
interesting and relevant question: when designing a crypto
device, which part of the circuitries are more vulnerable to
probing attacks and hence require to be protected.

In the literature, there were some prior works evaluat-
ing the vulnerability of SCAs, but they are not applicable
for probing attacks. Standaert et al. [6] proposed a unified
framework for the analysis of SCAs based on mutual infor-
mation. As a general method, however, this approach incurs

quite high computational complexity to quantify the rela-
tionship between keys and side channel outputs. Demme et
al. [7] developed a so-called side-channel vulnerability factor
(SVF) quantifying the correlation between attackers’ obser-
vation and measures. SVF works well for timing-based at-
tacks [8], but it is not applicable for probing attacks because
it cannot represent the relationship between certain probed
wires and the key.

Motivated by the above, in this paper, we propose a novel
vulnerability metric that evaluates the threat of probing at-
tack for HCMs. To be specific, it quantifies the probing
complexity and the key candidate reduction capability for
every signal in the HCM by considering the cryptographic
implementation on the logic gate level. We also present ap-
proximate solutions for the calculation of the proposed met-
rics to reduce computational complexity. Our experimental
results show that the proposed vulnerability metric is able
to effectively reflect the threat posed by probing attack.

The rest of the paper is organized as follows. Section 2
presents preliminaries on probing attack and motivates this
work. In Section 3, we detail the proposed vulnerability
metric for probing attack. Section 4 presents the bound of
the vulnerability metric and proposes an efficient method
to approximate its calculation. Next, we validate the pro-
posed vulnerability metric in Section 5. Finally, Section 6
concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 Probing Attack
Before probing any internal signals of interest in a crypto

device, the passivation above such signal should be firstly
removed. Thereafter, the test pad can be placed on probed
signals. Algorithm 1 presents how probing attack operates.
It is an iterative procedure, wherein attackers probe inter-
nal signals and reduce key candidates, denoted by K, to the
point that they can crack the entire key for the remaining
candidates in a brute-force manner (Line 1-6). The rule to
remove a key candidate is to check whether it would out-
put the different value denoted by fS(ki, d) compared to the
probed value s under data values denoted by d, as shown
by Line 12. During each probing iteration shown by Line
7-17, attackers would verify all key candidates with the ran-
dom data input denoted by d. Attackers stop probing these
signals until key candidates cannot be reduced.

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

9C-4

827

Apart from countermeasures special tailored for probing
attacks [5], one common technique against such attacks is
to add meshes1 to the device. A so-called “glue logic” de-
sign approach helps prevent probing attacker from reverse
engineering signals by obfuscating the regular structure of
standard components on the layout.

Algorithm 1: The Procedure of Probing Attack

/* K is the set of the whole key; */
1 repeat
2 Choose one or some signals denoted by S;
3 KS is the associated key candidate set for S;
4 ProbingOneSignal(S,KS);
5 K ← (K −KS);
6 until K is able to be enumerated by brute force;

7 ProbingOneSignal(S,KS)
8 repeat
9 d← random number;

10 Probe s = fS(kg , d);
11 foreach ki ∈ KS do
12 if fS(ki, d) �= s then
13 Remove ki from KS ;
14 end if
15 end foreach
16 until KS is unable to be reduced ;

17 end

2.2 Threat Model
We follow the same threat model of [4]. That is, we as-

sumed that attackers are capable of physically accessing and
depackaging the crypto chip. Thereby, a probe is able to be
placed onto the chip and retrieve the value of signals dur-
ing all encrypt and decrypt operations controlled by the at-
tacker. Moreover, we assume that attackers have sufficient
knowledge about the implementation of the crypto device
and capability to correctly retrieve the value of desired sig-
nal, helping them to reduce the key candidates via probed
information.

2.3 Motivation
In terms of probing attack, not only algorithm-level sig-

nals but also gate-level signals are able to leak the key-
related information. Take Implementation I shown in Fig. 1
as an example, wherein the signal denoted by S1 is a gate-
level signal. It is obvious that S1 would leak the informa-
tion of two key bits, K1 and K2, by probing its value, as
shown in the K-map of S1. Moreover, different implemen-
tations for the same Boolean function could leak different
amount of information. As shown by Fig. 1, Implementa-
tion I and Implementation II are two realizations for the
function S1 = K1 ⊕ D1 ⊕ K2 ⊕ D2. Suppose S1 of Imple-
mentation I and S2 of Implementation II are probed. By
going to details their K-maps, we find that by probing S1,
the key candidate 00 is indistinguishable with 11, while by
probing S2, all four key candidates can be distinguished.

However, until now, there is no theory available to evalu-
ate the vulnerability of cryptographic implementation against
probing attack. This motivates us to propose a novel vul-
nerability metric for probing attack by considering the cryp-
tographic implementation.
1Meshes are redundant layers of metallization on top of the device
itself, which would alarm if triggered by any detection of short
circuit or interruption.

S1

K1

K2

D1

D2

S2

K-Map

S1 value

S2 value

K1

K2

D1

D2

S1

K1K2 00 01 10 11
00 0 1 1 0
01 1 0 0 1
10 1 0 0 1
11 0 1 1 0

D1D2

K1K2 00 01 10 11
00 0 0 1 0
01 0 0 0 1
10 1 0 0 0
11 0 1 0 0

D1D2

Implementation I

Implementation II

Figure 1: An motivational example

3. THE PROPOSED VULNERABILITY
METRIC

3.1 Overview
In practice, a complete vulnerability metric for probing at-

tack should cover probing all signal combinations of HCM, as
discussed above. However, it is very complex, if not impos-
sible, to evaluate all signal combinations, especially consid-
ering that there are a great number of signals in the today’s
HCM. Consequently, the purpose of the proposed vulnera-
bility metric is to evaluate the vulnerability of every single
signal separately and help designers to make the decision on
protecting which signal in the HCM. Intuitively, the reason
our vulnerability metric works is that a vulnerable signal is
more likely to be the probed target.

Our vulnerability metric evaluates those signals that are
able to be utilized for probing attack in practice. These
signals should satisfied following two requirements: (i) they
are not protected by countermeasures for probing attack; (ii)
they are able to help attackers to filter out key candidates
within their computational capability. We rule out signals
violating the second requirement by the proposed complex-
ity metric that is detailed in Section 3.2.

The proposed vulnerability metric aims to evaluate the
ratio between the effort attackers pay and the benefits they
obtain during the probing one signal. Therefore, we define
it as follows.

Definition 1. Consider a signal S that is driven by NS
k

key bits. The vulnerability of this signal in terms of probing
attack denoted by VS is give by

VS =
1

∑R
i=0 |Ki|

× 2N
s
k

|Kfinal| , (1)

where R denotes the total number of iterations for probing
this signal, |Ki| denotes the number of key candidates after
verifying i-th iteration, and |Kfinal| denotes the final key
space size after the probing this signal.

Look at the definition of the vulnerability in Eqn. 1, we
observe that it contains two important components. The
first one represented by

∑R
i=0 |Ki| describes the complexity

of probing this signal while the second one represented by

2N
S
k /|Kfinal| illustrates the capability of reducing the key

candidates, wherein |Kfinal| denotes the final key space size.
In the following, we detail the probing complexity and the

final key space size separately.

9C-4

828

Table 1: List of Notations

Symbol Meaning
K Key candidate set
D Data set
kg Genuine key
k, ki Key candidate
d, di Data pattern

Kki Key candidate containing ki
|K| Size of key candidate set
|D| Size of data set
S Internal signal

NS
k Number of key bits correlates with signal S

NS
d Number of data bits correlates with signal S

3.2 Probing Complexity
The probing complexity is closely related to the iteration

complexity and the number of iterations. The iteration com-
plexity refers to the number of operations verifying all key
candidates in one iteration. The number of iterations relies
on the choice of data, because different data leads to differ-
ent numbers of operations to determine all key bits. As a
result, we detail these two factors in the following.

3.2.1 Iteration Complexity
Iteration complexity is referred to the operations needed

for traversing the key candidate set. Obviously it depends
on the size of key candidate set. The attacker at least need
to iterate all the elements in the initial key candidate set,
which is exponential to the number of correlated key bits.
This criteria can serve as a deciding rule for attackers to filter
out signals that are beyond their capability. From the side
of designers, those signals with large number of correlated
key bits, e.g., 60 bits, can be viewed as “safe” ones.

3.2.2 Data Revealability
Another important factor that an attacker cares about is

on how to choose a specific data that can help to reduce
more key candidates, thus reducing the iteration round. In-
tuitively, different data have different abilities to reveal the
key information to the targeted signal. Every data pattern
can be viewed as a map function which maps a specific key
candidate to logic value 0 and 1, i.e., S = f(K,D) can be
viewed as a parametric function S = fD(K). For example,
if one data pattern is more likely to map most elements in
the current key candidate set to 1/0 while another data pat-
tern tends to map the candidates evenly to 1/0, obviously
the latter one leaks more information to the targeted signal.
On the average case, we are able to eliminate more keys on
the second condition. Therefore we use the concept of data
revealability to represent the ability of one data pattern to
eliminate key candidates. It should also be noted that the
data revealability does not only relate to data itself, it also
depends on the current key candidate set. Here we define
the data revealability as follows:

Definition 2. Suppose we have a key candidate set K,
and a data pattern d performing probing attacks on it. If the
size of K is N , and the number of key candidates that are
mapped to 1 by d is N1 while the number of key candidates
that are mapped to 0 by d is N0. Obviously, N = N0 +N1.
We define the data revealability for d with respect to K as:

RK
d =

2N1N0

N2
. (2)

If every key candidate has same probability to be the gen-
uine key, the data revealability defines the portion of key
candidates that can be eliminated by a data pattern on a
specific key candidate set in an average case. From the defi-
nition, it is obvious that the data revealability obtains its
maximum value when N0 = N1 = 1

2
N , the RK

d = 0.5.
Therefore in the best expected case, we are able to elimi-
nate at most half of the key candidate by probing one signal
at a time with one data.

The iteration round may vary according to different choices
of data applied. The uncertainty of attackers’ performance
is not preferable for an evaluation procedure. With the defi-
nition of data revealability, designers are able to predict the
average best case an attacker can achieve in probing attack.
Designer may simulate the probing attack, counting the iter-
ation round. Instead of applying random data at each round,
designers would choose the data with the highest data re-
vealability with respect to the current key candidate set. At
each round, the key candidate set would shrink at highest
speed, thus providing a lower bound of iteration rounds.

3.3 Final Average Key Space Size
In general, the ability of reducing overall key space through

probing one signal is determined by the correlation between
this signal with the driven key bits. However, it is quite pos-
sible that these key bits cannot be cracked by probing one
signal, and attackers may end up with a set of key candi-
dates. Thus, the size of final key candidate set is one impor-
tant fact evaluating the ability of reducing key candidates
by probing one signal.

Before discussing the size of final key candidate set, we
first investigate the condition that a key can be distinguished
from other keys by observing one particular signal in circuit
and then give a metric to denote the final key space size.

The observed signal’s relation with data and key input can
be modeled as a Boolean function. Suppose S represent the
signal to be probed, while K and D represent corresponding
key and data inputs with length of NS

k and NS
d respectively.

Therefore S can be represented as S = f(K,D).

Definition 3. For ∀d ∈ D, if key candidate ka ∈ K
and key candidate kb ∈ K has the same value on S, S =
f(ka, d) = f(kb, d), we say ka and kb are indistinguishable,
denoted as ka ∼ kb.

If the genuine key kg is indistinguishable from other key
candidates, the final key candidate set a probing adversary
get must contain all the key candidates indistinguishable
from the genuine key.

With the key indistinguishability defined above, for every
key candidate ki, it belongs to a key candidate set, denoted
as Kki , in which all elements are indistinguishable with each
other. If ki happens to be the genuine key, key candidate set
Kki will be the final output of a probing attack algorithm.
As the genuine key may be any element in the candidate
set, it is impossible to accurately predict the exact final key
space when performing a static analysis. Here we gave a
metric based on the average case. We can define the final
average key space size as follows:

|Kfinal| =
|K|∑

i=0

Pr[kg = ki] · |Kki |. (3)

The size of final key candidate set is determined when given a
genuine key and an arbitrary signal. We use the probability

9C-4

829

of the genuine key being every possible key candidate to
average the size of key candidate set.

The total key space can be divided into several sets which
are non-overlapping and within each set, the keys are indis-
tinguishable from each other. If the genuine key is chosen
total randomly on the key candidate set, i.e., all key candi-
dates has the same probability to be the genuine key, The
final average key candidate set size can be simplified as:

|Kfinal| =
t∑

i=0

|Ki|2
|K| , (4)

in which t represents the total number of final key candidate
set which can be distinguished from each other.

4. EVALUATING VULNERABILITY ON
CRYPTO IMPLEMENTATIONS

In this section, we investigate ways to apply metric pro-
posed above to real crypto implementation. First we ana-
lyze the vulnerability under a common crypto assumption
and then give concrete and practical solutions to evaluate a
netlist.

4.1 Vulnerability under perfectly secret assump-
tion

Before we dig deep into applying metric on crypto im-
plementations, we start to examine a common assumption,
perfectly secret assumption [9], in cryptographic algorithm:

Theorem 1. Suppose bC is one bit of the ciphertext C
for a perfectly secret encryption algorithm, bC has the same
probability to be 0 or 1:

Pr[bC = 1] = Pr[bC = 0] = 0.5. (5)

Though the theorem says the bit of ciphertext has the
same probability to be 1 and 0, we can safely assume not
only the bits of cipherthext, but also the signals after levels
of diffusion and confusion hold the assumption. Moreover,
a “good” encryption scheme is required to be resistant to
chosen plaintext attack meaning that on every given data
input, the probability of targeted signal to be 1 or 0 should
also be the same.

Based on the above assumption, if signal S is randomly
selected, the probability of each item to be 0 or 1 should be
the same, i.e., Pr[S = 0|ki, di] = Pr[S = 1|ki, di], in which
S = f(ki, di). Given this probability, we can calculate the
probability that a genuine key is indistinguishable from any
other key candidates in K:

Pr[kg ∼ ki] = |K|(0.5)|D|, ∀ki ∈ K, (6)

in which |K| denotes the size of key candidate set while |D|
denotes the number of all possible data patterns. Usually
the size of key candidate set is comparable with the size of
data set. If |K| = |D| = 8, the probability that the genuine
key is indistinguishable is 0.03125, which is a very small
value.

Similarly, the probability of final average key space size to
be 1 is:

Pr[|Kfinal| = 1] = (1− |K|(0.5)|D|)|K|. (7)

The probability approaches 1 as the |K| and |D| increase.

Then we consider another aspect: the choices of data,
which can be represented as the data revealability as shown
in Section 3. If the 0 or 1 is evenly distributed, the number of
value mapped to 0 or 1 by one data pattern follows binomial
distribution, i.e., N0/N1 ∼ B(|K|, 0.5), with expectation of

0.5|K| and standard deviation of 0.5
√|K|. When |K| is

large, the binomial distribution can be approximated with
the normal distribution. So we can get:

Pr[RK
d ≥ 0.5− 2/|K|] ≥ 95%. (8)

When |K| increases, the data revealability has high proba-
bility to reach the neighborhood of its maximum.

With the above analysis, if the one signal conforms with
the assumption, it has high probability to have a final key
candidate set of size 1 and to be utilized for reducing at a
highest rate with arbitrary data patterns, i.e., half at each
time, leading to least effort possible to break. Reviewing the
formula in Eqn. 1, for signals obeying the assumption, the
vulnerability can be directly calculated by:

VS = 0.5× 2N
S
k +1

2N
S
k
+1 − 1

. (9)

The signals’ vulnerability decreases as the number of corre-
lated key bits increases and converges to 0.5 eventually. It
is also an upper bound of vulnerability for signals if they
depend on the same number of key bits. In fact, the prob-
ing attack is similar to a brute force cracking algorithm that
only focuses on a small number of key bits. Probing Attack
is practical as it can divide the total key space into several
parts and conquer them separately. The upper bound of
vulnerability is the lower bound of complexity an attacker
need to break these correlated key bits. The number of cor-
related key bits increases, the expected best case of efforts
to crack all of them by probing attack would approaches to
the 2 times to that by breaking them brute-forcely.

The limitation is that “perfectly secret” assumption does
not hold for all signals in a crypto implementation. In the
assumption, the signals are supposed to be sufficiently con-
fused and diffused, which is true for ciphertext, and signals
close to it. But there also exist signals for which this as-
sumption does not hold, requiring a practical tool to calcu-
late vulnerability which is to be shown in next subsection.

4.2 Evaluation Tool and Approximation
We propose to use a table like Fig. 2, denoted as Key-Data

Map, involving key candidates and data patterns to repre-
sent the relationship between probed signal and key/data.

d1 d2 d3 d4 di d|D|

k1

k2

k3

k4

kj

k|K|

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1 01 1

1

1

1 1 1

1 1

111

0 0

0

0

00

00

0 000

0 0

0

0 0

0 00

00

Figure 2: An Example of a Key-Data Map of one Signal

9C-4

830

In Fig. 2, we have a key candidate set K containing all the
key candidates k1, k2, . . . , k|K|, i.e., all the rows in the Key-
Data Map, and all the data patterns d1, d2, . . . , d|D|, i.e., all
the columns in the Key-Data Map, and the value of targeted
signal that mapped by each data and key candidates with
a boolean function f(k, d). Upon getting the map, key in-
distinguishability of two key candidates can be verified by
comparing all the values in its own key rows mapped by same
data. If all of them are the same, they are indistinguishable
by definition. Final average key space size can be calculated
from counting the number of indistinguishable key candi-
date set and calculating the size of them. If the attacker
has chosen a data and get the value of targeted signal by
probing, then the attacker can shrink the table by deleting
all the key candidates like Fig. 3 that do not consistent with
the probed result. Given a specific key candidate set, the
data revealability can be calculated by counting the number
of 1 and 0 of one data column in the Key-Data Map.

d1 d2 d3 d4 di d|D|

k1

k2

k3

k4

kj

k|K|

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1 01 1

1

1

1 1 1

1 1

111

0 0

0

0

00

00

0 000

0 0

0

0 0

0 00

00

d1 d2 d3 d4 di d|D|

k1

k4

k|K|

... ...

...

...

...

...

...

...

...

...

1 01 1

1 1 1

11

0

00

0 00 1

0

01(k ,d) 1gf =

Figure 3: Key-Data Map Shrink

Obviously, the complexity of above calculation procedure
is exponentiate to the number of input bits (both key and
data). When a signal correlates with large numbers of input
bits, it is extremely infeasible to tackle it. We propose to
approximate the calculation on a subset of Key-Data Map.
This sub-map can be generated by randomly selecting keys
and data and calculating the value of targeted signal. To be
specific, when we want to determine the final key candidate
set, we need to randomly sample key candidates and data
patterns. When we want to evaluate the data revealability,
only key patterns need to be randomly selected.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
As AES is a widely accepted encryption algorithm, it has

been intensively evaluated and analyzed and it is also the
often target of various side channel attacks. So we vali-
date the proposed vulnerability metric on an AES design
which is obtained from OpenCores website [10]. The AES
design is synthesized into netlist by the commercial synthe-
sis tool. Every signal in the netlist would be evaluated in
this section. AES [11] is constituted by rounds of trans-
formations to convert plaintext to ciphertext. This AES
design is a non-pipeline implementation, and hence the op-
eration of each round adopts the same circuits. As a re-
sult, in order to evaluate the vulnerability of signals at the
different rounds, we are required to adopt the time-frame
expansion technique [12] to construct the circuit that mim-
ics the functionality of previous rounds. For signals that
correlates with more than 16 key bits, we use the random
sampling technique to approximately calculate them with
an constant sample size 216 = 65536.

0 1 2 3 4 5 6 7 8
Number of Key Bits Correlated

20

21

22

23

24

25

26

27

28

Le
ft

K
ey

S
pa

ce
S

iz
e

(a) Sbox

5 10 15 20 25 30 35
Number of Key Bits Correlated

20

22

24

26

28

210

212

214

216

218

220

222

224

Le
ft

K
ey

S
pa

ce
S

iz
e

(b) Complete AES (Other than
Sbox)

Figure 4: the Size of Left Key Space

We report the results for signals at the first round in the
experiment, because signals at the subsequent rounds are
driven by a number of key bits and their probing complex-
ities exceed the computation constraint. Moreover, we re-
port results for signals in the Sbox separately, because Sbox
is the only non-linear part in AES and it always becomes
the target for attackers during the probing attack.

5.2 Results and Discussion
First, we present the distribution of signals with different

numbers of key bits in Table 2. As can seen from it, signals
in Sbox are quite evenly distributed, while most signals in
the complete AES are located in the range from 1 to 8,
as Sbox is complicated using more logic to implement than
other operations.

Table 2: The number of signals with different numbers of
key bits

of Key Bits 1 2 3 4 5 6 7 8
Sbox 40 69 102 141 92 119 27 112

of Key Bits 1 ∼ 8 16 24 32
Complete AES 12582 705 375 509

Next, we study the size of key space left after probing a
signal, and results are shown in Fig. 4, wherein the point
represents the size of key space left while the dash line rep-
resents the minimum final key space size for signals with
different number of key bits. If one signal is with final key
space size of 1, it shall fall on the dashed line. For signals in
the Sbox, some lie beyond the dash line, meaning that cer-
tain key candidates are indistinguishable with other keys.
On the contrary, all other signals in the AES lie on the line,
which means their final key space sizes after probing is equal
to 1.

Then, we present results of data revealability in Fig. 5.
Each point in the figure represents the average data reveal-
ability of one signal among all its relevant data patterns.
These points are aligned by the number of its correlated key
bits. The dash line is the mean value of signals with same
number of key bits. The distribution of data revealability
indeed varies among signals.

Thereafter, we verify the effectiveness of the proposed ap-
proximation technique. We randomly choose 4 signals with
16 key bits and evaluate final key space size and data re-
vealability in different sample size using the approximation
shown in Sec. 4. Fig. 6 shows their changes of relative errors.
As the sample size increases, both the relative errors of final

9C-4

831

0 1 2 3 4 5 6 7 8
Number of Key Bits Correlated

0.0

0.1

0.2

0.3

0.4

0.5

D
at

a
R

ev
ea

la
bi

lit
y

(a) Sbox

5 10 15 20 25 30 35
Number of Key Bits Correlated

0.0

0.1

0.2

0.3

0.4

0.5

D
at

a
R

ev
ea

la
bi

lit
y

(b) Complete AES (Other than
Sbox)

Figure 5: Data Revealability

22 24 26 28 210 212 214 216

Sample Size
-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Signal 1
Signal 2
Signal 3
Signal 4

(a) Final Key Space Size

22 24 26 28 210 212 214 216

Sample Size
-60.0%

-50.0%

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

10.0%

Signal 1
Signal 2
Signal 3
Signal 4

(b) Data Revealability

Figure 6: Sampling Error

key space size and data revealability converge to zero grad-
ually. As shown, sampling 214 is enough to obtain a high
accuate approximation for the final key space size and data
revealability.

Finally we siumulate the probing attack using Algorithm 1
and validate the proposed vulnerability metric by compar-
ing it with that calculated from simulated probing attack.
Fig. 7 shows relationship between the vulnerability calcu-
lated by the approximation technique and that calculated
from simulated probing attack. As can be seen, the pro-
posed vulnerability has a quite accuracy, which illustrate
the effectiveness of the proposed vulnerability metric.

0.0 0.1 0.2 0.3 0.4 0.5
Estimated Vulnerability

0.0

0.1

0.2

0.3

0.4

0.5

Vu
ln

er
ab

ili
ty

fro
m

S
im

ul
at

ed
A

tta
ck

Figure 7: Vulnerability Metric

6. CONCLUSION
Probing attack is a severe threat for the security of crypto

devices, and it is essential to evaluate its impact at design-
time. In this paper, we perform comprehensive study for
this problem. To be specific, we a investigate the prob-
ing complexity and the key candidate reduction capability
for probing attack on every signal in the circuit. We also
present approximate solutions for the calculation of the pro-
posed metrics to reduce computational complexity.Finally,
our experiments verify the effectiveness of the proposed vul-
nerability metric on a crypto device.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSFC/RGC Joint

Research Scheme No. N CUHK444/12.

8. REFERENCES
[1] P. Kocher, J. Jaffe, and B. Jun. Differential Power

Analysis. In Advances in Cryptology - CRYPTO ’99,
pages 388–397, 1999.

[2] O. Aciiçmez. Yet another MicroArchitectural Attack: :
exploiting I-Cache. In Proceedings of the 2007 ACM
workshop on Computer Security Architecture, pages
11–18, 2007.

[3] H. Handschuh, P. Paillier, and J. Stern. Probing
Attacks on Tamper-Resistant Devices. In
Cryptographic Hardware and Embedded Systems -
CHES, pages 303–315, 1999.

[4] J. Schmidt and C.-H. Kim. A Probing Attack on AES.
In Information Security Applications, 9th
International Workship, WISA, pages 256–265, 2009.

[5] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits:
Securing Hardware against Probing Attacks. In
Advances in Cryptology - CRYPTO 2003, pages
463–481, 2003.

[6] F.-X. Standaert, T. G. Malkin, and M. Yung. A
Unified Framework for the Analysis of Side-Channel
Key Recovery Attacks. In Advances in Cryptology -
EUROCRYPT 2009, pages 443–461. 2009.

[7] J. Demme, R. Martin, A. Waksman, and S.
Sethumadhavan. Side-channel vulnerability factor: A
metric for measuring information leakage. In 39th
International Symposium on Computer Architecture
ISCA, pages 106–117, 2012.

[8] T. Zhang, F. Liu, S. Chen, and R. B. Lee. Side channel
vulnerability metrics: the promise and the pitfalls. In
The 2nd Workshop on Hardware and Architectural
Support for Security and Privacy, page 2, 2013.

[9] J. Katz and Y. Lindell. Introduction to Modern
Cryptography: Principles and Protocols. CRC Press,
2007.

[10] R. Usselmann. AES (Rijndael) IP :: Overview ::
OpenCores.
http://opencores.org/project,aes_core, 2013.

[11] J. Daemen and V. Rijmen. AES Proposal: Rijndael.
1999.

[12] F. Fallah. Binary time-frame expansion. In Proc.
IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 458–464, 2002.

9C-4

832

