
Test/Repair Area Overhead Reduction for Small Embedded SRAMs

Baosheng Wang† and Qiang Xu‡

† ATI Technologies Inc., 1 Commerce Valley Drive East, Markham, ON, Canada L3T 7X6, bawang@ati.com

 ‡ Dept. of Computer Science & Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong,
qxu@cse.cuhk.edu.hk

Abstract
For current highly-integrated and memory-dominant System-on-
a-Chips (SoCs), especially for graphics and networking SoCs,
the test/repair area overhead of embedded SRAMs (e-SRAMs) is
a big concern. This paper presents various approaches to tackle
this problem from a practical point of view. Without sacrificing
at-speed testability, diagnosis capability and repairability, the
proposed approaches consider partly sharing wrapper for
identical memories, sharing memory BIST controllers for e-
SRAMs embedded in different functional blocks, test responses
compression for wide memories, and various repair strategies
for e-SRAMs with different configurations. By combining the
above approaches, the test/repair area overhead for e-SRAMs
can be significantly reduced. For example, for one benchmark
SoC used in our experiments, it can be reduced as much as 10%
of the entire memory array.1

Keywords: Embedded Small SRAMs, Area Overhead, BIST,
Single-Element Repair

1. Introduction
One of the trends associated with the System-on-a-Chip (SoC)
paradigm is that an increasingly large number of small SRAMs
(up to several thousand currently) are embedded on chips,
especially for graphics and networking SoCs [1, 4]. Because of
their extremely high density, these embedded SRAMs (e-
SRAMs) are more prone to manufacturing defects than other
types of on-chip circuitries and it is important to test them
thoroughly to certify the quality of the product shipped to
customers. Since e-SRAMs are usually deeply embedded on-
chip and at the same time need to be tested at-speed, Built-in
Self-Test (BIST) has become the only practical solution for
testing e-SRAMs. In addition, with the increasing total size of
small e-SRAMs, it has been shown in [4] that providing
repairability for every small e-SRAM can significantly improve
the SoC yield and result in substantial cost savings when a high
volume of chips are fabricated.

Various e-SRAM test and repair strategies have been proposed
in the literature. A programmable memory BIST architecture
was introduced in [18] to increase flexibility in applying test
patterns targeting various memory faults. In [2], the authors
proposed a multi-level test architecture, which enables
scalability, in-system programmability and flexibility in test
scheduling. Low-power memory wrapper, which uses gray-

1 This work was supported in part by the Hong Kong SAR UGC Direct Grant 2050366.

code-based address generators and hardware-efficient
background pattern generators to save test power, was presented
in [3]. The authors in [7-8] focused on designing efficient test
architecture for diagnosis purpose. E-SRAMs in test mode can
consume significant test power, [5] studied the memory test
scheduling problem given a power constraint. In [6], the authors
combined memory BIST wrapper and processor-based software
test strategies for heterogeneous memories.

The test and repair overhead for small e-SRAMs is relatively
large because of their small sizes, for instance, the area overhead
for an unrepaired e-SRAM with a 16 143× configuration is 38%
when tested with March C- [8]. Therefore, effective e-SRAM
test and repair architecture needs to minimize the associated
overhead as much as possible, in terms of both silicon area and
routing. The serial interfacing technique utilized in [9-12]
effectively reduced the routing overhead for e-SRAM testing.
However, the test/diagnosis time is increased dramatically,
which is not acceptable for production test [13-14]. [4] proposed
an intelligent test wrapper for small and wide memories using
the single-bit repair strategy. The key idea of this work is to
embed intelligent repair analysis algorithms into the memory
wrappers under a reasonable repair area overhead.

This paper presents various techniques to reduce e-SRAM test
and repair overhead from a practical point of view. Without
sacrificing at-speed testability, diagnosis capability and
repairability, the improved architecture considers sharing a
wrapper for multiple identical memories, sharing memory BIST
controllers for e-SRAMs embedded in different functional
blocks, test responses compression for wide memories, and
various repair strategies for e-SRAMs with different
configurations. Experimental results on two benchmark SoC
chips show that the proposed strategy can significantly reduce e-
SRAM test and repair overhead.

The remainder of this paper is organized as follows. In Sec. 2,
we briefly review the test architecture and repair strategies
proposed for SoCs containing many small e-SRAMs. Sec. 3
describes the various techniques that we propose to reduce the e-
SRAM test/repair area overhead without sacrificing test quality.
Next, we present the experimental results for two large industrial
chips in Sec. 4. Finally, Sec. 5 concludes this paper.

2. Motivation

2.1 SoC e-SRAM Test Architecture

Today, the widely-used industrial e-SRAM test architectures
(e.g., the ones in [2, 8]) are multi-level designs, as shown in

Figure 1. All the memories are wrapped for test and repair
purposes and the e-SRAMs within the same functional block are
clustered to be tested in parallel. The number of BIST controllers
within each functional block depends on the different memory
port types. For example, two BIST controllers are required if the
functional block contains both 1-port memories and 2-port
register files. The BIST controller and the memory wrappers
communicate with each other through IEEE Std. 1500 serial
links [15]. At the system level, these BIST controllers receive
test primitives through a JTAG/1500 bridge from JTAG bus,
where they decode and execute test algorithms and control the
memory wrappers to generate appropriate test patterns (both
address and data).

With each memory equipped with a dedicated wrapper and each
functional block provided with one or more BIST controllers,
the design for test (DFT) area overhead in this general
architecture can be quite large when the SoC contains many

small e-SRAMs. In practice, however, we are able to improve
the general architecture without sacrificing test quality from
various aspects. First of all, a major portion of the BIST area is
the dedicated wrapper for each e-SRAM. Many SoCs, especially
graphics and networking chips, contain lots of identical e-
SRAMs (same type, width and size). Sharing a single wrapper
for these memories can significantly reduce BIST overhead (e.g.,
[2, 3]). At the same time, however, we need to share the wrapper
intelligently in order not to sacrifice at-speed testability, which
was not addressed in previous work. Secondly, for small and
wide e-SRAMs, directly storing the entire test responses all at
once for diagnosis purpose consumes large silicon area. The bit
test results can be compressed in the temporal dimension without
losing diagnosis capability. Finally, it is also possible to share
BIST controllers among multiple functional blocks when they
are physically close to each other to further reduce BIST area
overhead.

Figure 1. The General Test Architecture

2.2 Small e-SRAM Repair Strategies

Since the repair overhead is quite high for small e-SRAMs and
the possibility of a particular small e-SRAM being defective is
usually low, traditionally Built-in Self-Repair (BISR) circuitry
are not utilized for them. However, as shown in [4], it is
necessary to provide repairability for these small e-SRAMs
when their total sizes amount to the Mbits range. In [16], a
specific repair method is selected for all e-SRAMs
independently of their sizes. This technique is especially not
economical for small e-SRAMs due to its complexity. In [4], a
“smart” wrapper is proposed for small and wide memories with
single bit or single input/output (I/O) repair schemes, which
allows at-speed testing with an acceptable BISR overhead. For
e-SRAMs with medium or small number of I/Os, however,
single row or single column repair scheme would be more
appropriate in terms of BISR area. This is not considered in [4].

It is the above observations in traditional e-SRAM BIST
architecture and repair strategies that motivate us to take various
practical issues into consideration in designing our proposed e-
SRAM BIST /R architecture with reduced area overhead without
sacrificing their test/diagnosis capability, as shown in the
following section.

3. e-SRAM Test/Repair Area Reduction

3.1 Simplifying e-SRAM Test Architecture
Considering Physical Information

3.1.1 Partly Share Wrappers for Identical Memories

It is quite common to have many identical memories on-chip for
today’s SoC designs, especially for graphical and networking
chips. Several previous works have proposed to share test
wrapper for these identical memories to reduce test area
overhead (e.g., [2, 3]), however, blindly sharing wrapper for all
identical memories may lead to physical design difficulty and/or
sacrifice for e-SRAMs’ at-speed testability. Therefore, we need
to consider the following two important rules in practice. The
first one is that the layout flexibility for each functional block
cannot be suffered. In [3], a single wrapper is designed to cover
all the identical e-SRAMs, even though they might be in
different functional blocks. Although this method results in
minimum DFT area overhead, it significantly increases the
layout difficulty of the design. For the at-speed testability of the
e-SRAMs, let us take a close look at a typical e-SRAM wrapper
(shown in Figure 2) that supports the application of the widely-
used March Algorithms [17]. The critical blocks inside the

wrapper that need to operate at-speed are the address generator
and the comparator, because the test patterns and test responses
need to be applied/captured at-speed. For most of existing March
algorithms where data background is not changing every cycle,
however, there are enough time for the preparation of data
patterns and the associated commands before a new March
element starts. As a result, the data generator and the command
generator do not need to work at-speed. In [2], the timing-
critical address generator block is also shared for identical
memories and hence it is not applicable for testing high-speed e-
SRAMs today [19].

Figure 2. A Wrapper Enabling At-Speed BIST

Based on the above analysis, we propose to share the data
generator and the command generator only for identical e-
SRAMs within a functional block. The memory control signal
monitor block is used to diagnose the read or write enable
signals for each memory in case of failures. Therefore, this block
is specific for each memory and cannot be shared. Fortunately, it
is very small (several combinational gates and one flip-flop), and
hence does not affect our simplification. In summary, within a
functional block, each identical memory will have its own
address generator, response comparator and memory control
signal monitor while the data generator and the command
generator will be shared among all identical memories in our
BIST architecture.

The proposed test architecture with partly shared wrapper is
shown in Figure 3. As can be seen, for those non-identical
memories within each functional block and identical memories
for different blocks, their wrappers are maintained. Experimental
results for the benchmark chips show each wrapper area of those
identical memories can be reduced by around 50%.

Figure 3. Proposed Wrappers for Identical Memories

3.1.2 Minimize the Number of BIST Controllers

Since the memory BIST controllers are generally implemented
at the register transfer level (RTL), every functional block with
e-SRAMs contains one or more BIST controllers. After entering
the gate level design stage, the physical information of those
functional blocks is known and can be utilized to reduce DFT
area overhead. That is, for the functional blocks that are close to
each other in floorplan, the memories with the same port type
(e.g., single-port memories or two-port register files) can share a
single BIST controller. It is important to note, however, reducing
the number of BIST controllers by this way might cause routing
congestion. Therefore, a try-and-error check needs to be done
after grouping BIST controllers. The proposed flow for sharing
BIST controllers is shown in Figure 4.

From Figure 4, the main difference between the general method
and the proposed method is that we utilize the physical
information of the functional blocks (including their memories)
when designing BIST controllers. The procedure is as follows,
we start by grouping some of the nearby functional blocks and
re-create a single BIST controller for this group at RTL if their
memories belong to the same type. Next, we check whether
routing congestion occurs and the timing of the original design is
violated. If not, we try to further grouping them in the same way.

After this round of groupings, the BIST controllers’ number
usually can be reduced significantly. Experimental results on our
benchmark chips show that the DFT area overhead after
reducing the BIST controllers’ number from 24 to 16 is up to
0.9%.

Figure 4. BIST Controller Number Minimization Flow

It may be argued that this minimization flow will increase design
cycle due to multiple times of synthesis, floorplaning and
routing. However, the design portion which requires
several rounds of try-and-error checks are only limited to
those controllers. This is because that all e-SRAM
wrappers will be maintained during this flow.

3.2 Test Results Compression w/o Losing
Diagnosis Capability

For small wide memories, storing every bit comparison results
consumes quite a large amount of silicon area (as shown in
Figure 5(a) for a 128 128× e-SRAM). Compressing them by
ORing each bit comparison result into a single-bit test signature
or multiple-bit test signature is proved to be a cost-effective
approach [20], e.g., compressing each bit comparison result with
a 4 to 1 OR gate is shown in Figure 5(b). However, this
approach fails to provide full diagnosis resolution of each e-
SRAM bit.

(a). Storing Each Bit Information with Diagnosis Capability

(b) Compressing Bit Information w/o Diagnosis Capability

Figure 5. Bit Comparison Results Storing Techniques

To tackle the limitations of both above techniques, we propose
to compress the test signature in a temporal dimension. That is,
we use the same design as in Figure 5(b), but at the same time
we provide more data patterns for diagnosis purpose. For the
example of a 128 128× configuration with 4:1 bit compression
ratio, a total of 16 kinds of data patterns at most are required in
diagnosing each bit status. Since the general data pattern register
is 2-bit to cover solid, checkerboard data patterns and their
reversed ones, the proposed method only requires increasing the
data pattern register from 2 bits to 4 bits and increasing the
command register with two extra bits in the wrapper. This 4 bit
increase of the data pattern register and the command register for
a 128 128× e-SRAM is negligible. The only drawback of this
method is the diagnosis time of this memory has been increased
by 4 times. Fortunately, not all memories are required to be
diagnosed.

With the proposed method, the bit comparison results storing
units can be reduced up to 65% for the example in Figure 5.

3.3 Single-Element Repair Strategies

Numerous redundancy repair strategies have been proposed in
the literature, ranging from simple to highly complex. For small
e-SRAMs, single redundant element repair schemes are
considered the best approach due to their small area overhead,
where an element can be a single bit/IO, a single row or a single
column. In order to select different repair approaches for small
e-SRAMs with different physical architectures, the following
terminology is defined.

Single Row Repair: this approach is similar to the general row
repair method, i.e., using a spare row to replace a faulty row.
However, if more than one rows are faulty, the memory is
unrepairable. It should be pointed out that a single spare row is
capable of repairing multiple faulty cells as long as all the faulty
cells are on the same row.

Single Column Repair: similar to the general column repair
method, one but only one spare column is designed to repair a
faulty column. If more than one column are faulty, the memory
is unrepairable.

Single Bit Repair: this repair scheme can tolerate up to a single
faulty bit. If there exist more than one faulty bit, the memory
cannot be repaired.

Based on the single element repair method, an important factor
for determining the repair approach for an e-SRAM is the spare
element overhead. For a small e-SRAM organized as
(,)A R C B× bits, where A, B, R, and C represent the address

space, the number of I/Os, the number of rows and the number
of columns of the e-SRAM, respectively, the BISR overhead
when using the three approaches above is shown in Table 1.

Table 1. Repair Area Overhead Calculations

Single Element Repair Repair Area Overhead

Single Row Repair 1/R

Single Column Repair 1/C

Single Bit Repair 1/B

From Table 1, it can be derived that the largest number of a
small e-SRAM rows, columns and bits/IOs determines the
optimal redundancy method.

According to the repair overhead calculated above, a general
repair approach selection flow for small e-SRAMs is shown in
Figure 6.

Since the Single Bit repair approach has been presented and
demonstrated in [4], this paper only discusses the
implementation of the Single Row repair and the Single Column
Repair. Here, we select the Single Row repair approach as the
example to explain our proposal.

Figure 6. Redundancy Approach Selections

Figure 7. Repair analysis algorithm for e-SRAMs with single-

row repair and 64 addresses space

When a memory with single row or column repair fails, we need
to know two pieces of information in order to determine whether
the memory is repairable and how to repair it, i.e., the row and
column numbers. For example, for an e-SRAM with single row
repair, if all failures share the same row address, we declare
memory as repairable. Otherwise, it is considered as
unrepairable. If repairable, the test/repair analyzer will provide
the bad row or column address.

The RTL implementation for a memory with 64 row addresses
space using single row repair is shown in Figure 7. The RTL
code for single-column repair is similar.

Compared to the single bit test/repair analyzer in [4], the
hardware costs for the single row repair analyzer are as follows.
Assuming R and B to be the number of rows and bits in the

memory, respectively, we estimate the hardware cost in terms of
flip-flops (FFs), 2-input XOR gates and 2-input OR gates by
considering the signals used in Figure 7. The detailed analysis
results are shown in Table 2, where the signal address_counter is
an overflow flag from the address generator block.

Table 2. Gates counts of the single row repair analyzer

Related signals FFs XORs ORs

DONE 1 1 0

Data_in 0 B B-1

REPAIR_STATUS 2 4 2

faulty_row Log2R Log2R-1 Log2R-1

address_counter 0 1 0

Total gate counts Log2R + 3 Log2R + B + 5 Log2R + B

For e-SRAMs with the single row repair approach, B tends to be
small but R is relatively large. Therefore, the total gates count
for the single row repair analyzer is low. For example, a wrapper
for an e-SRAM with R = 64 and B = 16 with a single spare row
requires only 58 standard cells.

In summary, while the single-element repair strategies proposed
in [4] is effectively for small wide e-SRAMs only, our proposed
repair analysis circuitry embedded in the wrappers is area-
efficient for all kinds of small e-SRAMs (wide, medium and
narrow) while still enabling good repair quality.

4. Experimental Results
To quantify the benefits of our proposed diverse approaches for
reducing e-SRAM BIST/R area overhead, we choose two
benchmark chips [21] for demonstration, where chip 1 has 256
unrepaired e-SRAMs and chip 2 has 2574 repaired e-SRAMs
with soft repair configuration. The configurations of these two
chips are shown in Table 3 and Table 4, where the test/repair
area overhead is calculated by comparing the total area of the
DFT logic with the total area of the memories.

In order to demonstrate the contributions in terms of test area
reduction for each approach presented in Section 3, we record
the result after applying each technique. The total area savings
which are calculated by applying all the proposed approaches are
also shown in the table. The results for chip 1 are shown in
Table 5. From this table, we can observe that sharing wrapper
technique has the most significant impact on test area overhead
reduction. This is expected because the graphical chips utilized
in this experiment contain lots of identical memories inside.

For chip 2, all memories were previously repaired without
detailed repair analysis. Therefore, the area overhead is rather
large. However, according to [4], the yield for those small e-
SRAMs when not using the single-element repair strategies is
not improved significantly. Therefore, besides the low area
overhead, the single-element repair strategies also provide
comparable yield level when compared with the general method,
e.g., the one in [16]. In this experiment, we replace their general
repair processing method with our single-element repair
strategies. The test/repair area overhead reduction due to this
replacement is shown in Table 6.

Table 3. A Summary of a Benchmark Chip 1

Total e-SRAM
amount

Total 1-port e-
SRAM amount

Total 2-port e-
SRAM amount

256 30 226

Maximum 1-port
e-SRAM density

Maximum 2-port
e-SRAM density

Total e-SRAM
density

170Kbits 32Kbits 1.735Mbits

Total e-SRAM
Test Area
Overhead

Total 1-port e-
SRAM test area

overhead

Total 2-port e-
SRAM test area

overhead

9.98% 11.41% 8.81%

Table 4. A Summary of a Benchmark Chip 2

Total e-SRAM
amount

Total 1-port e-
SRAM amount

Total 2-port e-
SRAM amount

2574 110 2464

Maximum 1-port
e-SRAM density

Maixmum 2-port
e-SRAM density

Total e-SRAM
density

120Kbits 16Kbits 3.0Mbits

Total e-SRAM
Test Area
Overhead

Total 1-port e-
SRAM test area

overhead

Total 2-port e-
SRAM test area

overhead

19.98% 25.23% 16.44%

Table 5. Test Area Overhead Reduction Summary for Chip 1

Approaches Reduction %

Designing partly shared wrappers 2.1%

Minimizing the number of BIST
controllers

0.9%

Test signature compression without
losing diagnosis capability

0.85%

All combined 3.85%

Table 6. Test/Repair Area Overhead Reduction Summary for
Chip 2

Approaches Reduction %

Designing partly shared wrappers 5.1%

Minimizing the number of BIST
controllers

2.2%

Compressing test signature without
losing diagnosis capability

0.8%

Applying single-element repair
strategies

2.2%

All combined 10.3%

5. Conclusion
Today’s SoCs contain an increasing number of small e-SRAMs.
Reducing the test and repair overhead for them is a challenging
task. This paper presented diverse approaches to tackle this
problem from a practical point of view, including partly sharing
wrappers for identical e-SRAMs within a single functional block,
minimizing the number of BIST controllers for nearby
functional blocks, compressing wide memory bit test results
without losing diagnosis capability and various single-element
repair strategies. Experimental results show that the proposed
techniques significantly reduced e-SRAM test/repair area
overhead.

6. Acknowledgements
We wish to thank anonymous reviewers at ATI Technologies Inc,
for their insightful comments and suggestions on this work.

7. References
[1] A. Bommireddy, et al., “Test and debug of networking SoCs – a case study”,

Proc. VTS, pp. 121-126, 2000
[2] A. Benso et al., “Programmable built-in self-testing of embedded RAM clusters

in a system-on-chip architectures”, IEEE Communications Magazine, Vol. 41,
No. 9 , 2003, pp. 90-97.

[3] B. H Fang and N. Nicolici, “Power-constrained embedded memory BIST
architecture”, Proc. DFT, pp. 451-458, Nov. 2003

[4] R. C. Aitken, “A modular wrapper enabling high speed BIST and repair for
small wide memories”, Proc. ITC, pp. 997-1005, 2004

[5] W. L. Wang, “March based memory core test scheduling for SoC”, Proc. ATS,
pp. 248-253, 2004

[6] B. H. Fang, Q. Xu and N. Nicolici, “Hardware/software co-testing of embedded
memories in complex SoCs”, Proc. ICCAD, pp. 599-605, 2003

[7] M. Lobetti Bodoni et al., “An effective distributed BIST architecture for
RAMs”, Proc. ETS, pp. 119-124, 2000

[8] C. W. Wang et al., “A built-in self-test and self-diagnosis scheme for
heterogeneous SRAM clusters”, Proc. ATS, pp. 103-108, 2001

[9] B. Nadeau-Dostie, et al., “A serial interfacing technique for built-in and
external testing of embedded memories”, Proc. CICC, pp. 22.2/1- 22.2/5,
1989

[10] B. Nadeau-Dostie, et al., “Serial interfacing for embedded-memory testing”,
IEEE Design&Test, Vol. 7, No. 2, April 1990, pp. 52 -63.

[11] W. B. Jone, D. C. Huang and S. R. Das, “An efficient BIST method for non-
traditional faults of embedded memory arrays”, IEEE TIM, Vol. 52, No. 5,
Oct. 2003, pp. 1381-1390.

[12] D. C. Huang and W. B. Jone, “A parallel built-in self-diagnostic method for
embedded memory arrays”, IEEE TCAD, Vol. 21, Issue 4, 2002, pp. 449-465.

[13] B. Wang, Y. Wu and A. Ivanov, “Designs for Reducing Test Time of
Distributed Small Embedded SRAMs”, Proc. DFT, pp. 120-128, 2004

[14] B. Wang, Y. Wu and A. Ivanov, “A Fast Diagnosis Scheme for Distributed
Small Embedded SRAMs”, Proc. DATE, pp. 852-857, 2005

[15] IEEE Std. 1500, IEEE Standard for Embedded Core Test – IEEE Std. 1500-
2004. IEEE, New York, 2004

[16] C. L. Su, et al., “A processor-based built-in self-repair design for embedded
memories”, Proc. ATS, pp. 366-371, 2003

[17] A. J. Van De Goor, “Using march tests to test SRAMs”, IEEE Design&Test,
Vol. 10, No. 1, March 1993, pp. 8-14

[18] K. Zarrineh and S. J. Upadhyaya, “On Programmable Memory Built-in Self
Test Architectures”, Proc. DATE, pp. 708-713, 1999

[19] T. J. Powell et al., “BIST for deep submicron asic memories with high
performance application”, Proc. ITC, pp. 386-392, 2003

[20] J. T. Chen et al., “Test response compression and bitmap encoding for
embedded memories in manufacturing process monitoring”, Proc. ITC, pp.
258-267, 2001

[21] N. Murthy, F. Hering and J. Rom, “Embedded memory test & repair drives
higher yield in nanometer technologies”, Proc. VTS, 2005

