
A Multi-Core Debug Platform for NoC-Based Systems

Shan Tang†‡ and Qiang Xu†

† Department of Computer Science & Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

‡ Broadband Communication Network Lab
Beijing University of Posts & Telecommunications, Beijing, China

Email: {tangs,qxu}@cse.cuhk.edu.hk

Abstract
Network-on-Chip (NoC) is generally regarded as the most promis-
ing solution for the future on-chip communication scheme in giga-
scale integrated circuits. As traditional debug architecture for bus-
based systems is not readily applicable to identify bugs in NoC-based
systems, in this paper, we present a novel debug platform that sup-
ports concurrent debug access to the cores under debug (CUDs) and
the NoC in a unified architecture. By introducing core-level debug
probes in between the CUDs and their network interfaces and a
system-level debug agent controlled by an off-chip multi-core debug
controller, the proposed debug platform provides in-depth analysis
features for NoC-based systems, such as NoC transaction analysis,
multi-core cross-triggering and global synchronized timestamping.
Therefore, the proposed solution is expected to facilitate the design-
ers to identify bugs in NoC-based systems more effectively and effi-
ciently. Experimental results show that the design-for-debug cost for
the proposed technique in terms of area and traffic requirements is
moderate1.

1 Introduction
With the ever advancement in semiconductor technology, de-
signers now are able to integrate an entire system onto a sin-
gle chip, known as system-on-a-chip (SoC). To meet stringent
time-to-market requirements, the development of SoC devices
is based on the design reuse philosophy, i.e., they are created
by combining tens or even hundreds of pre-designed IP cores
and custom user-defined logic (UDL) together. Most exist-
ing SoCs utilize on-chip buses to connect these IP cores in a
“plug-and-play” fashion that mimic off-chip board-based sys-
tems. However, it is well known that on-chip buses do not
scale well with the shrinking technology feature size, in terms
of both operational speed and power dissipation. Therefore,
the concept of network-on-chip (NoC) [5, 9] was proposed re-
cently and it is generally regarded as the most promising solu-
tion for the future on-chip communication scheme in giga-
scale SoCs. A number of NoC structures have been pro-
posed since then, as surveyed in [6]. Although different in

1This work was supported in part by the Hong Kong SAR UGC Di-
rect Grant 2050366 and Hong Kong SAR RGC Earmarked Research Grant
2150503.

one way or another, they all contain three fundamental com-
ponents: network interfaces (NIs) that connect the IP cores
to the NoC, routers that transport data between NIs accord-
ing to pre-defined protocol, and links that connect routers and
provide the raw bandwidth. For a typical NoC (e.g., [10]),
the NIs convert transaction messages into packets by chop-
ping them into pieces and adding header that contains routing
information to every piece; packets are further split into flits
(the smallest transfer unit) in order to reduce packet latency
with wormhole routing strategy [1].

At the same time, because of the high design complexity
and the inaccurate abstracted models used in various design
phases, existing verification techniques, such as simulation,
formal verification, static timing analysis, and emulation can-
not guarantee the correctness of the first silicon [11, 18]. Since
time-to-market dictates the success of a chip, a silicon debug
strategy that helps identifying bugs effectively and efficiently
is of crucial importance. Silicon debug support, however, re-
quires to increase the controllability and observability of the
design’s internal node to a level that is much higher than what
manufacturing test generally requires [11, 22]. While captur-
ing snapshots through JTAG run-control interface provide ba-
sic postmortem debuggability and are widely utilized in prac-
tice [20], the trend is to embed more design-for-debug (DfD)
structures for hardware tracing difficult-to-find bugs (e.g., [2,
4, 12, 13, 21]). With the above techniques, debugging a sin-
gle embedded core is a relatively well studied problem (still
challenging though). However, since embedded cores com-
municate with each other during normal operation, debugging
one core at a time can be ineffective and sometimes mislead-
ing [17], especially for SoCs with a number of processors. To
tackle this problem, a multi-core debug solution was proposed
for bus-based SoCs by introducing various on-chip instrumen-
tation (OCI) blocks customized for diverse processors, logic
cores and embedded buses [12, 17].

The above bus-based debug architecture, however, is not
readily applicable for NoC-based systems, as debugging NoC-
based systems introduces extra difficulties with the much
more complex communication schemes. The authors in [8]
introduced an event-monitoring service for the NoC that



provides continuous observability for the NoC transactions.
Their technique, however, requires the NoC to be substantially
over-designed in order not to affect the monitored user con-
nections’ bandwidth. In addition, effective debugging should
get all the active parties involved, i.e., the activities on both
the NoC and the cores under debug (CUDs) need to be traced
in a unified architecture, which is not addressed in their work.

In this paper, we propose a novel debug platform for NoC-
based systems. The main contributions of our proposed archi-
tecture are:

• We introduce debug probes in between the CUDs and
the NIs, which not only control and monitor the CUDs
through the cores’ debug interface (e.g., JTAG) without
introducing dedicated wires to connect to the system de-
bug interface, but also support effective inter-core trans-
action analysis. By building connections between mul-
tiple debug probes and a system-level debug agent con-
nected to the chip-level JTAG interface, the proposed ar-
chitecture provides concurrent debug access to multiple
cores and their transactions.

• We develop a novel “two-pass” debug strategy, which,
together with our configurable cross-triggering and
timestamping mechanism, controlled by an off-chip de-
bug controller, facilitates the designers to synchronize
multiple DPs’ debug operations and qualify trace data,
thus dramatically increasing the design’s debuggability.

The remainder of this paper is organized as follows. Section
2 reviews the related work in this domain. The proposed de-
bug platform for NoC-based systems are detailed in Section
3. Next, Section 4 analyzes the cost of the proposed debug
architecture in terms of area and NoC traffic. Finally, Section
5 concludes this paper.

2 Prior Work and Motivation
Today’s complex SoCs usually need to go through one or
more re-spins to become bug-free even though half of the sys-
tem development effort is allocated to verification tasks [16].
This is because all the verification techniques are applied to
a model of the chip instead of the actual silicon and usually
cannot be applied exhaustively [20]. Therefore, efficient and
effective post-silicon validation techniques need to be devel-
oped to reduce time-to-market.

Debugging silicon (as a blend of hardware and software),
is an extremely complex problem and cannot be tackled with-
out effectively observing the operations of the design’s inter-
nal nodes. Designers traditionally rely on postmortem debug-
ging approach that captures a snapshot of the SoC through
run control interface to find bugs [20]. This technique is quite
effective in identifying those easy-to-find bugs that leave “ev-
idences” when the SoC halts, but fails to find deeper bugs be-
cause these bugs manifest themselves only after a long time.
In addition, postmortem debugging is also not applicable for
mission-critical applications, such as automotive engine man-
agement, as it is an intrusive technique. Therefore, a more
effective debugging strategy for a complex SoC is to moni-
tor and trace it during normal operation [11]. The monitored

data can be either stored in an on-chip tracing memory or
transferred out of the chip via a trace port. Processor cores
have started to use traces to facilitate software debug for some
time [4, 13], in which instruction flows and sometimes data
accesses are logged so that designers are able to reconstruct
the program flow to find errors. With the increasing complex-
ity of logic cores, it is important to trace some of their internal
signals as well [2, 21]. Moreover, the interactions between
CUDs should also be logged to achieve a better visibility of
the system. Such huge amount of trace data, however, are dif-
ficult to analyze. Trace qualification through event-based trig-
gers is therefore extremely important to reduce trace volume
down to only the required information.

A debug platform for complex SoCs should provide the fol-
lowing features: concurrent debug access to the CUD’s debug
interfaces (e.g., JTAG) and their communication structures
with limited chip input/output (I/O) requirement, system-level
triggering and trace, and debug event synchronization for
cores from multiple clock domains [17]. Concurrent debug
access to multiple embedded cores has been addressed in [17,
19] by forming JTAG chains and introducing dedicated DFT
logic to let it conform the IEEE 1149.1 Standard. In addi-
tion, the authors in [17] implemented a so-called HyperDebug
module in their debug architecture that connects all CUDs to
handle multiple cross-triggering. A reference clock is also
utilized in the HyperDebug module for global timestamp syn-
chronization in their debug architecture.

The bus-based debug architecture in [17], however, is not
readily applicable for NoC-based systems. First of all, effec-
tive NoC transaction monitoring and analysis is a challenging
problem itself. In addition, the debug architecture in [17] in-
curs large routing overhead with all CUDs connecting to the
HyperDebug module. This problem is exacerbated when mul-
tiple cores need to transfer their traced data off-chip in real-
time, which may be necessary for complex SoCs. In NoC-
based systems, cores are able to communicate with each other
through the NoC already. Therefore, it is not necessary to
route dedicated wires to implement cross-triggering and trans-
fer out traced data.

There is also limited work in debugging NoC-based systems,
focusing on monitoring the NoC communication structure in-
stead of the entire system. [7] introduced an event-monitoring
service for the NoC, in which dedicated monitoring probes
are attached to routers and provide basic observability of the
NoC in the form of bits. Designers, however, usually prefer
to work at a higher abstraction level during debug phase, i.e.,
at the transaction level instead of at the bit level when debug-
ging inter-core communication. As a result, the same authors
redesigned their monitoring probe later to be able to monitor
transactions [8]. However, because their monitoring probes
are attached to the routers and have no knowledge about the
start of a transaction message, special message identification
method is developed, which, unfortunately, not only depends
on the message structure, but also requires the monitors en-
abled before the actual monitored connection is set up. The
large amount of continuous observed data thus require the



NoC

NoC based SoC

C
U

D

D
P

O
C

P

DA

JTAG

C
U

D

D
P

NoC Configuration

NI

NI

R R

R R

NINI

O
C

P

D

Port

C Port

Multi-core Debug Driver

Debugger
For Cores

Hardware Debug Controller

Off-chip Debug Controller

JT
A

G

Transaction
Debugger

Cross-Trigger

T

Port

Trace

C

Port

T Port

Debug
Software

PC Interface

D

Port

C

Port

T
ra

ce

JT
A

G

Ctr

Figure 1. Proposed Debug Platform for NoC-based Systems

NoC to be substantially over-designed, in order not to affect
the monitored user connections’ bandwidth. In addition to the
NoC hardware cost, this blindly monitoring strategy is also
not very effective from a debug point of view, as bugs are usu-
ally easier to be found with qualified traces triggered under
thoughtful conditions.

The above observations motivate us to develop a novel de-
bug platform suitable for NoC-based systems, as shown in the
following section.

3 Proposed Debug Platform
With the ever-increasing difficulty in the post-silicon val-
idation process, many today’s embedded cores come with
some DfD structures (e.g., [2, 4, 12, 13, 21]), usually con-
trolled through JTAG interface. Some complex cores also
comprise a trace port to transfer debug data outside of the
chip for further analysis in real-time. Under such circum-
stances, we propose a debug platform for NoC-based systems
as shown in Fig. 1. It is composed of three main parts: the
on-chip debug architecture that provides concurrent debug ac-
cess to the embedded cores and the NoC, the supporting debug
software (e.g., various debuggers for different cores), and the
off-chip debug controller that provides a physical translation
layer between the on-chip debug architecture and the software
debug tools. For the ease of discussion, we assume the cores
in the NoC-based systems communicate with each other using
the OCP protocol [14]. Please note, however, our debug plat-
form works with the other transaction-based communication
protocol (e.g., AXI [3] or DTL [15]) as well.

In this paper, we mainly focus on the design of the on-chip
debug architecture and the off-chip debug controller, which
together form the hardware infrastructure of the proposed de-
bug platform. Before presenting them in detail, let us briefly
discuss how the supporting debug software fits in the plat-
form. The supporting debug software provides the graphical
user interface (GUI) and/or command line window to control
the debug process and display the debug information. It con-
tains three layers. In the middle are the various core spe-
cific debuggers from core providers (e.g., ARM [4]) and a
transaction debugger that controls and observes the transac-
tions between embedded cores. A cross debugger at the up-
per layer, which communicates to multiple CUD’s debuggers
and the transaction debugger at the same time, is in charge
of debugging the interrelated operations of multiple cores. At

the bottom layer is a multi-core debug driver, which forwards
the debug requests and collects debug information to/from the
off-chip debug controller, through a PC peripheral interface
(e.g., parallel interface or ethernet). Since multiple debug re-
quests/information can arrive the driver asynchronously, the
debug driver needs to sort them and add/remove addressing
labels to/from them.

3.1 Overview
Unlike [17], in which all CUDs are connected together with
dedicated wires for multi-core cross debugging, in our pro-
posed debug platform, the debug commands and debug data
are transferred by reusing the NoC with guaranteed service
on throughput and latency, together with the functional data.
Consequently, the proposed debug platform for NoC-based
systems significantly reduces the routing overhead when com-
pared to [17]. This debug solution is also scalable with the
increasing amount of debug tracing data that come from mul-
tiple CUDs at the same time, since we can simply increase the
NoC bandwidth used for debug purpose.

Reusing the NoC for debug command and debug data trans-
fer, however, also results in some difficulties because of the
latency from a CUD’s debug interface to the system debug in-
terface. This is relatively easy to handle for single core debug
since we can build a virtual connection between the CUD and
its software debugger that looks transparent to the debugger.
For multi-core cross debugging, however, it is often important
to synchronize the triggering events and operations of mul-
tiple cores. For example, the designer may want to stop the
system and observe the status of several cores when one core
hits a triggering condition. Since the debug commands are
transferred to different CUDs with different NoC transfer la-
tencies (although predictable, as discussed in Section 3.4), we
propose a two-pass debug strategy with the help of a global
synchronized timestamping strategy controlled by the off-chip
debug controller. The basic idea is to log the trigger event hap-
pening time in the first pass, and then to restart the system and
control all the CUDs to be triggered simultaneously with this
timing information in the second pass.

To implement the above two-pass debug strategy, a so-
called timestamping register is introduced for every CUD to
add timestamp to its operations (e.g., trigger events). In addi-
tion, every CUD is equipped with a delay counter to store the
number of clock cycles that it should start to execute the debug



Trigger & Trace

Transaction Trace Buffer

OCP 
Slave INF

JTAG
Control

Core Trace Buffer

NI
OCP

Core
OCP

Core
JTAG

Core
Trace

Core
Trace

NI
OCP 

Slave INF

Delay 
Control

OCP

Transaction Trace Module

Debug Access Module

Core Debug Module

Core Trace Module

Figure 2. Debug Probe Block Diagram

command after receiving it. The distributed timestamping reg-
isters in all the CUDs are initialized to be zero synchronously
when the debug process starts by the off-chip debug controller.
This is achieved by writing the “reset timestamping register”
debug commands to the CUDs with different pre-calculated
values to the delay counters of the CUDs. These debug com-
mands arrive different CUDs at different time, but since they
start to execute the commands only after the values in their de-
lay counters is reduced down to zero, these CUDs are able to
operate synchronously with appropriate pre-calculated delay
counter values. After the synchronous reset, these timestamp-
ing registers start to accumulate themselves at their own clock
rates. Whenever an event is trigged in a cross debugging envi-
ronment, the value in the timestamping register is logged and
sent out to the debug controller. Then in the second pass, the
debug controller can determine how to control all the involved
cores so that they can operate synchronously.

3.2 On-Chip Debug Architecture

As a system-level debug solution for NoC-based systems, the
on-chip debug architecture needs to be able to concurrently
access interacting cores through their JTAG interfaces. In ad-
dition, the NoC transactions also need to be effectively ob-
served through the debug architecture. At the same time, be-
cause today’s SoC devices are often pin-limited, it is prefer-
able to reuse the system-level JTAG interface for debug pur-
pose (plus multi-bit trace port, if necessary). To achieve the
above goals, our proposed on-chip debug architecture mainly
contains the following components:

• core-level debug probes (DPs) in between every CUD
and its network interface;

• a system-level debug agent (DA) controlled by the off-
chip debug controller through JTAG interface;

With quality of service (QoS) guaranteed NoC channels be-
tween the DPs and the DA, we can map all debug resources
(e.g., timestamping registers, delay counters, and various de-
bug control and status registers) to memory-mapped registers
as the slave of the DA and access them in a unified manner.
Debug probe: The block diagram of a typical DP is shown in
Fig. 2. From the debug point of view, embedded CUDs have
three kinds of interfaces: the functional communication port
(OCP interface here), debug interface (usually JTAG) and the
optional trace port (e.g., for processors [4, 13]). Therefore, at

the CUD side, the role of the DP is also three-fold: (i) it gen-
erates the necessary JTAG signals to control and observe the
CUD; (ii) it traces the OCP transactions with reconfigurable
trigger conditions; and (iii) it transfers the trace data that come
from the CUD off-chip for further analysis. As shown in Fig.
2, the debug probe is composed of four main components:
• transaction trace module, which monitors transactions

between CUDs and records them based on pre-defined
trigger conditions and recording rules;

• debug access module, which uses a standard OCP slave
interface as the service access point of the DP;

• core debug module, which controls and observes the
CUD through its debug interface (usually JTAG) by
translating the debug register read/write commands into
the CUD’s debug access protocol;

• core trace module, which controls the CUDs’ trace port
(if any), buffers the traced data and provides a OCP slave
interface for the DA to read out the buffered data through
NoC connection.

At the NoC side, the debug resources are accessed through a
OCP slave interface (denoted as the D port). In addition, an
optional DP trace port can be implemented (denoted as the T
port). These interfaces can share the same NI with the CUD’s
communication port or use dedicated NI.
Debug agent: The debug agent contains a test access port
(TAP) controller that receives debug commands and sends de-
bug data from/to the off-chip debug controller through the
chip-level JTAG interface. In order to control and observe the
debug resources in the CUDs and DPs, as discussed above, all
these debug resources are memory-mapped into a unified ad-
dress space and we introduce an extra JTAG instruction “DE-
BUG REG” and the corresponding JTAG data register “DE-
BUG REG CMD” to access them with the following format:

Field Description
WR/RD ‘1’ for write operation; ‘0’ for read operation
ADDR Register address
DATA Register write/read data
READ VALID ‘1’ means read data available

The off-chip debug controller writes and reads debug regis-
ters with a procedure described as follows.

Off-Chip Debug Controller Debug Agent
Write ’DEBUG REG’ command
into IR; Use DEBUG REG CMD

register as DR;
Write operation
Shift in ’write’ command to DR:
:WR:ADDR:DATA:-: Write specified register;
Read operation
Shift in ’read’ command to DR:
:RD:ADDR:-:-: Read specified register;
Do {Shift out the contents of DR;}
While (READ VALID) != ’1’; Set READ VALID when

data is ready;
The DATA field in RD is the
valid data;

Note: To realize a delay write operation, the pre-calculated delay value must
be written to the DP’s delay counter first with the above method.



NoC

O
C

P
 S

la
ve

D
eb

ug
 C

o
nt

ro
l

DP

DA

Debug
Channel

JT
A

GT
A
P

Td_core_reg_wr

Td _DP _OCP Td_NoC Td_DA

Debug 
Regs

Trace Buffer

JTAG

CUD

CUD

Td_DP_reg_wr

Td_DP

Debug 
Regs

DP

CUD DP

Figure 3. Debug Access Delay
The DA implements an OCP master interface to transport the

debug information to and from the DPs through NoC connec-
tions. In addition, the DA also supports the optional chip-level
trace port controlled by the off-chip debug controller, so that
the software debuggers are able to access the trace data. If
the NoC connections can be reconfigured on the fly (e.g., in
[10]), we can equip the DA with NoC reconfigurability so that
the debug connections between the DA and some DPs can be
constructed dynamically to make better use of the NoC band-
width. We are also able to deactivate the debug infrastructure
in normal operational mode to improve the performance and
save the power consumption of the NoC-based system. If the
NoC connections need to be fixed during the design phase,
however, we have to build debug connections between all DPs
and the DA in the first place.
3.3 Off-Chip Debug Controller
Our off-chip debug controller serves as a translation layer be-
tween the software debuggers and the on-chip debug archi-
tecture, which builds transparent connections from the debug-
gers to the CUDs and DPs. It receives the debug commands
from multiple debuggers, schedules them and then controls
the on-chip debug agent through the system-level JTAG inter-
face. One of the main duties of the debug controller is to cross
debug multiple DPs and embedded cores simultaneously. To
achieve this objective, the delay to read/write the distributed
debug resources must be predictable. This can be seen from
Fig. 3, which demonstrates an abstracted model of the debug
access delay. The delay to write a debug register in a DP i is:

Td DP reg wr(i) = Td DA(i)+Td NoC(i)+Td DP OCP(i) (1)
, while the delay to write a debug register in an embedded core
i is:

Td core reg wr(i) = Td DA(i)+Td NoC(i)+Td DP OCP(i)+Td DP(i)
(2)

, in which Td DA(i), Td NoC(i), Td DP OCP(i), and Td DP(i) rep-
resent the DA processing delay, the NoC transfer latency, the
OCP slave processing delay, and the processing delay between
the DP and the CUD’s JTAG interface when the DA write
debug registers to the DP or core i, respectively. Clearly,
Td DP OCP(i) and Td DP(i) are fixed with the pre-defined com-
munication protocol. Td NoC(i) is also a fixed value for debug
channels with guaranteed service. Td DA(i) can be also deter-
mined although it depends on the debug register width2.

2For the sake of simplicity, we use fixed-width debug registers (32 bits) in
our current implementation.

While writing multiple debug registers at the same time in
the DPs and/or the CUDs from the DA corresponds to a “one-
to-many” relationship and hence is easier to control, reading
multiple debug registers simultaneously is troublesome be-
cause the “many-to-one” connections result in unpredictable
processing delay in the DA. Therefore, reading debug regis-
ters from the DP’s OCP slave interface is done sequentially in
our design to make its delay predictable.

3.4 A Cross-Triggering Example
Let us use an example to show our multi-core cross debug
process in this section. Consider the following debug sce-
nario that involves one DP and three embedded cores: the DP
detects a NoC transaction that meets its trigger condition, and
the designers would like to stop the three cores at the same
time so that their internal states can be observed and analyzed.
The debug process is as follows:

1. set DP trigger condition;
2. start DP and cores at the same time;
3. while (!triggered) check trigger status;
4. read out timestamp of the trigger event;
5. calculate relative trigger time for each core;
6. reset debug environment;
7. start DP and cores at the same time;
8. stop cores at trigger time;
9. hand over the control to the debuggers;

Among the above tasks, the most difficult one is to start/stop
different cores at the same time, which is done by writing
their debug registers with different delays. That is, since
the register writing delays, Td core reg wrA, Td core reg wrB and
Td core reg wrC, can be pre-calculated, we intentionally insert
different delays, TdelayA, TdelayB and TdelayC to the correspond-
ing DPs so that all write register commands take effect at the
same time, as shown in Figure 4.

Core C Stop C

Core B

Core A

JTAG Stop A Stop B Stop C

Td_core_reg_wrA TdelayA

Td_core_reg_wrB

TdelayCTd_core_reg_wrC

Stop A

Stop B

Expected
Trigger Time

TdelayB

Figure 4. Synchronous Debug Control
4 Cost Analysis
The proposed scalable debug platform for NoC-based systems
also brings some DfD cost, as analyzed in this section.

4.1 Area Cost
As introduced in Section 3, the on-chip debug architecture
contains a number of debug probes and one debug agent.
Therefore, the area of the DP should be well controlled to re-
duce the total DfD area cost. We implement an experimental
DP design in a commercial 90nm CMOS library. A detector
for comparing OCP commands and addresses and a transac-
tion analyzer that detects the read delay are instantiated in our
design. The transaction trace buffer used in the design is an



32× 128-bits asynchronous FIFO, in which we can store 32
transaction records, including 2 bits of the record identifier,
48 bits of the timestamp, 78 bits of the payload. We also im-
plement a 32× 32-bits core trace buffer. These two buffers
are implemented by general-purpose flip-flops in our current
implementation. The total area of this design is 188059 µm2

(about 57k gates). Further analysis shows that the two trace
buffers occupy most of the area in the DP (as expected), more
than 80 percent. If using SRAMs as FIFO, the area of these
buffers can be reduced significantly. The control logic inside
the DP is about 10k gates, which is considered to be accept-
able for giga-scale NoC-based systems. Adding more triggers
and core trace modules will not increase the area of the con-
trol logic significantly. For the debug agent, since it is an in-
terfacing module in our current implementation without trace
buffer, its size is quite small, less than 5k gates.

4.2 NoC Traffic Cost
As the proposed solution utilizes NoC connections to trans-
fer debug commands and debug data, the NoC needs to be
over-designed to accommodate the debug traffic. Generally
speaking, more debug connections and/or higher debug band-
width requirements per DP result in more DfD area for the
NoC. Since only a small number of DPs/CUDs need to be
debugged concurrently at a time in most cases, the proposed
solution for reconfigurable NoCs is more area-efficient when
compared to the NoCs without such capabilities.

For the debug traffic, all DPs share a chip level JTAG debug
port. Given the clock rate of JTAG, fTCK Hz, its throughput is
BJTAG = 1

fTCK
bps. Due to the processing overhead in the off-

chip debug controller and the debug agent, the actual usable
bandwidth is much smaller, Bactual = Ndata

Noverhead+Ndata
BJTAG bps,

in which Ndata and Noverehead represent the cycles used to
transfer actual debug data and the other data, respectively.
Therefore, the bandwidth of the NoC debug connection be-
tween every DP and the DA should be Bactual . For the debug
register read/write operation, we need to shift in the JTAG
instruction first and then the debug register address and the
actual debug data at last. The actual utilized debug bandwidth
Bactual is approximately BJTAG

3 bps if we are able to read/write
the debug registers of DPs/CUDs continuously.

For a particular DP, the NoC debug connection is only used
at the moment that the DA is accessing it. Therefore, given
the number of debug connections Ndc, the maximum NoC de-
bug channel utilization rate is Rmax = 1

Ndc
. While the NoC de-

bug channel utilization rate for the write operation can almost
reach Rmax as we are able to write multiple DPs continuously;
it is lower for the read operation as we need to wait between
reads from different DPs.

5 Conclusion
In this paper, we present a novel debug platform for NoC-
based systems, which, by using the NoC channels to transfer
debug commands and debug data, supports concurrent debug
access to the cores under debug (CUDs) and the NoC in a
unified architecture. The proposed solution introduces core-
level debug probes between the CUDs and their network in-

terfaces and a system-level debug agent controlled by an off-
chip multi-core debug controller. It provides in-depth analy-
sis features for NoC-based systems, such as NoC transaction
analysis, multi-core cross-triggering and global synchronized
timestamping. As a result, it is expected to facilitate the de-
signers to identify bugs in NoC-based systems more effec-
tively and efficiently, at the cost of moderate DfD area.

References
[1] K. M. Al-Tawil, M. Abd-El-Barr, and F. Ashraf. A Survey

and Comparison of Wormhole Routing Techniques in a Mesh
Networks. IEEE Network, 11(2):38–45, Mar-Apr 1997.

[2] Altera Inc. Design Debugging Using the SignalTap II Embed-
ded Logic Analyzer. http://www.altera.com.

[3] ARM Ltd. AMBA AXI Protocol Specification.
http://www.arm.com.

[4] ARM Ltd. How CoreSight Technology Gets Higher
Performance, More Reliable Product to Market Quicker.
http://www.arm.com.

[5] L. Benini and G. de Micheli. Networks on chips: A new SoC
paradigm. Computer, 12(1):70–78, 2002.

[6] T. Bjerregaard and S. Mahadevan. A survey of research and
practices of network-on-chip. ACM Comput. Surv., 38(1):1–
54, 2006.

[7] C. Ciordaş et al. An event-based monitoring service for net-
works on chip. ACM TODAES, 10(4):702–723, 2005.

[8] C. Ciordaş et al. Transaction Monitoring in Networks on Chip:
The On-Chip Run-Time Perspective. In Proc. IEEE IES, 2006.

[9] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip
Interconnection Networks. In Proc. DAC, pp. 18–22, 2001.

[10] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal
network on chip: Concepts, architectures, and implementa-
tions. IEEE Design & Test of Computers, 22(5):21–31, 2005.

[11] A. B. T. Hopkins and K. D. McDonald-Maier. Debug Sup-
port for Complex Systems on-Chip: A Review. IEE PCDT,
153(4):197–207, 2006.

[12] R. Leatherman and N. Stollon. An Embedded Debugging Ar-
chitecture for SOCs. IEEE Potentials, 24(1):12–16, 2005.

[13] MIPS Technologies Inc. EJTAG Trace Control Block Specifi-
cation. http://www.mips.com.

[14] OCP International Partnership. Open Core Protocol Specifica-
tion. http://www.ocpip.org.

[15] Philips Semiconductors. Device Transaction Level (DTL) Pro-
tocol Specification. http://www.philips.com.

[16] Semiconductor Industry Association (SIA). The International
Technology Roadmap for Semiconductors (ITRS): 2003 Edi-
tion.

[17] N. Stollon et al. Multi-Core Embedded Debug for Structured
ASIC Systems. In Proc. DesignCon, 2004.

[18] B. Vermeulen and S. K. Goel. Design for Debug: Catching
Design Errors in Digital Chips. IEEE Design & Test of Com-
puters, 19(3):35–43, 2002.

[19] B. Vermeulen, T. Waayers, and S. Bakker. IEEE 1149.1-
Compliant Access Architecture for Multiple Core Debug on
Digital System Chips. In Proc. ITC, pp. 55–63, 2002.

[20] B. Vermeulen, T. Waayers, and S. K. Goel. Core-Based Scan
Architecture for Silicon Debug. In Proc. ITC, pp. 638–647,
2002.

[21] Xilinx Inc. Chipscope Pro Software and Cores User Guide.
http://www.xilinx.com.

[22] Q. Xu and N. Nicolici. Resource-Constrained System-on-a-
Chip Test: A Survey. IEE PCDT, 152(1):67–81, 2005.


