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Abstract
Diagnosing functional failures in complicated electronic

boards is a challenging task, wherein debug technicians try
to identify defective components by analyzing some syndromes
obtained from the application of diagnostic tests. The di-
agnosis effectiveness and efficiency rely heavily on the qual-
ity of the in-house developed diagnostic tests and the debug
technicians’ knowledge and experience, which, however, have
no guarantees nowadays. To tackle this problem, we pro-
pose a novel agent-assisted diagnostic framework for board-
level functional failures, namely AgentDiag, which facilitates
to evaluate the quality of the diagnostic tests and bridge
the knowledge gap between the diagnostic programmers who
write diagnostic tests and the debug technicians who conduct
in-field diagnosis with a lightweight model of the boards and
tests. Experimental results on a real industrial board and an
OpenRISC design demonstrate the effectiveness of the pro-
posed solution.

1 Introduction

VLSI testing is a critical step for the semiconductor indus-
try to identify defective chips. Unfortunately, with imperfect
defect models and limited testing time, some bad chips in-
evitably pass manufacturing test and defects-per-million rates
continue to increase with technology scaling. If such chips
are integrated into a complex electrical system that consists of
many printed circuit boards and each board contains tens of
even hundreds of ICs, the product will either fail in system-
level functional tests (if lucky) or fail at customer sites with
much higher service cost.

Generally speaking, when a system fails, debug technicians
run various diagnostic tests and try to determine the root cause
of the failure based on the acquired test syndromes. This is
an extremely challenging task due to the sophisticated inter-
actions between on-board components, which requires deep
understanding of the board system and the corresponding di-
agnostic tests for accurate diagnosis. The problem is even
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Figure 1. Knowledge Gap in Today’s Diagnosis Process.

exacerbated by the fact that today’s system design companies
usually out-source the production of their systems to contract
manufacturers (CMs, e.g., Foxconn and Jabil Circuit). Con-
sequently, it is the CM’s debug technicians, instead of the ex-
perts from system design companies who write the diagnostic
tests, that are in charge of the actual diagnosis task. Due to
the huge knowledge gap between diagnostic programmers and
debug technicians, the diagnosis effectiveness and efficiency
mainly relies on individual debug technician’s knowledge and
experience, and hence is not guaranteed. While direct com-
munication between the two parties is possible and may be of
help, its effectiveness is limited due to the the ambiguity of
human language and possible personnel changes (see dotted
arrows in Fig. 1).

To address the above problem, a number of automated di-
agnosis solutions have been presented in the literature over the
past decades. On the one hand, many “white-box” diagnostic
frameworks were constructed, wherein experts define rules [1–
5] and/or build models [6–13] to facilitate diagnosis by ab-
stracting their knowledge and understanding of the board sys-
tem and the corresponding diagnostic tests. With the increas-
ing complexity of the system, however, the difficulty to build
a good “white-box” diagnostic framework rises up quickly.
Moreover, with the accumulation of actual board failure data,
it is essential to adjust diagnosis rules and/or tune diagnosis
models to achieve better diagnosis accuracy. Such mainte-
nance requires expert knowledge but is often unavailable due
to the lack of resources. Motivated by the difficulty of “white-
box” diagnostic framework construction and maintenance for
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today’s complicated electrical systems, on the other hand, var-
ious “black-box” learning-based diagnosis solutions [14–19]
were proposed recently. Such systems construct a reasoning
engine for diagnosis, which makes use of machine learning
and data analysis tools (e.g., support-vector machine (SVM)
and artificial neural networks) to train a diagnosis system from
the historical database. While relatively easy to construct, the
diagnosis accuracy of such reasoning-based methods is usu-
ally not satisfactory, especially at the beginning of the product
cycle with insufficient historical data.

In this paper, we propose an agent-assisted diagnosis frame-
work for board-level functional failures, namely AgentDiag.
The key idea of the proposed solution is to construct a simple
yet effective diagnosis agent to bridge the knowledge gap be-
tween the diagnostic programmers who write diagnostic tests
and the debug technicians who conduct actual failure diagno-
sis. The main contributions of this work include:

• By analyzing the board structure and diagnostic tests,
AgentDiag introduces a novel evaluation metric namely
isolation capability for every component, which is able
to evaluate the quality of the diagnostic tests as a whole
and facilitates to develop new diagnostic tests to enhance
diagnosis accuracy;

• With the help of the proposed diagnosis agent, AgentDiag
employs an adaptive diagnosis procedure that is able to
dramatically improve diagnosis accuracy, especially for
those reasoning-based diagnosis engines with insufficient
historical data;

The remainder of this paper is organized as follows. Sec-
tion 2 introduces existing diagnosis techniques for board-level
functional failures and motivates this work. In Section 3, we
provide an overview of the proposed AgentDiag framework.
Section 4 and Section 5 detail the proposed evaluation met-
rics and the adaptive diagnosis procedure used in AgentDiag,
respectively. Experimental results are then presented in Sec-
tion 6. Finally, Section 7 concludes this work.

2 Related Works and Motivation

Rule-based diagnostic systems for board-level functional
failures conduct diagnosis in a “IF-THEN” manner, by map-
ping test syndromes (e.g., Pass/Fail information of diagnostic
tests and error messages from internal registers) to rules to be
invoked [1, 2]. As can be imagined, such diagnostic system is
not scalable for complicated boards as the number of rules is
roughly exponential to the number of test syndromes.

Instead of defining explicit diagnosis rules, a model-based
diagnostic system employs an approximate model to represent
the board under diagnosis (BUD), and use it to identify defec-
tive component from the test observations. A formal causal
model was proposed to improve the accuracy of bayesian in-
ference based diagnosis in [7, 8], leveraging expert’s causal
knowledge about the system. Another hypotheses model was

proposed in [20, 21] to infer the root cause given the man-
ifestation of tests based on experts’ structural knowledge of
board and test. Taking the structural information of the board
and causal knowledge of test behavior into the consideration,
model-based diagnostic solutions are more scalable than rule-
based ones and are likely to achieve higher diagnosis accu-
racy for complicated electrical systems. However, these mod-
els contains many hypotheses and pre-determined probabilis-
tic parameters, which highly relies on the experts’ knowledge.
As the complexity of today’s electrical systems is far beyond
one’s comprehension, the scalability of model-based diagnos-
tic systems is also quite poor. What’s worse, it is essential to
update the parameters used in the model constantly with field
diagnostic data to improve the system, but this may not be al-
ways possible since experts may leave the team or even the
company.

To alleviate the difficulty of model construction and main-
tenance, machine learning and data analysis tools such as neu-
ral networks [15, 22], bayesian inference [14] and support-
vector machine [23] are employed to construct a reasoning
engine for diagnosis. By training the system with historical
diagnosis data, it automatically infers the root cause of a new
failed board given its test syndromes. The main limitation
of reasoning-based diagnostic systems is the so-called over-
fitting problem, which occurs when the system has too many
parameters relative to the number of observations. Generally
speaking, a reasoning-based diagnostic system often uses the
pass/fail information of all diagnostic tests as test syndromes
for training, typically in the range of several hundred. To
avoid overfitting, we should have thousands of successfully-
diagnosed boards for training. Otherwise, the system begins
to memorize training data rather than learning to generalize
from trend [24, 25]. However, such a large database becomes
available only at the later stage in the product cycle, which sig-
nificantly constrains the effectiveness of reasoning-based diag-
nosis methods.

To sum up, existing “white-box” diagnostic systems try to
pass expert knowledge to debug technicians as much as possi-
ble by constructing sophisticated diagnosis rules/models, but
such strategy inevitably suffers from scalability issues with
the increasing complexity of electrical systems; while the rea-
soning engines used in “black-box” diagnostic systems to-
tally ignore knowledge about the BUD, thereby requiring large
database to train the system, which is not available during
product ramp-up stage. With the above, a natural question is
whether we can develop an effective and efficient diagnostic
system in between the two extreme solutions.

The above has motivated the proposed agent-assisted di-
agnostic system AgentDiag, wherein we build a light-weight
model based on our knowledge about the BUD and its corre-
sponding diagnostic tests. This model is then used to evalu-
ate the quality of the diagnostic test set as a whole and guide
reasoning-based diagnostic systems without requiring large
amount of training data.
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3 AgentDiag Framework

In this section, we give an overview of the proposed Agent-
Diag solution for board-level functional failures and discuss
the lightweight model used in AgentDiag in detail.

3.1 Overview

The proposed AgentDiag framework is shown in Fig. 2,
which comprises three components: a lightweight model, a
test evaluation engine and a test suggestion engine. AgentDiag
sits in between diagnostic programmers who write diagnostic
tests and debug technicians who conduct actual diagnosis for
failed boards, and it bridges the knowledge gap between the
two sides without necessarily constructing sophisticated diag-
nosis rules/models.

As can be seen in Fig. 2, there are two feedback loops with
AgentDiag framework. At the top feedback loop, the test eval-
uation engine assesses the quality of the diagnostic test set as
a whole and pinpoint those components that are difficult to be
isolated during diagnosis (detailed in Section 4). The diagnos-
tic programmers can then add/modify tests to improve diagno-
sis quality. At the bottom feedback loop, the test suggestion
engine suggests test items to be applied by debug technicians
and/or to be considered in a reasoning-based diagnostic system
to improve diagnosis accuracy (detailed in Section 5).

Both the test evaluation engine and the test suggestion en-
gine require the knowledge of the BUD and its corresponding
diagnostic test sets, which is captured by the lightweight model
in AgentDiag, as discussed in the following.
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Figure 3. (a) Functional Graph Construction; (b) Test Path
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Figure 4. User Interface for AgentDiag Lightweight Model
Construction.

3.2 AgentDiag Lightweight Model

On the one hand, the lightweight model captures the struc-
tural information of the BUD, i.e., the components on the BUD
and their interconnections, which can be automatically ex-
tracted from the board design specification. To be specific, we
build a functional graph for the BUD structure. An example
is shown in Fig. 3(a), in which each node represents a particu-
lar component while the interconnection between components
is represented as an edge in the functional graph. Note that,
the functional graph is constructed in a hierarchical fashion.
That is, a node itself can contain a sub-level functional graph
with structural knowledge at the sub-component level. In ad-
dition, the graph can represent connections between nodes in
different hierarchical levels, because some components may
be designed in-house with more detailed structural information
while others may be third-party components without internal
structural information.

On the other hand, the lightweight model requires the diag-
nostic programmers to input the behavior of diagnostic tests.
In the simplest form, only the test path information (i.e., the
components and the interconnects that test path go through)
is needed (see Fig. 3(b)), which can be collected via a user-
friendly interface (see Fig. 4). Note that, the test path informa-
tion can also be input at different hierarchy level, e.g., com-
ponent level and sub-component level. No doubt to say, fine-
grained test path information leads to better diagnosis quality
with AgentDiag when compared to coarse-grained test path in-
formation.
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From the above, we can see that, it is much easier to con-
struct the lightweight model used in AgentDiag when com-
pared to the construction of rules/models used in those “white-
box” diagnostic systems, and it is applicable to complicated
electrical systems. In addition, building the lightweight model
is a one-time effort and it does not require frequent adjustment.

4 Test Evaluation Engine

A common limitation of existing diagnostic systems is that
they “blindly” rely on the given diagnostic tests. Practically
speaking, however, the development of diagnostic tests is of-
ten not truly diagnosis-oriented. For example, diagnostic pro-
grammers often reuse existing verification tests for diagnosis
to reduce development cost, which, however, may cover many
components with insufficient test syndromes. As a diagnos-
tic system is essentially a “garbage in, garbage out” system,
it is imperative to be able to evaluate the quality of diagnostic
tests as a whole and suggest additional test items to improve
diagnosis accuracy, if necessary.

Designing an effective set of diagnostic tests is not a trivial
task. Let us take the example shown in Fig. 5 for illustra-
tion. For the simple BUD shown in this figure, it contains four
components: A, B, C, and D. Suppose test T1 passes through
subcomponents A1 and C3 while test T2 passes through compo-
nents B and D. However, the test path of T3 shown in Fig. 5(a)
and the one shown in Fig. 5(b) are different. In Fig. 5(a), T3
goes through subcomponents A2 and C4; while in Fig. 5(b),
T3 goes through subcomponents C3 and C4 as well as com-
ponent D. For the sake of simplicity, let us assume the cov-
erage of these tests on a particular component/subcomponent

is 100% as long as they go through it. Intuitively speaking,
T3 in Fig. 5(a) is superior to the one in Fig. 5(b) as it covers
subcomponent A2 while the other one does not. However, the
diagnosability of T3 in Fig. 5(b) upon components A and C is in
fact higher than that in Fig. 5(a). Let us consider the four cases
that one of the subcomponents (A1, A2, C3, and C4) contains
a fault. The associated test pass/fail syndromes for T1 and T3
are shown in 5(c). Clearly, we can differentiate the four cases
with T3 in Fig. 5(b) but not that in Fig. 5(a).

Motivated by the above, we introduce a novel evaluation
metric to assess the diagnosability of the overall diagnostic
tests, namely isolation capability (ICap), as detailed in the fol-
lowing.

4.1 Isolation Capability

In order to achieve a high diagnosis accuracy, the appli-
cation of diagnostic tests should strive to provide unique test
syndromes to pinpoint the root cause component, i.e., with
minimum ambiguity whenever possible. Generally speaking,
however, it is usually inevitable that, under certain circum-
stances, failures in different components lead to the same test
syndrome.

Therefore, in order to evaluate the diagnosability of a test
set, for each component, we have the following definition:

• The isolation capability (ICap) of a test set TS for compo-
nent ci is defined as the probability that TS can uniquely
locate the fault in ci, under the condition that ci is faulty.

Intuitively, when the test set produce a syndrome, the prob-
ability of uniquely locating the root cause depends on the
number of suspicious components inferred from the test syn-
drome. In other words, the less suspicious components exist,
the higher value for the ICap. To represent these suspicious
components, we define:

• Ambiguity Set(AS): The set of functional components that
are suspicious to be faulty, based on the observed syn-
drome.

Given an observed test syndrome, based on the single faulty
component assumption, we can derive the AS from the combi-
nation of paths of the test set. We assume that by applying test
set on block ci, the test syndrome λ has p tests FAIL and f
tests PASS and we define them as pass test (PT ) and fail test
(FT ) for block i. In an ideal case (i.e., assuming 100% cover-
age for each test), the functional fault is detected by all f FAIL
tests. Meanwhile, the same fault cannot be detected by other p
PASS tests. With the above assumption, there is only such one
possible syndrome. The AS can be calculated as follow:

AS(λ) =
f⋂

i=1

Path(FTi)−
p⋃

j=1

Path(PTj) (1)

where Path indicates the components in the test’s path. Let us
consider the example shown in Fig. 5(a). If A has an active
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fault, T1 and T3 will be FAIL while T2 is PASS. The AS(λ) of
component A contains A,C. However, in Fig. 5(b), the AS(λ)
of A has only A.

After we obtain the AS(λ), the ICap of ci should be one
over the size of the AS(λ) if all the components in the AS
are equally to be faulty. In fact, however, some of them are
more prone to defects than others. We introduce a parameter
ErrorRate to take this issue into account, which is defined as:

• ErrorRate(ER): The probability of a functional compo-
nent to be the root cause under the condition that an error
occurs on the board.

Generally speaking, the defect rate of a component can be as-
sumed to be proportional to its Defect Part Per Million(DPPM)
obtained from its provider. Consequently, the ER of each com-
ponent can be initialized as the percentage of its own DPPM
over the summation of all the components’ DPPM on the
board. This parameter can be tuned with field diagnosis data
after accumulating a large number of failure boards. With the
above, the ICap of component ci can be calculated by the fol-
lowing equation:

ICap(AS(λ),ci) = ER(ci)/
m

∑
l=1

ER(cl) (2)

where m denotes the number of components in AS. Let us con-
tinue to discuss the above example, if the ER(A) to ER(D)
in Fig. 5 is 40%, 30%, 20% and 10%, respectively. The
ICap(AS(λ),A) in Fig. 5(a) is 66.7%, while in Fig. 5(b), it
is 100%.

In practice, the coverage of a test on a particular component
that it goes through is not 100%. That is, when a fault within a
component is activated, the tests passing through this compo-
nent may not fail. To take the test coverage factor into account,
Equation (2) is extended as following:

ICap(AS(λ),ci) =
ER(ci)×

⋂ f
j=1 TC(FTj,ci)

∑
m
l=1 ER(cl)×

⋂ f
j=1 TC(FTj,cl)

(3)

where FTj is the failed test in the test syndrome λ and
TC(FTj,ci) is the ratio of functional faults within ci that are
covered by FTj. Similarly, we further extend Equation (3) by
eliminating the assumption of perfect coverage of p passed
tests as following:

ICap(AS(λ),ci) =
ER(ci)×

⋂ f
j=1 TC(FTj ,ci)×

⋂p
k=1 TC(PTk ,ci)

∑
m
l=1 ER(cl)×

⋂ f
j=1 TC(FTj ,cl)×

⋂p
k=1 TC(PTk ,cl)

(4)

At last, we enumerate all the possible test syndromes λ

when the component ci is faulty and extend equation (4) as
following:

ICap(T S,ci) =
µ

∑
λ=1

ICap(AS(λ),ci) (5)

where µ is the total number of possible syndromes. Let us
continue to consider the example in Fig. 5(b) and demon-
strate the calculation of ICap of component C. Obviously,
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Figure 6. The Integration of Test Suggestion En-
gine with an SVM-based Diagnostic System.

two possible test syndromes of T1T3 can be seen in Fig. 5(c).
However, due to the imperfect test coverage, we need to
consider two more scenarios: 1) if a fault in C3 is covered
by T1 but escapes T3, then we have another syndrome for
T1T3, i.e., FP; 2) if the fault occurs outside of the two sub-
components C3 and C4, then the test syndrome becomes PP.
Now, we have four possible syndromes, and according to equa-
tion (5), ICap(AS(T1T3=FF,FP,PF,PP),C) can be calculated
using equation (4) with the coverage information of T1 and T3
upon components in AS, which is derived using equation (1).

5 Test Suggestion Engine

In this section, we demonstrate how the proposed test sug-
gestion engine in AgentDiag works by integrating it into an
SVM-based diagnostic system [23].

A typical SVM-based diagnostic system for board-level
functional failures [23] works as follows. Given the historical
successfully-diagnosed boards, the system is trained with the
fault syndromes extracted from the log files as inputs while the
replaced components as outputs. As the number of fault can-
didates (classes) is in the range of tens or hundreds in board-
level failure diagnosis, multi-class SVMs are designed in the
one-against-all manner in [23], i.e., if there are n candidates,
n SVMs are designed and each SVM represents one compo-
nent. All the training cases are used to determine the optimal
separating hyperplane (OSH) of each SVM. The system ranks
suspicious components (noted as diag. score) according to the
decision function of the OSH. One widely-adopted syndrome
is the pass/fail information of all tests formatted as a binary
vector (Entry 1 means the test fails, otherwise the entry is 0),
whose length is usually in the range of several hundred. Con-
sequently, it inevitably suffers from the overfitting problem at
the ramp-up stage of the product. While there exist a number
of feature reduction techniques in the literature (e.g., [24, 25]),
their effectiveness is questionable because these methods rely
on statistical analysis of the training cases.

With the lightweight model in AgentDiag, the proposed test
suggestion engine is able to adaptively select those effective
tests (i.e., most relevant features) without conducting statis-
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tical analysis for the training cases, thereby effectively solv-
ing the overfitting problem. The adaptive diagnosis procedure
works as shown in Fig. 6. For a new failed board, we first em-
ploy the SVM-based diagnostic system in [23] for root cause
analysis using the syndrome of the entire test set pass/fail in-
formation. Next, instead of ranking them as the output of the
diagnostic system, we consider the list of suspicious compo-
nents whose diag. score is positive for another round of diag-
nosis. In this iteration, we rely on the test evaluation engine
discussed earlier to select those tests that contribute to the iso-
lation capability of the suspicious components (the other com-
ponents are regarded as fault-free) and use them only to train
the SVM-based diagnostic system again. With the new multi-
class SVMs with reduced features (fewer test pass/fail infor-
mation are considered), we conduct diagnosis for this board
again. The above procedure iterates until the diag. score of
the 1st -ranked component exceeds a certain threshold.

It should be noted that the diagnostic tests are only run
once, which can take up to several hours. Only the SVM mod-
els need to be built for multiple times in an adaptive fashion
with the proposed diagnosis procedure, which only requires
a few seconds for the training of hundreds of historical cases
to complete and hence the runtime overhead can be safely ig-
nored.

The proposed test suggestion engine can be also used by de-
bug technicians for manual diagnosis in an interactive manner.
That is, for a particular board functional failure, after conduct-
ing a few diagnostic tests, the corresponding debug technician
usually has some suspicious components in mind based his/her
knowledge and past experience. The test suggestion engine
can then suggest those tests that are able to quickly identify
root cause among these components by conducting isolation
capability analysis with the help of the lightweight model and
the test evaluation engine in AgetnDiag.

6 Experimental Results

In this section, we first verify the effectiveness of the test
evaluation engine in AgentDiag based on an open source de-
sign with a K-NN based diagnostic system. Next, we demon-
strate the effectiveness of the test suggestion engine in Agent-
Diag with field diagnosis data on a real industrial board with
SVM diagnostic system.

6.1 Experimental Results on an OpenRISC
SoC

6.1.1 Experimental Setup

OR1200 is a 32-bit microprocessor with five-stage
pipeline [26]. 16 verification tests are provided along
with the design. In this experiment, we treat OR1200 as a hy-
pothetical board under diagnosis, in which the 14 sub-modules
(including PC generator, ALU, Register File, etc.) are treated
as components that may fail. Pin-level fault injection is

performed with the Verilog Procedural Interface(VPI) [27].
Registers from the six memory units (Data Cache, Instruction
Cache, IMMU, DMMU, GPRs and SPRs) are regarded as
the test observation points, which are compared against
golden values to determine whether a test passes or fails. The
coverage of a test for a component is calculated as the number
of pins, whose fault injection causes this test to fail, over the
total number of pins in the fault injection experiment. ER
is initialized to be proportional to the number of pins in a
module.

We implement a simple yet widely-adopted learning-based
diagnostic system based on K-nearest neighbor algorithm1 (k-
NN, k = 1 in our experiment) for OR1200, and we study the
correlation between the diagnosis successful rate (SR) for a
given diagnostic test set against the ICap value obtained with
our test evaluation engine in AgentDiag to prove its effective-
ness.

6.1.2 Experimental Results

In our first experiment, we make linear regression between the
isolation capability ICap and the diagnosis successful rate SR.
Figure 7(a) presents our experimental results. Faults are ran-
domly injected for 100,000 times and SR is the number of
faults that are correctly diagnosed over the total number of
injected faults. We calculate the coefficient of determination
R2 and it is as high as 0.9949, which clearly demonstrates the
strong correlation between the two items and proves the ef-
fectiveness of ICap for capturing the diagnosability of the test
sets.

Next, we compare the ICap and SR values between a
randomly-ordered test set and the same test set ordered greed-
ily with increasing ICap values. The greedy algorithm is per-
formed as follows: in each step, we add a test that contributes
the largest increment for the summation of ICap for all com-
ponents. As shown in Fig. 7(b), the trend of the curves are
quite consistent. We can observe that, with a small number
of tests (when the number of tests is less than 4), both ICap
and SR increase slowly. This is because, it is quite difficult
to differentiate test syndromes with less test items. ICap and
SR increases dramatically after we are given more tests, due to
the fact that more unique test syndromes can be obtained. We
can also observe that, while we are given 16 tests, in fact 11
tests give almost the same diagnosis successful rate, which is
identified with the greedy algorithm. At the same time, we can
observe the ICap value for the 11 tests is also the same as that
of all 16 tests, which, again, demonstrates the effectiveness of
the proposed evaluation metric for diagnosability.

Finally, our test evaluation engine outputs the ICap of mod-
ule floating point unit (FPU) to be close to zero with the given
16 tests, which is also confirmed with fault injection results
with SR close to zero. A closer examination of the given test

1In a k-NN diagnostic system, a new case is compared to all train-
ing cases to obtain the top k nearest ones based on the distance calcu-
lation.
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Figure 7. The Experimental Results of Open-
Risc 1200 SoC

“float” for FPU shows that it cannot propagate faults to the ob-
servation points. We therefore add a new test that performs a
large amount of floating point operations and tries to propagate
its results out. After doing so, ICap for FPU reaches ‘1.0’ and
the SR for FPU is also increased to 100% in our experiments.

6.2 Experimental Results on An Industrial
Board

6.2.1 Experimental Setup

We evaluate the effectiveness of the test suggestion engine by
conducting experiments on an industrial board in volume pro-
duction. There are around 150 components on this board and
the diagnostic test set contains 508 tests. We generate the
lightweight model based on the board specification and test
path information, and we initialize the ER of each component
to be equal to each other.

In total there are 286 successfully-repaired cases available
when conducting this experiment. We randomly choose a sub-
set of these cases as training cases (varied from 100 to 250)
and validate the diagnostic system using the rest. Since using
which cases for training affect the diagnosis results, we have
conducted random training case selection for 100 times and
report the average results. We compare the overall diagnosis
successful rate within 1, 2 and 3 attempts between the original
SVM-based diagnostic system [23] and the proposed adaptive
one as discussed in Section 5.

6.2.2 Experimental Results

The comparison results are shown in Table 1, in which SR de-
notes the diagnosis successful rate with the proposed adaptive
diagnosis method while SR

′
denotes that of the original SVM

based method in [23], and the subscript i indicates the diagno-
sis successful rate within i attempts. As can be observed from
the table, the proposed solution significantly increases diag-
nosis accuracy. The first hit rate (i.e., successful rate for the
1st attempt) is about 8% higher on average. This is expected
because the proposed adaptive diagnosis procedure effectively
address the overfitting problem with the original SVM solu-
tion, by eliminating those irrelevant features when training the

system in later iterations. When considering the second and
the third attempts, however, the improvement in terms of the
overall diagnosis successful rate drops to around 5% and 2%
on average, respectively. This is because, the proposed adap-
tive diagnosis procedure is still constrained by the candidate
list output from [23] in the 1st iteration, which takes the entire
test set as parameters to train the diagnostic system. Neverthe-
less, as we are more concerned about the first hit rate during
diagnosis, the advantage of the proposed solution is obvious.

In terms of diagnosis efficiency, as can be seen from Ta-
ble 1, the average number of iterations with the proposed
method is around 3, and there is a slight increase of iteration
count with the increase of training cases. The runtime of the
proposed diagnosis procedure is around 5 to 6 seconds, while
[23] takes less than 2 seconds. When comparing to the time
spent on applying diagnostic tests, it can be safely ignored.

7 Conclusion

In this paper, we propose a novel agent-assisted diagnostic
framework for board-level functional failures, namely Agent-
Diag. With the help of the lightweight model, AgentDiag is
able to evaluate the diagnosability of the test set with the pro-
posed test evaluation engine and improve diagnosis accuracy
with an adaptive test suggestion engine. Experimental results
on an industrial board demonstrate the effectiveness of the pro-
posed solution.
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