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ABSTRACT
Machine learning algorithms are advocated for automated di-
agnosis of board-level functional failures due to the extreme
complexity of the problem. Such reasoning-based solutions,
however, remain ineffective at the early stage of the produc-
t cycle, simply because there are insufficient historical data
for training the diagnostic system that has a large number of
test syndromes. In this paper, we present a novel test syn-
drome merging methodology to tackle this problem. That is,
by leveraging the domain knowledge of the diagnostic test-
s and the board structural information, we adaptively reduce
the feature size of the diagnostic system by selectively merging
test syndromes such that it can effectively utilize the available
training cases. Experimental results demonstrate the effec-
tiveness of the proposed solution.

1. INTRODUCTION
Today’s complicated electrical system consists of many print-

ed circuit boards and each board contains tens of even hun-
dreds of integrated circuits (ICs). No doubt to say, VLSI test-
ing is a critical step to ensure the quality and reliability of the
system. Due to imperfect defect models and limited testing
time, however, subtle defects in ICs may pass manufacturing
tests and result in defective chips being integrated into the
system. Eventually, these defects will manifest themselves as
functional failures at the board- and system-level [1]. Conse-
quently, board-level test and diagnosis is an essential step to
prevent shipping problematic products to the customers.

In board-level diagnosis, usually debug technicians from con-
tract manufacturers run various functional diagnostic tests de-
veloped by the system vendor and try to identify the root-
cause of the board failure based on syndromes produced by
these tests. This, however, is an extremely challenging task,
especially considering the fact that debug technicians typical-
ly have limited knowledge about the board under diagnosis
(BUD) and the associated diagnostic tests [2].

In order to improve diagnosis accuracy, a number of auto-
mated diagnostic solutions have been proposed in the litera-
ture. Generally speaking, they can be categorized into two
types. In the first type, based on the comprehensive under-
standing of the BUD and its diagnostic tests, experts from
system vendor define rules [3] to guide the debug technicians,
or model the underlying system directly for diagnosis [4]. With
the increasing complexity of electrical systems, however, it is
rather difficult to build very effective diagnostic rules and/or
models, rendering relatively poor diagnosis accuracy. Instead
of relying on expertise knowledge, the second approach resort-
s to machine learning and data analysis tools (e.g., support-
vector machine (SVM) and artificial neural networks) to train
a reasoning engine from the historical diagnostic data for di-
agnosis [5]. While promising, such reasoning-based solutions
also have some limitations. On the one hand, insufficient his-
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torical data may lead to the so-called “overfitting” problem[6],
which occurs when there are too many parameters (i.e., test
syndromes) relative to the number of observations (i.e., the
available historical data) during training. On the other hand,
there may exist redundant or irrelevant test syndromes, caus-
ing ambiguous root-cause identification.

To mitigate the above issues in reasoning-based diagnos-
tic solutions, Sun et al. [2] proposed a metric, namely iso-
lation capability, to evaluate the quality of diagnostic tests,
leveraging the structural information of the BUD and simple
behavioral description of the diagnostic tests. They further
utilized this metric to select the most effective test syndromes
for adaptive diagnosis. Ye et al. [7] presented another evalua-
tion metric based on information-theoretic analysis and used
it to select those test syndromes with high discriminative abil-
ity. With effective test syndrome selection for feature reduc-
tion in machine learning algorithms [8], the above methods
facilitate to improve diagnosis accuracy accordingly. At the
same time, however, these methods may lose some useful in-
formation with certain test syndromes being excluded from
the reasoning-based diagnostic engine.

In other words, while there is a need to reduce the number
of test syndromes to resolve the “overfitting problem”, espe-
cially at the early stage of the product cycle, at the same time,
it is preferable to preserve useful information in the given test
syndromes whenever possible. Consequently, in this work, we
propose a new reasoning-based diagnostic framework, which
relies on effective test syndrome merging instead of test syn-
drome selection for feature reduction. The proposed test syn-
drome merging algorithm takes advantage of the statistical
history of the training data and domain knowledge about the
BUD. It is also adaptive, i.e., the merging results vary with
historical diagnosis data at different product cycle for more ef-
fective diagnosis. Experimental results demonstrate that the
proposed solution is able to improve diagnosis accuracy for
more than 10% for a complicated industrial board.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces existing diagnosis techniques for board-level
functional failures and motivates this work. In Section 3, we
propose the concept of test merging and details the test merg-
ing algorithm. Section 5 demonstrate the proposed diagnosis
flow. Experimental results are then presented in Section 6.
Finally, Section 7 concludes this work.

2. PRELIMINARIES
In this section, we first introduce reasoning-based diagnos-

tic solutions and describe the associated challenges. Next, we
present the motivations for the proposed test syndrome merg-
ing technique. We hereby define some terms for later use.

Ambiguity : the ratio of the faults that lead to make a wrong
prediction among all possible faults in the board.

Predictable: a fault is predictable if the diagnosis database
has at least one training case, in which the syndrome is iden-
tical to what the fault generates
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Figure 1: Example board, tests and the corresponding

test syndromes.

Predictability : the ratio of predictable faults among all pos-
sible faults in the board.

Error rate: the probability that a subcomponent/component
is faulty when its parent component/board is faulty.

2.1 Reasoning-based Diagnosis
Reasoning-based diagnosis methods are emerging recently,

because the sophisticated knowledge of mapping the syndrome
to the root-cause can be incrementally built and maintained
like a “black-box” with machine learning and data analysis
tools, such as neural networks [5] and support-vector ma-
chine [9]. Trained by the historical diagnosis data, the re-
sulting statistical model has the implicit capability to make
the right diagnosis decisions even when the new syndromes
have yet to appear in the historical database.

In a diagnosis system, a test syndrome composes of the
pass/fail information of all diagnostic tests, typically in the
range of several hundreds. A failed board with root-cause
component Ci passes two diagnostic tests T1 and T3, but
fails another two tests, T2 and T4 generate a test syndrome
< T1 = 0, T2 = 1, T3 = 0, T4 = 1 > (in short for < 0, 1, 0, 1 >).
Fig. 1(a) illustrates a synthetic board composed of three com-
ponents C1, C2, C3, each of which contains two subcompo-
nents. The arrows show the paths of the corresponding di-
agnostic tests. Fig. 1(b) shows a table with ideal syndromes
for different root-causes, by assuming the diagnostic test has
100% coverage on the subcomponent it passes through. A
successfully-diagnosed board provides a training case: a pair
of syndrome and the root-cause component. Suppose in time
t1 of the product cycle, the diagnosis database has three train-
ing cases (see Fig 2). The statistical model is then trained by
tuning the weight associated with each test for characterizing
the root-cause candidates. To illustrate the reasoning-based
diagnostic process, we employ a “one against all” linear SVM
model in [9], wherein each component has a weight vector for
all the tests. Given the above three training cases, for ex-
ample, the weight vector associated with C1 is tuned to be
< 66.7, 0.0,−33.3,−33.3 > (see the other two weight vectors
for C2 and C3 in Fig. 2). When a new board is ready for di-
agnosis, a new syndrome vector is generated after testing. A
decision function, which is vector dot product between the new
syndrome vector and the weight vector associated with each
component, is used to calculate the score. The component
with highest score is considered as the predicted root-cause[9].

Modern electrical system requires hundreds of tests to fulfill
the diagnosis requirement. Consequently, the weight/syndrome
vector in the statistical model should contain hundreds of
weights/tests. To train such a model, we need at least t-
housands of training cases that far surpass what the product
line can afford. The lack of successful diagnosed board, es-
pecially in the early ramp-up phase, thus causes the so-called
overfitting problem [6].

2.2 Overfitting Problem
In machine learning, overfitting is a typical scenario where

a statistical model is too biased for the training cases and los-
es generality for future data. In the board diagnosis domain,
the dimension of the test syndromes(hundreds to thousands)
is too large relative to the number of successfully-diagnosed
boards at the product ramp-up stage, which results in signif-
icant bias to outliners for the diagnosis prediction. Consider
the example in Fig. 1, the statistical model has high confidence
to diagnose any faults in C11, C22 and C31(as shown in Fig. 2).
Suppose a failed board with root-cause C12 comes to the di-
agnosis system in t2 > t1, we only observe the test syndrome
< 0, 1, 0, 0 >. As no matched syndrome exists in the diagno-
sis database, the statistical model has very low confidence to
map it to C1, leading to ambiguous diagnosis. According to
the weight vector shown in Fig. 2, the decision function ob-
tains < 0, 1, 0, 0 > · < 66.7, 0.00,−33.3,−33.3 >T= 0. In the
example, we assume the error rates of the three components
as 40%,30% and 30% respectively. With this, we can calculate
the predictability of all the components on the whole board,
which is the summation of diagnosable area weighted by the
error rates 10% × 40% + 50% × 30% + 70% × 30% = 40%.
The reason for such ambiguity is that, for C1, the statisti-
cal model can only predict faults in C11 (only 10% chance a-
mong all possible faults in C1) rather than those in C12 based
on existing training cases, rendering an “overfitted” (biased)
model. Therefore, how to improve the generality of the sta-
tistical model for diagnosis with limited historical data is an
interesting problem to solve.

2.3 Test Syndrome Selection
To mitigate the overfitting problem, an effective way is to

reduce the feature size and hence simplify the statistical mod-
el, by selecting a subset of diagnostic test syndromes with
maximum diagnosability.

Ye et al. [7] employ the typical information-theoretic analy-
sis metric (i.e., mutual information) to form a test syndrome
set with maximum relevance. Unfortunately, the metric itself
depends on the historical data, and thus it cannot guarantee
a general statistical property during product ramp-up stage.
Sun et al.[2] propose a metric isolation capability(ICap), which
evaluates the capability of the diagnostic test syndrome to dis-
criminate each component. The metric is determined by pre-
determined information, such as the test paths, test coverage
and the defect-per-million of each component, and thus is less
affected by the historical data. Their method can adaptively
reduce the syndrome’s dimension according to the root-cause
candidates in an iterative manner, and preserve the highest
isolation capability, rendering a high successful diagnosis rate
even when the training database is small. However, without
explicitly considering the fact that the training cases increase
in later product cycle, this method fails to further enhance the
diagnosis accuracy in later stage of product cycle.

The underlying philosophy of test syndrome selection is
to strike a balance between the amount of information con-
tained in the test syndromes and the dimension of test syn-
drome. No matter how subtle the metric is, the information
loss due to test selection contributes noticeable penalty for di-
agnosis. In the same example, we employ max-relevance[10]–
a widely-accepted feature selection technique–to select three
tests, T1, T3 and T4 because they are most statistically rel-
evant to C1, C2 and C3 respectively. After T2 is removed,
the model has no ability to predict the fault conveyed by it.
When a new syndrome < 0, 1, 0, 0 > comes , we can calcu-
late the score for C1 using the new decision function, i.e.,
< 0, 0, 0 > · < 66.7,−33.3,−33.3 >T= 0, which is unable to
make the right prediction. Motivated by above, in this work,
we propose a novel feature reduction method, by merging in-
stead of removing diagnostic test syndromes.
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Figure 2: A motivational example. t1 < t2 < t3 are the

time of product cycle.

3. TEST SYNDROME MERGING
In this section, we first define the concept of test syndrome

merging. Next, an intuitive example is presented to show i)
the impacts of test syndrome merging for diagnosis and ii) the
importance of an effective and efficient merging methodolo-
gy. At last, we formulate the problem on how to conduct an
effective test syndrome merging.

3.1 Definition
Test Syndrome Merging : Given a set of tests {T1, T2, ...

,Tm} and their paths {P (T1), P (T2), ..., , P (Tm)}, a test
merging for these tests is defined as an action such that the
merged new test T ′, with path P (T ′)=

⋃
1≤i≤m P (Ti) and the

syndrome S(T ′)=
⋃n

i=1 S(Ti). Intuitively, the merged test can
be treated as running a batch of individual test programs re-
spectively, and therefore any failed (original) test indicates
the failing of the merged test. In terms of test coverage, the
merged test covers all the area that is covered by its contained
tests.

3.2 An Intuitive Example
When the training cases are not enough, neither T1 nor T2

can solely convey the fault information of C1. Fortunately,
if we notice the structural relationship between T1 and T2

as well as the current training data, we can merge the two
test syndromes into T ′. And one of the training cases after
merging becomes {C1, < T ′ = 1, T3 = 0, T4 = 0 >}, which
can correctly match to the observed syndrome after merging
< T ′ = 1, T3 = 0, T4 = 0 >. The statistical model now is able
to make the right prediction (see “good merging” column in
Fig 2, since the score of C1 is 1 × 66.7 + 0 × (−33.3) + 0 ×
(−33.3) = 66.7, which is higher compared to C2 and C3 whose
scores are both 0. The predictability is improved to be (10%+
90%)× 40%+50%× 30%+70%× 30% = 76%. The enhanced
predictability is the key to mitigating the overfitting problem,
by making the syndrome more informative. Because, with
the help of the domain knowledge of board structure and test
behavior, test syndrome merging endows the statistical model
with extra predictability on potential root-causes absent in the
diagnosis database.

However, the test syndrome merging, on the other hand,
can result in side-effects (Ambiguity). Suppose we merge T3

and T4 in order to predict C32 from the training cases. The
syndromes for root-cause C2 and C3 in diagnosis database be-
come the same < T1 = 0, T2 = 0, T ′ = 1 > as shown in “bad
merging” column Fig. 2). The model then becomes ambigu-
ous and has low confidence (the weights of the model shown
in Fig. 2) to discriminate between C2 and C3. Therefore,
a subtle merging algorithm should consider above side-effect
and choose the suitable test syndromes for merging based on
current diagnosis database and the structure information.

As more successfully-diagnosed boards are collected in the
diagnosis database, the statistical model will relieve the “over-
fitting” problem gradually. And the test merging strategy
should adapt to this process. For example in t3 >> t2, if
a new training case comes into the diagnosis database, e.g.,
{C2,< 1, 1, 0, 0 >} corresponding to the root-cause C21. If

we still allow T1 and T2 to be merged together, the syndrome
in this new training case would be {C2,< 1, 0, 0 >}, causing
another ambiguity between C1 and C2. Thus, we have to can-
cel the previous test syndrome merging accordingly. Ideally,
when the number of training cases in the diagnosis database is
large enough relative to the test syndrome dimension, no test
syndrome merging is needed at all.

To sum up, above example provides these intuitions:

• Test syndrome merging can relieve overfitting with en-
hanced predictability for the training cases.

• Improper test syndrome merging can bring ambiguity for
the training cases to diagnose.

• Effective merging adapts to different training cases.

Therefore, it is not trivial to explore the trade-off between
the predictability and the possible side-effect, rendering an es-
sential need for an effective and efficient test syndrome merg-
ing algorithm.

3.3 Problem Formulation
According to the previous description, we formulate the

problem as the following:
Given:

• the training cases;
• the structure information of board;
• the test path description

Objective:

Find N set of tests, each of which, denoted as T
′
m , is a merging

of diagnostic test set {Ti, ...Tk}, such that the Predictability of
the updated training data based on the merging is maximized
with the minimum penalty of Ambiguity increase.

4. THE PROPOSED ALGORITHM
We can transform the problem formulation as follow: Given

a graph, wherein each vertex refers to a diagnostic test, the
edge between two vertices denotes a possible test merging,
each edge is assigned with a weight that can reflect the gain
of merging two of its ending vertices, the target is to reduce
the graph size (vertex count) by merging vertices so that the
gain is maximized. However, it is difficult to evaluate the
predictability and the ambiguity at the same time with a single
metric. Not to mention that each “merging” operation will
change all the syndromes in the training cases, which change
the statistical information related to all the edge weight. To
decompose the above problem, We adopt a two-step approach
as described in the following sections.

4.1 Heuristic to Fix the Reference Test Syndrome
In first step, we try to fix some test syndromes, denoted as

reference tests, to be merged by the remaining test syndromes
later on. The purpose, on the one hand, is to reduce the
search space for test merging. On the other hand, the chosen
reference tests are critical for the upcoming merging. Highly
relevant fixed tests promise that the later merged tests can
predict more potential faults. To guarantee the predictabili-
ty in the training cases, therefore, we fix a set of tests with
highly statistical relevance to the board-level components. To
quantify the relevance, we employ the widely used Mutual in-
formation[11] as the metric. Mutual information measures the
dependency between two events: test syndrome and compo-
nent.

I(RC;SY N) =
∑

c∈RC

∑

s∈SY N

p(c, s) log
p(c, s)

p(c)p(s)
(1)

wherein the RC is the root cause on-board components and
SY N is the test syndrome. The calculation is based the sum-
mation for possible value of root cause and syndrome of the
joint probability multiplies by the log of joint probability over
the marginal probabilities of each.
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Next, we decide how many test items and which test items
should be fixed. Greedy heuristic pursuing the highest rel-
evance [7] is not our choice, because it may limit the pre-
dictability enhancement in the second step, leading to local
optimum. For example, one component has several tests with
high relevance and we fix all of them as reference tests. In the
second step, however, no other tests can be merged to them,
which derive far less predictability than merging them togeth-
er. Therefore, a better option is to consider all the on-board
components at the same time and find the reference tests us-
ing the maximal weighted matching algorithm on the basis of
a bipartite graph composed of the components and the test
syndromes with mutual information as edge weights. Noted
that we exclude those test syndromes with edge as 0 in the
matching results.

4.2 Heuristic for Test Syndrome Merging
In second step, we need to merge the syndromes of test-

s other than reference test syndromes (denoted as rest test
syndromes) into the syndromes of “reference test syndromes”.
Each merging should lead to more predictability while less
ambiguity. Thus, we use the metric ICap defined in [2] to
evaluate the gain of the merging. ICap defines the condition-
al probability of the test set to uniquely isolate a fault if the
fault occurs within a component. The calculation of ICap for
a component begins with the calculation of its ambiguous set,
which is the set of functional components that are suspicious
to be faulty, based on the observed syndrome λ:

AS(λ) =

f⋂

i=0

Path(FTi)−
p⋃

j=0

Path(PTj) (2)

where FT/PT and Path refer to the failed/passed test set
and the components in the test ↪aŕs path for the given λ. We
then derive the ICap of a component by calculating its error
rate over the summation of those of all the components in the
ambiguous set:

ICap(AS(λ), ci) = ER(ci)/

m∑

j=0

ER(cj) (3)

wherein ER is the error rate of the component. The ICap thus
can synthesize the predictability and ambiguity of a test set
when all possible syndromes have been available in training
cases [2]. However, if some of the syndromes may have not
been observed in training cases, the efficiency of using the
ICap is limited. Fortunately, the reference test syndromes
derived in the first step ensure that any new derived syndromes
by merging must have been observed in training cases. We
incrementally select the test from the rest test syndromes that
contributes the most to the ICap enhancement, and merge
their corresponding syndromes. This greedy algorithm ends
until no more ICap can be obtained by the merging or there
is no test in rest test syndromes.

Above algorithm has a bottleneck: when computing the I-
Cap for every tentative merging, the algorithm needs to com-
pute the AS for many time, among which a lot of calculation
is redundant. We observe that the AS union of two test set
TS and TS′ has the following property:

AS(λ, TS ∪ TS′) = AS(λ(TS), TS) ∩ (∩f
i=1P (λ(TS′), TS′(i))

− ∪p
j=1P (λ(TS′), TS′(j)))

where λ(TS) is the syndrome for the tests in TS, while f and
p are the number of failed tests and passed tests respectively.
The above equation decompose the AS of test set union into
multiple ASs of individual test set, in which a dynamic pro-
gramming method can be used to reduce the redundant ICap
calculation, by calculating the AS for every possible syndrome
incrementally based on the saved immediate results of AS.

Components All Diag. tests

Step 1. Bipartite
Maximal Matching

Fixed Test
Syndromes

Rest Test
Syndromes

Step 2. Greedy
Algroithm

ICap

Mutual
Information

Figure 3: The proposed test merging algorithm

Figure 4: Overview of the proposed solution

5. REASONING-BASED DIAGNOSIS SYSTEM
WITH TEST SYNDROME MERGING

In this section, we describe how to use test syndrome merg-
ing in reasoning-based diagnosis systems. We detail the inte-
gration method with two types of reasoning-based diagnosis
systems as follows.

As shown in Fig. 4, the test syndrome merging algorith-
m takes two inputs. One is the lightweight model described
in [2], while the other is the training cases from the diagno-
sis database. We use the proposed algorithm to merge test
syndromes and apply to all the training cases in the diagno-
sis database. When a BUD comes, we run all the diagnostic
tests and merge the observed syndromes accordingly. The up-
dated training cases and observed syndromes of the BUD are
sent to the diagnosis system (e.g., SVM) for diagnosis. Af-
ter diagnosis, the successful diagnosed board is repaired and
return to the manufacturer for shipment. The legacy of the
diagnosis result is the pair of root-cause and test syndrome,
serving as an additional training case that can enrich the diag-
nosis database. Therefore, the framework forms a closed loop,
wherein the historical database grows in an adaptive manner.
As the database becomes larger, more statistical information
conveyed in the training cases. To fully use this statistical in-
formation, we can merge the test syndrome multiple times ac-
cording to different scales of the database. In other words, the
test syndrome merging can adapt themselves to the database,
namely adaptive test syndrome merging. In this manner, we
can facilitate the normal learning-based diagnosis systems(e.g.
SVM, ANN, etc.) with these adaptively updated databases.

The proposed test merging solution not only can be inte-
grated into a normal reasoning-based diagnosis system, it can
be also applied in an adaptive diagnosis process (e.g., [2]). To
be specific, the diangostic system iteratively selects the most
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Figure 5: The SR1 of different methods

effective tests for diagnosis and derives some suspicious com-
ponents. Then, in the next iteration, it only uses those tests
that are relevant to the suspicious components 1. To integrate
the proposed test syndrome merging method to such adaptive
diagnosis process, for each iteration, we first apply the merged
tests from last iteration to the diagnosis system to narrow
down the suspicious components. Then, we fix the reference
test syndromes with high relevance to these suspicious com-
ponents, and continue to merge the remaining test syndrome
into the fixed ones. The resulting test syndrome can be used
in the next iteration. Note that we only choose the training
cases that are relevant to suspicious components, rendering
different training cases in different iterations. Meanwhile, the
calculation of ICap for suspicious components also changes in
each iteration. Fortunately, our test syndrome merging al-
gorithm support this adaptive process because both of these
variances are the inputs of the merging algorithm. We denote
this integration as Adaptive Test Merging with doted line in
Fig.4.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
To verify the effectiveness of the proposed method, we con-

duct the experiment on an industrial board currently in vol-
ume production. Diagnostic team has designed a total of 499
functional diagnostic tests for it. The lightweight model is
generated based on the board specification and test path in-
formation. A total of 190 repaired boards are collected from
the manufacture contractor’s database. Due to the limit num-
ber of historical cases, we leverage the lightweight model to
generate 1000 more synthetic cases. To be specific, we ran-
domly select a pin of a subcomponent to inject a fault into[12]
and regards its on-board parent component as root-cause. Af-
ter fault injection, we collect the syndrome of each test. We
randomly choose a subset from above generated cases as train-
ing cases and validate the diagnostic system with the rest. To
prevent the diagnosis results from being affected by different
set of training cases, we have randomly selected training case
for many times and report the average results.

In the experiment, we employ two baseline solutions: 1) the
SVM-based diagnostic system with original test syndromes [9]
(SVM-OT); 2) the SVM-based diagnosis system assisted by
adaptive test selection with original test syndromes[2] (AdpTS-
OT) . To evaluate the effectiveness of proposed technique, we
conduct the diagnostic test syndrome merging on the training
cases, and then feed the resulting training cases to above two
baseline diagnosis systems, denoted as SVM-MT and AdpTS-
MT respectively. At last, we integrate the proposed adaptive
test syndrome merging method with AdpTS technique [2], de-
noted as AdpTS-AdpMT.

1For more details, please refer to [2]

The difference between AdpTS-MT and AdpTS-AdpMT is
that the later test merging adapts to the different suspicious
components in each iteration. We compare the results of above
5 methods in table 1 with varied number of training cases from
50 to 400. Successful Rate(SR) denotes the ratio of correctly
diagnosed boards among the total number of diagnosed board-
s, and the subscript i indicates the diagnosis successful rate
within i attempts. We also present Fig. 5 with only SR1.

6.2 Results and Discussion
Table 1 shows the successful rate (SR) of three diagnosis at-

tempts for all five solutions. The SR increases as the training
cases increase. Comparing SVM-MT with SVM-OT, we ob-
serve that the test merging method improves the SR1(Fig. 5)
of a SVM-based diagnosis system by around 4% up to 10%.
As the number of training cases increase, the SR benefit first
increase, reach an optimal point (10%) and then drop back to
4%. The reason is that the test syndrome merging introduces
more ambiguity in the ramp up stage due to the small number
of training cases. When the database becomes larger, we have
a better statistical property to guide the test merging. While
in later stage of product cycle, the database is large enough
to overcome the “overfitting” problem, rendering less benefit
by test merging. When the number of diagnosis attempts in-
crease, e.g., SR2 and SR3, we observe the similar trend. But,
the benefit of test merging in these two scenarios are even
larger than that in SR1. That is because more attempts of
diagnosis cancel out the affects of the ambiguous root-cause,
and hence offset the side-effect of test merging method.

The above results provides an inspiring vision, that is, the
test syndrome merging method may be more successful after
integrating with any technique that can mitigate the ambi-
tious root-cause. And that is what the adaptive test selection
technique [2] is good at. To verify this idea, we integrate test
syndrome merging method with adaptive test selection tech-
nique as mentioned in section 6.1, and compare it to SVM-MT.
The SR gain proves that not only the adaptive test selection
method can integrate with test syndrome merging method,
but it also can compensate the side-effect brought by ever-
increasing ambiguity.

One may doubt that the above SR improvement of AdpTS-
MT may come from the adaptive test selection itself rather
than the test merging method. For resolving the doubt and
also for the fair comparison, we next compare the adaptive test
selection technique with and without test syndrome merging
method (see AdpTS-OT and AdpTS-MT). A similar scale of
SR improvement can be witnessed, which eliminates the above
doubt and proves the idea. However, we can see that the
overall improvement on SR is limited, in the range of 1% to
4%. The improvement obtained by the test syndrome merging
method here falls far behind what this method bring to the
SVM-based diagnosis system, because the test selection pro-
cess has partially mitigate the overfitting problem. Actually,
both of these technique has a common limitation, wherein the
statistical information of the historical data is omitted during
test syndrome selection and merging. In another word, they
are “not adaptive enough”.

As a result, we apply the adaptive test selection with adap-
tive test syndrome merging, i.e., AdpTS-AdpMT. Compared
to AdpTS-MT, this method can further outperforms up to 5%
improvement on SR.

It worth noting that AdpTS-AdpMT with 200 training cas-
es can compete with SVM-OT with 300 training cases. It
therefore highlights the ability of the proposed test syndrome
merging method to overcome the overfitting problem due to
the lack of training cases in product ramp up stage.

To compare our method with statistical feature selection
method, we try an advanced statistical feature selection method,
minimum-redundancy-maximum-relevance(mRMR), mentioned
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Train
case #

SVM-OT AdpTS-OT SVM-MT AdpTS-MT AdpTS-AdpMT
SR1 SR2 SR3 SR1 SR2 SR3 SR1 SR2 SR3 SR1 SR2 SR3 SR1 SR2 SR3

50 31.5% 35.2% 38.4% 37.2% 40.1% 44.5% 38.9% 41.2% 50.2% 38.5% 42.2% 47.7% 41.9% 43.3% 50.2%
100 41.2% 46.3% 48.5% 47.5% 50.6% 53.6% 48.2% 52.0% 55.7% 49.6% 53.3% 54.4% 52.2% 55.5% 61.1%
150 48.2% 53.5% 57.4% 53.5% 56.0% 60.3% 53.5% 55.5% 64.2% 54.6% 55.5% 60.5% 60.1% 64.2% 66.0%
200 53.2% 56.4% 59.3% 59.3% 61.1% 64.9% 60.1% 61.1% 66.7% 62.2% 63.7% 66.2% 62.8% 66.7% 70.0%
250 57.4% 61.7% 65.0% 64.9% 65.4% 69.9% 66.7% 68.8% 72.2% 68.9% 71.2% 72.9% 69.2% 71.1% 75.5%
300 63.0% 66.1% 71.2% 69.2% 71.7% 77.7% 70.6% 72.3% 77.0% 71.1% 71.7% 76.7% 72.3% 75.0% 78.2%
350 68.9% 72.3% 75.6% 75.4% 76.6% 81.6% 74.3% 77.7% 83.3% 75.5% 78.3% 81.2% 77.5% 81.5% 85.5%
400 74.3% 78.2% 83.3% 76.5% 82.2% 88.3% 77.5% 81.0% 90.0% 79.5% 81.2% 88.3% 85.5% 90.0% 92.0%

Table 1: Diagnosis accuracy of different diagnostic methods under varying training Cases
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Figure 6: mRMR feature selection method
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in the 1st iteration

in [7] as a speed-up method, which targets a different objective
from us. We plot the curve between the number of selected
tests and the SR in Figure 6 with 50, 200 and 350 training cas-
es. The tests are incrementally selected based on the ranking
of the mRMR metric in descending order defined in [7]. The
curve shows a stable improvement on SR with the increase of
the number of tests, which indicates that selecting any subset
of the whole test set with the method will lead to diagnostic
accuracy decrease, since there is information loss. However,
as stated, we can improve SR with our test merging method,
which demonstrates that the test merging is more preferable
for feature reduction in this scenario.

An interesting observation in the table is that there is no
obvious winner beween SVM-MT and AdpTS-OT. In order
to look into the reason, as can be seen in Fig 7, we plot the
“hit rate”, the ratio of the root cause in the suspicious compo-
nents (Fig 7(a)) and the the average number of the suspicious
components(Fig 7(a)) in the first iteration. Noted that all
methods, which we mentioned in experimental results, with
MT has the same “hit rate” in the 1st iteration, and so does
the both methods of OT. Obviously, the adaptive test selection
with merged test set always has higher SRs, proving that the
test syndrome merging preserve more information conveyed in
diagnostic test syndromes. However, the improvement of hit
rate keeps decreasing from more than 10% to 3% as training
cases increases.The results indicate that the merging improves
the probability that the root-cause component becomes in the
suspicious components, but originally they are not. The im-
provement becomes less when more training cases available,
since the large number of training cases themselves have high
probability to detect the suspicious component out and the ef-

fect of test merging becomes gradually less obvious. The same
trend can also be noticed for the average number of the suspi-
cious component in first iteration, as can be seen in Fig 7(b).
The MT method has an increase average number of suspicious
components, which is from around 1.2 to around 0.2 with the
increase of training cases. Also more importantly, we note
that, compared to OT methods, the MT methods always has
more suspicious components, which is brought by the “ambi-
guity” increase.

7. CONCLUSION
In this paper, we propose a novel test merging methodology

to reduce the feature size in reasoning-based diagnostic sys-
tems, by leveraging the domain knowledge of the board under
test and the corresponding diagnostic test set, such that the
available training cases can be effectively used to improve di-
agnosis accuracy. Experimental results highlight the effective-
ness of the proposed method.
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