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Abstract

Trace-based debug solutions facilitate to eliminate bugs es-
caped from pre-silicon verification and have gained wide ac-
ceptance in the industry. Generally speaking, a number of
“key” signals in the circuit are tapped, but not all of them
can be observed at the same time due to the limited trace
bandwidth. Therefore, a trace interconnection fabric is uti-
lized to output either a subset of signals with multiplexor
(MUX) network or compressed signatures with XOR network
to the trace memory/port in each debug run. However, both
kinds of trace interconnection fabrics have limitations. On
one hand, with MUX-based fabric, the visibility of the cir-
cuit is limited and it requires many debug runs to locate er-
rors. On the other hand, with XOR-based fabric, typically
clean “golden vectors” (i.e, without unknown bits) are re-
quired so that signatures are not corrupted. In this paper, we
propose a flexible trace interconnection fabric design that is
able to overcome the above limitations, at the cost of little
extra design-for-debug hardware. Experimental results on
benchmark circuits demonstrate the effectiveness of the pro-
posed technique.

1 Introduction

Today’s complex integrated circuit (IC) designs increas-
ingly rely on post-silicon validation to eliminate bugs that
escape from pre-silicon verification [1–3]. One effective
post-silicon debug technique is to monitor and trace the be-
haviors of the circuit under debug (CUD) during its normal
operation [4]. As shown in [5], for million-gate industrial
designs with trace-based debug support, it is common to
tap thousands of “key” signals in the circuit. Since it is
impossible to trace all the tapped signals at the same time
due to the limited trace bandwidth, a trace interconnection
fabric is used to link the large number of tapped signals to
the trace buffers and/or trace ports [6].

Existing trace-based solutions typically use multiplexor
(MUX) network as trace interconnection fabric, in which we
trace a subset of the tapped signals in each debug run. By
doing so, we are able to observe these selected signals con-
tinuously and use them to reason silicon bugs, e.g., to recon-
struct instruction flow [7] or to monitor bus communication
protocol [8]. At the same time, however, such MUX-based
fabric limits the visibility of the design since it only provides
part-view of the CUD in each debug run, while the states
of other tapped signals are not visible. Consequently, many
debug runs are usually required so that the bug’s erroneous
effects can manifest themselves, leading to high bug local-
ization effort.

Yang and Touba introduced another kind of trace inter-
connection fabric in [9]. Instead of observing a subset of the
tapped signals in each debug run, it provides an overview
of all tapped signals in the CUD by grouping tapped sig-
nals with a few XOR networks so that each XOR network
compacts the relevant tapped signals into a parity signal, and
tracing the compacted signatures comprising of these pari-
ties. By comparing the traced signatures with the correct
ones calculated from the “golden vectors”, we are able to
locate the bug’s erroneous effects into a group of tapped sig-
nals in one debug run, if any. Further diagnosis needs to be
conducted to identify the actual erroneous signal(s) among
the group of candidate signals, which is not addressed in [9].

One major limitation of XOR-based trace interconnec-
tion fabric is that, as a lossy compaction method, it re-
quires fully-specified “golden vector” in order not to cor-
rupt the compacted signatures. However, there are many
sources of unknown bits (i.e., X-bits) in today’s design (e.g.,
bus contention, multi-cycle paths, and multi-domain interac-
tions [10]), rendering such trace architecture less effective.
While various X-tolerant compactors have been proposed for
test response compaction in the literature (e.g., [11, 12]), they
are not readily applicable for silicon debug. This is because,
X-bits in test responses are known a priori and hence it is rel-
atively “easy” to design corresponding design-for-testability
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(DfT) hardware and the associated algorithms to mask or
cancel X-bits in test responses. On the contrary, bugs are
unpredictable at design time and hence we are not knowl-
edgeable about the vectors to-be-used in silicon debug before
tape-out. Therefore, it is essential to have a flexible trace ar-
chitecture that is able to effectively deal with unknown X-bit
distributions in silicon debug.

In this work, we propose a novel signal tracing approach
to overcome the limitations of existing solutions. We first
present a hybrid trace interconnection fabric that is able to
tolerate unknown bits in “golden vectors”, at the cost of little
extra design-for-debug (DfD) overhead. Then, we introduce
a systematic signal tracing procedure to automatically locate
erroneous signals with just a few debug runs. Experimental
results on benchmark circuits demonstrate that the proposed
flexible trace interconnection fabric facilitates more efficient
silicon debug than both MUX-based fabric and XOR-based
fabric.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related works and presents the motivation of
our work. In Section 3, we present the proposed flexible
interconnection fabric design. The systematic error localiza-
tion methodology is then detailed in Section 4. Experimental
results on benchmark circuits are shown in Section 5. Fi-
nally, Section 6 concludes this work.

2 Preliminaries and Motivation

With the ever-increasing design complexity and the ever-
shrinking market window for today’s IC products, it is in-
creasingly difficult to guarantee the correctness of the design
solely through pre-silicon verification, requiring post-silicon
validation to catch bugs left in the design. During silicon de-
bug (see Fig. 1), designers try to feed certain test input vec-
tors that can activate the bug and observe their error effects
to identify them. Since the circuit under debug is a piece of
silicon that has already been fabricated, the main challenge
is that there is only limited visibility of its internal signals.
Consequently, one of the key issues in silicon debug is how
to efficiently capture the error evidences, so that designers
can quickly localize the error within a small region of the
CUD, and then apply various diagnosis methods (e.g., [13])
to root-cause the bug and fix it.

One widely-used silicon debug technique is to reuse the
CUD’s existing test structure (e.g., scan chains) to run/stop
its operation and observe whether the values in the cir-
cuit’s storage elements are the expected values [3, 14]. Even
though effective for identifying those easy-to-find bugs that
leave “evidences” when the circuit halts, this low-cost tech-
nique provides little help for tracking those tricky bugs that
takes a long period of operation to manifest themselves.
Moreover, the behavior of many bugs is not repeatable, mak-
ing diagnosis with this run/stop debug methodology even
more difficult.

Erroneous 

Design

Design Phase

Violate Specification

Debug Phase

F
ab

ri
c

at
io

n

Test 
Input 

Vector

Golden 
Vector

Erroneous
Implementation

Dumped
State 

Value

H
ig

h
 L

ev
el

 

S
im

u
la

ti
o

n

Conflict

Figure 1. Silicon Debug: An Overview.
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Figure 2. Existing Trace Interconnection Fabric
Designs.

Tricky errors may take a long period to be activated in
“corner cases” or certain electrical environment, and it is dif-
ficult to be caught with run-stop debug solutions [15]. After
activation, the error will leave its evidences in the circuit,
and the evidences will further propagate forwardly and leave
their tracks on some other flip-flops(FFs). Based on this ob-
servation, if we are able to observe the error evidences by
properly tracing relevant FFs for some time, the region with
error is greatly zoomed in, and hence the bug root-cause ef-
fort is significantly reduced.

Fig. 3 depicts a conceptual infrastructure for trace-based
debug techniques. As signal tracing involves non-trivial DfD
overhead, only some “key” signals in the circuit are tapped,
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typically in the thousand range for million-gate designs [5].
An interconnection fabric is then used to link the tapped sig-
nals to the trace buffers/ports. Within the fabric, signals are
gradually concentrated according to the limited trace band-
width requirement. Trace compressor is optionally included
to extend the traced information with limited trace buffer.
The trigger unit controls the start and stop of signal trac-
ing, in which the triggering mechanism can be configured
through JTAG interface [16].

One important issue in trace-based silicon debug is how
to select tapped signals, which determines the effectiveness
of the debug solutions, i.e., whether we are able to effec-
tively observe bugs’ erroneous effects in the circuit. Many
solutions have been proposed in the literature to tackle this
problem [17–24]. On the other hand, due to the limited trace
bandwidth, we are not able to trace all the tapped signals
concurrently in each debug run. The trace interconnection
fabric design and the corresponding signal tracing method-
ology therefore determines how efficient we can observe the
bugs’ erroneous effects (if any), e.g., the number of debug
runs to locate them.

One widely-used trace interconnection fabric is the
MUX-based fabric, wherein we trace a subset of the tapped
signals in each debug run until we find out the erroneous ef-
fects. An example MUX-based fabric is shown in Fig. 2(a),
wherein we need four debug runs to observe the erroneous
effects in a4.

To reduce the number of debug runs during silicon de-
bug, [9] proposed an XOR-based trace interconnection fab-
ric (as depicted in Fig. 2(b)), wherein all tapped signals
are compacted into signatures1 and then transfer to trace
buffers/ports. For the same example, with XOR-based trace
interconnection fabric, we can observe erroneous evidence in

1The likelihood for aliasing is quite small, and for the sake of
simplicity, it is ignored in this paper.

the traced signature in the first debug run, but we have four
suspicious tapped signals and further diagnosis is needed to
identify the actual one (see Fig. 2(b)). Meanwhile, the ef-
fectiveness of the XOR-based fabric relies on the existence
of clean “golden vector” to generate reference signatures
for comparison. However, this is usually not the case dur-
ing silicon debug, rendering XOR-based fabric less effec-
tive. This is because: (i). it is often too time-consuming
to run gate-level simulation for failed silicon test2, design-
ers often resort to high-level simulator to generate “golden
vectors” and many unknown bits (X-bits) are obtained when
they are mapped onto gate-level vectors; (ii). asynchronous
clock domains and uninitialized state elements also result in
many X-bits in the vectors. In test response compaction tech-
niques, X-bits can also reduce fault coverage by corrupting
signature. Many techniques have been proposed to resolve
them. One approach called X-blocking is to eliminate the
sources of X-bits by interrupting the normal behavior of the
circuit [25]. It is not applicable for trace-based debug that
targets on the bugs occurring in the CUD’s normal opera-
tion. X-masking hardware is introduced to mask the X-bits
at the input of test response compactor [26]. As masking data
is required for every input channel with X-bit in each shift
cycle, the hardware overhead for storing masking control
data can be expensive. For trace-based debug application,
the problem becomes more severe as the number of tapped
signals is usually more than that of scan chains and the num-
ber of trace cycles is more than that of shift cycle, so that
much more control data is required. X-tolerant test response
compaction techniques are introduced to inherently tolerate
these X-bits [10]. Mitra and Kim proposed a combinational
X-tolerant compactor namely X-Compact [11]. By using
redundant channel for connecting each input with multiple
outputs in the compactor, X-Compact is able to keep a few
outputs uncorrupted in the presence of limited X-bits. For
this kind of compactor, the associated hardware cost from
redundant XOR channels is also expensive to guarantee high
X-tolerant capability. More importantly, these XOR-based
fabrics cannot restore the original trace data due to the lossy
compaction during data transfer. While in debug process, it
is essential to localize the exact erroneous signal to conduct
further root-cause effort. Above limitations demonstrates it
is necessary to introduce a dedicated X-tolerant fabric for
debug purpose.

As indicated above, both MUX-based and XOR-based
trace interconnection fabric have their own advantages and
disadvantages. A relevant question is whether we can de-
sign a hybrid fabric and its corresponding tracing methodol-
ogy that have the benefits of both solutions while overcoming
their limitations? This has motivated the proposed technique
in this paper.

2Running silicon for one second may take days for gate-level
simulator to complete.
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Figure 4. Hybrid Trace Interconnection Fabric:
A Straightforward Solution.

3 Proposed Trace Interconnection Fabric

Our initial thought is to design a straightforward hybrid
trace interconnection fabric as depicted in Fig. 4. In addition
to the XOR network used to trace compacted signatures, a
cross-connected MUX network is used to trace tapped sig-
nals directly. For the same example shown earlier, after we
localize the error evidence on the third-bit of trace data in
the first debug run with the trace signature, the fabric en-
ables us to trace the original tapped signals directly and we
can find the actual error evidence immediately in the second
debug run (see Fig. 4(b)). While the number of debug runs
can be reduced with this fabric design, it involves significant
routing overhead as tapped signals that may be far from each
other in the CUD need to be cross-connected. Moreover, if
the “golden vectors” are not clean, we are not able to iden-
tify suspicious error signals via the XOR-based tracing in
the first debug run and the efficiency of the debug solution is
essentially the same as MUX-based fabric.

To tackle the above problem, we propose to have an XOR-
MUX cell as the basic unit in our trace interconnection fab-
ric. As depicted in Fig. 5(a), from two groups of input sig-
nals, the cell is able to selectively transfer one group of sig-
nals or the parities from the two groups. Then, by replac-
ing the MUX or XOR cell in Fig. 2 with the the newly-
introduced XOR-MUX cell, we are able to obtain our pro-
posed trace interconnection fabric with the same tree-like
structure (see Fig. 5(b)) and the routing cost is similar to ex-
isting solutions.

There are two methods to configure the XOR-MUX cells:
(i). control every single signal in the cell (i.e., m = n in
Fig. 5(a)), referred to as fine-grained control); (ii). control a
group of signals with one selection signal (m= 1 in Fig. 5(a),
referred to as coarse-grained control). The former one in-
volves more hardware overhead, but it enables more efficient
silicon debug with higher flexibility; while the later one is the
opposite. As the example shown in Fig. 5(b), with coarse-
grained control, we can only trace either b1 or b2 in each
debug run, while with fine-grained control, we can select to
trace some signals in b1 and some others in b2 concurrently.
Note that, the configuration is again performed with JTAG
interface and it does not incur additional routing overhead.
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Figure 5. Proposed Trace Interconnection Fab-
ric.

Moreover, our proposed trace interconnection fabric de-
sign takes advantage of spatial compaction on trace data
only. On the other hand, it is also possible to compress
trace data temporally using multiple input signature regis-
ter (MISR) [27]. To be specific, the MISR will periodically
compress several cycles of trace data from interconnection
fabric into a signature, and it will dramatically expand the
tracing time. In particular, [28] presents a novel X-tolerant
temporal compression methodology for trace-based debug.
As shown in Fig. 5(b), we also include such temporal trace
compressor in the proposed design to selectively compress
trace data. Together with the interconnection fabric, we fur-
ther develop an efficient flow with extensive trace window
for error evidence localization in trace-based debug.

Note that, the focus of this work is on how to design
the trace interconnection fabric and its corresponding trac-
ing methodology. How to select trace signals (e.g., [18, 19])
and how they are grouped together (e.g., [6]) is hence be-
yond the scope of this work. Designers can either desig-
nate them manually or rely on automated solutions to resolve
these problems.

4 Proposed Error Evidence Localization
Methodology

With the proposed DfD design, we introduce our signal
tracing methodology that enables efficient silicon debug in
this section.

As discussed earlier, after a bug in the CUD is activated, it
will take some time to propagate its error effects in the circuit
and leave error evidences in one or more FFs. Suppose the
trace time is sufficiently long and at least one of the tapped
signals are left with such error evidence during tracing, the
objective of our technique is to pinpoint the erroneous signal
and the error occurrence cycle accurately. Moreover, as one
debug run can cost significant runtime, it is beneficial to con-
duct the above process with as few debug runs as possible.
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In the proposed error evidence localization methodology,
we first configure the DfD design introduced in Section 3
to compress the trace data spatially and temporally. By do-
ing this, we are with the largely extended capability to trace
the internal behavior of the CUD. Consider the case that we
have trace buffer with Nperiod (e.g., 64k) depth and the MISR
will periodically compress Ndepth (e.g., 64k) cycles of trace
data into a signature, then we are able to monitor the CUD
for Nperiod ×Ndepth (e.g., 4G) cycles in total, which is ca-
pable to tackle those errors that take extremely long latency
to manifest. By running the CUD once only, we can local-
ize the error evidence existing on some tapped signals within
the earliest monitored Ndepth (e.g., 64k) cycles. Next we will
configure the DfD design to bypass the trace compressor and
utilize the proposed interconnection fabric flexibly to local-
ize the exact error evidence within the earliest Ndepth (e.g.,
64k) cycles.

Algorithm for Error Evidence Localization with Clean
“Golden Vectors”
1 Configure the interconnection fabric as XOR network
2 Trace parities from all tapped signals
3 While exact error evidence is not localized on tapped signals
4 Configure the fabric to trace the upper level for one group

of signals with erroneous parity
5 Calculate the parities for the other group of signals

with traced value

Figure 6. Algorithm for Error Evidence Localiza-
tion with Clean “Golden Vectors”.

First, let us consider the simple case that we have clean
“golden vectors”. Under this circumstance, as shown in
Fig. 6, in the first debug run, we will configure the fabric
to be an XOR network as shown in Fig. 7 (a), so that we can
trace the parities from all tapped signals. Based on that, we
can find some error evidences existing in tapped signals with
the applied test vectors, if any, by comparing the traced par-
ities and parities from “golden vectors”. To further localize
the exact erroneous signal, in the following debug runs, we
configure the XOR-MUX cell to selectively trace one group
of parities at upper level (e.g., b1 as shown in Fig. 7 (b))
containing possible error evidence. As for this example, we
notice b1 is with error in the second debug run and we will
continue to configure the fabric to trace a1 as shown in Fig. 7
(c). This time, a1 is error-free and we can conclude that a2 is
with error. The actual values can be calculated with b1

⊕
a1.

By conducting the above procedure recursively, we can lo-
calize the exact error evidence in a2 by taking d debug runs
(d is the depth of tree-like fabric). Within the procedure,
however, if we choose to trace b2 in the second debug run,
we will find that parities in b2 are correct, and we can con-
clude that all signals at the upper levels of b2 are also correct.
Consequently, we will still trace the upper level signals of b1
(i.e., a1 or a2) and we will localize the same error evidence
in a2 in the third debug run. Therefore, no matter whether we
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can directly trace the signal group with erroneous parity or
not for each debug run, the above binary search-like proce-
dure guarantees to localize error evidence with d debug runs
3. Note that, the actual structure may not be the ideal case
that each group are with the same amount of tapped signals
and each sub-tree are with the same depth. However, the pro-
posed signal tracing methodology is able to work in the same
manner.

Next, let us consider the case when X-bits exist in “golden
vectors”. Unlike XOR-based fabric that cannot tolerate any
X-bit (See Fig. 8 (a)), our proposed fabric is able to avoid
parity corruption naturally by blocking X-bits during their
transfer. As the example shown in Fig. 8 (b), wherein a1 and
a2 are with X-bits in “golden vectors”, with fine-grained con-
trol fabric that can freely direct every signal, we will config-
ure the XOR-MUX cell to transfer signals with known values
only during signal tracing, so that X-bits would have no im-
pact. For this particular example, we are able to tolerate all
the X-bits before they corrupt any possible error evidence.
Suppose that more signals are with X-bits, we may not be
able to block them at the first level (e.g., the same bit position
in a1 and a2 are with X-bits), but eventually we can mask
them at lower levels (e.g., in b1). For the case with coarse-
grained control fabric that can only direct every group of sig-
nals together, we can also block the X-bits in one group by
configuring the XOR-MUX cells to transfer the other group,

3As the proposed interconnection fabric is tree-like structure, d increases
logarithmically with the number of tapped signals.
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as shown in Fig. 8 (c). However, the error evidences in the
masked group will not be observable and may affect the error
detection quality.

If the bug manifests itself on multiple tapped signals, it is
beneficial to collect more error evidences during signal trac-
ing, as the diagnosis effort will be reduced by studying the
possible root-cause region that affects all collected error evi-
dences. For the simple case that we can use fine-grained con-
trol to direct every signal, we can directly adopt the earlier
approach so that most error evidences are finally collected.
This is achieved by repeatedly using the error localization
flow for each bit of trace data. As the example shown in
Fig. 9, the proposed approach is able to collect three error
evidences in a2 and a4 as these evidences are on different bit
position in trace data. For the other case that we are equipped
with coarse-grained control fabric, to collect as many error
evidences as possible, we will further improve the procedure
introduced earlier (see Fig. 7). The main difference is on how
to determine the signals to trace in the next debug run. In pre-
vious method, we simply decide to trace one signal group on
the upper level if the current signal group is with any erro-
neous parity. Now, for the case that both signal group are
with erroneous parity, we will give higher priority to trace
the upper level of the signal group with more erroneous par-
ities, so that eventually more error evidences are likely to be
collected. As the example shown in Fig. 9 (b), by tracing
b1 in the second debug run and calculating b2 from b1

⊕
a1,

we find b1 and b2 is with one and two erroneous parities,
respectively. We will then choose to trace the upper level of
b2 as it is with 1 more erroneous parity than b1. Finally, we
can localize on a4 with two error evidences.

5 Experimental Results

5.1 Experimental Setup

We conduct experiments on several large ISCAS’89 and
IWLS’05 benchmark circuits to evaluate the effectiveness
of the proposed solution. In terms of the interconnection
fabrics, we consider MUX-based fabric, XOR-based fabric

and the proposed one with coarse-grained control and fine-
grained control, respectively. For circuits s38417, s38584
and usb, we randomly select 300 tapped signals, while for
larger circuits des and ethernet we tap 1000 signals.

The corresponding signal tracing solutions work as fol-
lows. For the one equipped with MUX-based fabric, it sim-
ply traces different subsets of signals in each debug run un-
til any error evidence is detected. For the one using XOR-
based fabric, it uses one single debug run to trace compacted
signatures from all tapped signals. While for the proposed
trace interconnection fabric, we try to collect as many error
evidences as possible with coarse-grained control and fine-
grained control, respectively.

To evaluate these tracing methods’ capability on error de-
tection, we randomly generate 1000 errors for each circuit
based on the widely-used “cell replacement” model in the
literature [13], and each time, we inject one of the errors into
the original netlist to obtain the erroneous netlist. We as-
sume for all cases the error has been localized in the same
16k cycles by trace compressor. Simulation of 16k cycles
with random stimuli is then conducted to dump the actual
states. These states are compared against the “golden vec-
tor” obtained from the simulation with the original netlist
to get the propagated error evidences, by finding the differ-
ence between actual states and “golden vector”. Finally, with
different signal tracing methods, a bug is regarded to be de-
tected if the signal tracing solution finds any error evidence.

5.2 Results and Discussion

Tables 1-3 present the experimental results on error de-
tection quality of various tracing solutions when trace buffer
width is 8, 16 and 32, respectively. In these tables, Column 2
and Column 3 shows the number of activated errors and the
number of detected errors. We can observe that, in average,
66.3% of the injected errors are activated in the experiment,
and the conditions to activate other injected errors are not
met with simulation for 16k cycles. Within the activated er-
rors, around 70% are detected with trace-based debug. This
is due to the fact that we only tap a small portion of the sig-
nals in the circuits (9.5% to 20.5%) and hence we will miss
the error evidences if the bug propagates to other signals.
This is also because the tapped signals in our experiment are
randomly selected and the detection quality cannot be guar-
anteed4.

Columns 4 to 7 present the average number of debug runs
(denoted by “# of Debug Runs”) for different tracing solu-
tions. Among them, MUX-based fabric (denoted by “MUX”
in Column 5) requires the largest number of debug runs (26.5
on average), which means the required tracing time is more
than other solutions. With the increase of buffer width, how-

4From this perspective, it is essential to develop high-quality
trace signal selection methods to increase error detection capabil-
ity, but this is out of the scope of this work.
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Circuit
# of Acti. # of Det. # of Debug Runs # of Acual/Sus. Error Evidences Min./Max. Latency

Error Error XOR MUX Pro.C Pro.F XOR MUX Pro.C Pro.F XOR MUX Pro.C Pro.F
s38417 751 447 1 27.6 3.23 3.64 2.58/73.1 1.03/1.03 1.12/1.12 2.24/2.24 2.90/11.6 7.00/7.00 7.06/7.13 6.49/7.80
s38584 825 684 1 19.1 4.47 5.06 3.41/91.3 1.05/1.05 1.12/1.12 2.94/2.94 2.97/17.9 7.30/7.59 7.30/7.59 5.98/9.80

usb 634 222 1 33.5 2.20 2.32 1.78/57.4 1.00/1.00 1.05/1.05 1.70/1.70 3.14/7.83 5.76/5.76 5.91/5.93 5.62/6.09
des 879 854 1 22.8 6.95 6.98 32.2/489.4 1.15/1.15 1.72/1.72 7.28/7.28 2.80/16.2 9.21/9.46 7.85/10.4 4.08/13.6

ethernet 227 88 1 120.3 1.61 1.61 1.89/167.6 1.00/1.00 1.01/1.01 1.43/1.43 1.52/7.04 1.68/1.68 1.68/1.70 1.61/1.82

Table 1. Experimental Results on Error Detection Quality Evaluation (Buffer Width=8).

Circuit
# of Acti. # of Det. # of Debug Runs # of Acual/Sus. Error Evidences Min./Max. Latency

Error Error XOR MUX Pro.C Pro.F XOR MUX Pro.C Pro.F XOR MUX Pro.C Pro.F
s38417 751 447 1 14.2 2.85 3.23 2.77/45.5 1.08/1.08 1.23/1.23 2.65/2.65 3.65/10.4 7.00/7.04 6.95/7.07 6.49/7.91
s38584 825 684 1 9.9 3.89 4.39 3.57/59.2 1.20/1.20 1.12/1.12 3.70/3.70 3.27/17.2 7.28/7.89 7.11/8.03 5.76/10.0

usb 634 222 1 17.2 1.99 2.11 1.86/33.3 1.05/1.05 1.10/1.10 1.91/1.91 3.45/7.58 5.76/5.78 5.89/5.97 5.70/6.15
des 879 854 1 11.7 6.12 6.12 32.1/482.3 1.56/1.56 2.68/2.68 13.2/13.2 2.75/16.1 8.62/10.2 6.55/11.5 3.61/14.5

ethernet 227 88 1 60.6 1.53 1.53 2.06/95.2 1.04/1.04 1.04/1.04 2.06/2.06 1.55/6.44 1.68/1.68 1.68/1.68 1.61/1.82

Table 2. Experimental Results on Error Detection Quality Evaluation (Buffer Width=16).

Circuit
# of Acti. # of Det. # of Debug Runs # of Acual/Sus. Error Evidences Min./Max. Latency

Error Error XOR MUX Pro.C Pro.F XOR MUX Pro.C Pro.F XOR MUX Pro.C Pro.F
s38417 751 447 1 7.76 2.50 2.79 2.96/25.9 1.19/1.19 1.41/1.41 3.02/3.02 4.43/9.96 7.00/7.14 6.95/7.21 6.68/8.00
s38584 825 684 1 5.50 3.30 3.73 4.33/38.9 1.40/1.40 1.80/1.80 4.56/4.56 3.68/16.4 7.06/8.08 6.71/8.52 5.67/10.3

usb 634 222 1 9.40 1.77 1.89 2.02/15.6 1.12/1.12 1.25/1.25 2.09/2.09 4.09/7.54 5.77/5.78 5.73/5.89 5.71/6.15
des 879 854 1 6.38 5.27 5.27 32.6/442.1 1.96/1.96 4.20/4.20 22.1/22.1 2.73/16.2 7.96/10.8 5.51/12.2 3.23/15.3

ethernet 227 88 1 31.3 1.44 1.44 2.02/53.2 1.07/1.07 1.07/1.07 1.85/1.85 1.55/5.94 1.68/1.68 1.68/1.68 1.68/1.82

Table 3. Experimental Results on Error Detection Quality Evaluation (Buffer Width=32).

ever, the associated tracing capability is enhanced and the
required debug runs for this solution is decreased in linear
manner. XOR-based fabric (denoted by “XOR” in Column
4) conducts signal tracing for one debug run for all cases.
While for both of our proposed solutions with coarse-grained
control (denoted by “Pro.C” in Column 6) and fine-grained
control (denoted by “Pro.F” in Column 7), only 3.27 and
3.47 debug runs are needed for detecting error evidences.
Both are much less than MUX-based fabrics. This is be-
cause for the case that no error evidence exists, the proposed
solution will stop at the first debug run as no erroneous parity
is found, while the one with MUX-based fabric takes many
debug runs for tracing every tapped signal to make the con-
clusion. On the other case that some error evidences do ex-
ist, the number of required debug runs is also small as it is
strictly bounded by the depth of the tree-like interconnection
fabric.

The average number of actual/supicous error evidences
obtained from various tracing solutions is shown in Columns
8 to 12 (denoted by “# of Acual/Sus. Error Evidence”).
Clearly, the tracing solution with MUX-based fabric and our
proposed solutions are able to guarantee every suspicious er-
ror evidence is the actual one. While for the method with
XOR network, only 5.9% of the suspicious error evidences
are the actual ones, which results in higher diagnosis effort.
In terms of the capability of collecting actual error evidence,
the proposed solution with coarse-grained control and the
one with fined-grained control collect 29.1% and 303% more
error evidences than MUX-based fabric, respectively.

Columns 13 to 17 present the average value of mini-

Buffer Width ∆XOR ∆Pro. C. ∆Pro. F.
8 -0.09% 3.88% 9.90%
16 0.07% 1.86% 5.13%
32 0.06% 0.91% 2.63%
∆ = Extra Hardware Cost

MUX−based Hardware Cost ×100%

Table 4. Area Overhead of Different Tracing So-
lutions.

mum/maximum latency from the suspicious error evidences
to the injected bugs (denoted by “Min./Max. Latency”) for
various tracing solutions. We observe that the evidences
from the solution with XOR-based fabric are with the high-
est latency variance due to the large amount of suspicious
errors. While for other solutions that already obtain the ac-
tual error evidences, the diagnosis process can be conducted
immediately and the diagnosis effort is usually determined
by the error with the minimum latency from the bug. As
observed from Columns 14 to 17, within these tracing solu-
tions, the proposed one with fine-grained control obtains the
closest error evidences from the injected bug, which means
the corresponding diagnosis workload is the lightest.

The next experiment evaluates the error detection qual-
ity of various tracing solutions when X-bits exist in provided
“golden vectors”. Here, we randomly inject a certain ratio of
X-bits in trace data to compare the X-tolerant capability with
different tracing solutions for benchmark circuit s38417. As
shown in Fig. 10, by applying different tracing solutions on
the original trace data without X-bits, the number of detected
error are similar. After that, as more X-bits are injected,
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Interconnection Fabric Estimated Hardware Cost
MUX-based (Ntap/Nwidth−1)(9Nwidth +20)
XOR-based (Ntap/Nwidth−1)(11Nwidth)

Pro.C.-based (Ntap/Nwidth−1)(29Nwidth +40)
Pro.F.-based (Ntap/Nwidth−1)(69Nwidth)

Ntap: the number of tapped signals
Ntap: trace buffer width

Table 5. Area Estimation of Different Intercon-
nection Fabrics.

the error detection quality with the MUX-based fabric is not
significantly reduced, because the method uses many debug
runs to trace the data from different signals, and any remain-
ing error evidences (i.e., not X-bits) will still be detected.
However, for the tracing solution using XOR network, the
X-bits will be easily corrupted and its error detection qual-
ity is greatly reduced with the growth of X-bits. As shown
in Fig. 10, the method will not detect any error if the ratio
of X-bits is greater than 10%. On the other hand, our pro-
posed solution shows its strong capability on tolerating X-
bits. With our fine-grained control tracing method, the error
detection quality is slightly affected with X-bits. Even for the
case with 20% X-bits in trace data, the number of detected
errors is almost as high as the one with MUX-based fabric
with much fewer debug runs. Even for our coarse-grained
control tracing method that consumes less DfD overhead, its
error detection quality is slowly dropped with the growth of
X-bits, and remains to be considerably high with 5% X-bits
in trace data.
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Figure 10. Error Detection Quality Evaluation
with X-Bits on s38417.

Finally, to evaluate the area cost for the different tracing
solutions, we implement and synthesize the DfD hardware
for circuit des using commercial EDA tools for the conven-
tional MUX-based fabric, XOR-based fabric and the pro-
posed one with coarse-grained and fine-grained control, re-
spectively. The number of tapped signals is fixed as 1000. As

shown in Table 4, we compare the hardware cost (in NAND2
gate equivalent) of the other solutions against the conven-
tional MUX-based fabric, assuming the trace buffer depth to
be 16k and the trace buffer width to be 8, 16 and 32, respec-
tively. As indicated in Column 2, XOR-based fabric con-
sumes similar hardware cost as MUX-based fabric. Mean-
while, the proposed solution with coarse-grained control (in
Column 3) takes less than 4% extra cost of the total DfD cost
by the conventional MUX-based fabric, which is quite small.
Even for the solution equipped with fine-grained control (in
Column 4), the extra overhead is kept to be less than 10%.
This is due to the fact that interconnection fabric only takes a
small portion of the DfD area in the trace-based debug infras-
tructure, and although the proposed solutions require more
hardware cost on interconnection fabric, the overall DfD area
will not increase significantly. On the other hand, as the trace
buffer width increases, the tree-like interconnection fabric of
proposed solution requires less XOR-MUX cells to conduct
the signal concentration and hence the corresponding hard-
ware cost further decreases. We also list the estimated area
cost for the different interconnection fabric as shown in Ta-
ble 5. The cost is calculated based on the synthesis result of
basic units (e.g., MUX, XOR, etc.). Firstly, we can observe
that the cost of all fabrics increases linearly when more sig-
nals are tapped (i.e., Ntap increases). This demonstrates the
cost efficiency of the tree-like interconnection fabrics. Sec-
ondly, we can conclude that the proposed fabric introduces
about 2.2 and 6.7 times more area cost than the conventional
MUX-based fabric, for with coarse-grained control and fine-
grained control respectively. Again, as discussed on the re-
sults in Table 4, because the interconnection fabric only takes
a small part in the trace-based debug infrastructure, the over-
all DfD area only increases slightly.

6 Conclusion

In this paper, we propose a flexible and low-cost trace in-
terconnection fabric design for silicon debug. Combining
with the corresponding automatic signal tracing method, the
proposed solution is able to tolerate X-bits in “golden vec-
tors” and facilitates to accurately locate erroneous signals
and their occurrence cycles within a few debug runs. Ex-
perimental results on benchmark circuits demonstrate the ef-
ficacy of proposed technique.
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