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ABSTRACT

Trace-based debug solutions facilitate to eliminate design errors es-
caped from pre-silicon verification and have gained wide acceptance
in the industry. Existing techniques typically trace the same set of
signals throughout each debug run, which is not quite effective for
catching design errors. In this work, we propose a multiplexed signal
tracing strategy that is able to significantly increase debuggability of
the circuit. That is, we divide the tracing procedure in each debug run
into a few periods and trace different sets of signals in each period.
A novel trace signal grouping algorithm is presented to maximize the
probability of catching the propagated evidences from design errors,
considering the trace interconnection fabric design constraints. Ex-
perimental results on benchmark circuits demonstrate the effective-
ness of proposed solution.

1. INTRODUCTION

Today’s complex integrated circuit designs increasingly rely on
post-silicon validation to eliminate bugs that escape from pre-silicon
verification [2, 6, 8]. One effective post-silicon debug technique is to
monitor and trace the behavior of the circuit under debug (CUD) dur-
ing its normal operation. As shown in [1], for million-gate industrial
designs with trace-based debug support, it is common to tap thou-
sands of “key” signals in the circuit and select a subset of them (say,
32 signals) to trace concurrently in each debug run! [9, 11]. An inter-
connection fabric is used to link the large number of tapped signals
to the trace buffers and/or trace ports with limited bandwidth [10].

Existing trace-based solutions typically trace the same set of se-
lected signals throughout each debug run. It might not be a problem
for applying trace-based solution on dedicated purposes, e.g., to re-
construct instruction flow [12] or to monitor bus communication pro-
tocol [3]. When debugging general logic circuits, however, this kind
of “static” signal tracing methods limits the visibility of the design
since it only provides limited part-view of the CUD, while the states
of other tapped signals are not visible. Consequently, if the error ef-
fects do not manifest themselves on those signals that are currently
under trace, more debug runs need to be conducted, which greatly
increases the bug localization effort. Some recent works try to ad-
dress this problem by expanding the visibility from traced informa-
tion to other signals based on the concept of “state restoration” [9,
11]. While interesting, the effectiveness of these methods for iden-
tifying design errors is limited since errors may actually occur only
on those expanded signals, which are different from their restored
values.

Intuitively, for a permanent design error that has been activated,
if the trigger mechanism is set properly and its effect can be propa-
gated to one or more tapped signal, there should be a high possibility
to catch it when the number of trace cycles is sufficiently long and
further increase of trace cycles does not improve the debuggability
much. Based on the above, in this work, we propose a multiplexed
signal tracing strategy that is able to significantly improve the de-
buggability of the circuit, by leveraging the fact that the number of

Tt is impossible to trace all the tapped signals at the same time due to the
limited trace bandwidth.
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tapped signals is much more than the number of signals that can be
traced concurrently. That is, we divide the tracing procedure in each
debug run into a few periods and intelligently trace a different subset
of accessible signals (i.e., tapped signals) in each period.

With multiplexed tracing, the possibility of catching the evidence
of design errors can be dramatically increased since we now have a
better view of the overall CUD by observing more signals in each de-
bug run. How to selectively group the tapped signals for tracing in
each period, however, becomes a critical question in this strategy. To
tackle this problem, we define a new evaluation metric namely design
error visibility (DEV) to measure the tracing quality and use it as a
guidance in our proposed heuristic for trace signal grouping. With
random design errors injected in benchmark circuits, experimental
results show that our solution is much more effective than existing
“static” tracing techniques and multiplexed tracing with randomly-
grouped trace signals, and the hardware cost introduced by the pro-
posed multiplexed tracing scheme is nearly negligible.

The remainder of this paper is organized as follows. Section 2
reviews related works and presents the motivation of our work. In
Section 3, we define the proposed metric used to evaluate the effec-
tiveness for capturing the evidence of design error. In Section 4, we
describe the proposed methodology in detail. Experimental results
on benchmark circuits are shown in Section 5. Finally, Section 6 con-
cludes this work.
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Figure 1: Post-Silicon Debug for Design Errors.

2. PRELIMINARIES AND MOTIVATION

Design errors are caused by erroneous design process and they vi-
olate the pre-defined specification of IC products. Due to the ever-
increasing complexity of IC designs, there is a growing number of
such errors left in the first silicon, requiring post-silicon debug to
catch them [14]. As shown in Fig. 1, during debug phase, certain test
input vectors fed into the fabricated chip can activate the bug so that
its error effects manifest themselves. Since the circuit under debug is
a piece of silicon that has already been fabricated, the main challenge
here is that bugs may take long time to be activated and there is only
limited visibility of its internal signals. Consequently, an essential
step is to capture the error evidences within the chip, so that design-
ers can quickly focus on a small region of the CUD, and then apply
various diagnosis methods (e.g., [S]) to root-cause the bug and fix it.

One widely-used technique to mitigate this problem is to reuse the
CUD’s existing test structure (e.g., scan chains) to run/stop its opera-
tion and observe whether the values in the circuit’s storage elements
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Figure 2: Trace-Based Debug Infrastructure.

are the expected values [8, 15]. However, this low-cost technique
provides little help for tracking those tricky bugs that takes a long
period of operation to manifest themselves. In addition, it is a chal-
lenging problem to repeat the CUD’s error occurrence procedure in a
deterministic cycle-accurate manner.

To tackle the above problems, trace-based post-silicon debug so-
lutions are proposed to observe the states of selected internal signals
in the CUD at real-time. Fig. 2 depicts a conceptual hardware infras-
tructure for trace-based debug techniques. As signal tracing involves
non-trivial design-for-debug (DfD) overhead, only a small portion of
“key” signals in the circuit are tapped, and in each debug run, a sub-
set of the tapped signals are traced concurrently. An interconnection
fabric is used to link the large number of tapped signals to the trace
buffers/ports. The trigger unit controls the start and stop of the trac-
ing, in which the triggering mechanism can be configured through
JTAG interface through the debug configuration channel [16].
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Figure 3: State Restoration Example.

Selecting which signals to tap in the design is a key issue for effec-
tive debug. To maximize the visibility of the CUD, some researchers
proposed to select signals based on the “state restoration” concept [9,
11, 13]. An example is shown in Fig. 3. Since some states can be re-
stored with logic implication from traced FF(C), 14 states are restored
from 4 traced ones. Using such restoration capability as evaluation
metrics to guide trace signal selection, however, may miss finding
certain bugs. Consider the example in Fig. 3 again. Suppose the OR
gate is mistakenly replaced by another gate (due to some design er-
rors), it is only beneficial if we trace FF(E) to capture the evidence
induced by this error. We cannot identify this error by tracing other
FFs (e.g., FF(C)) and applying golden netlist-based logic implication
to root cause it, even if the corresponding restoration ratio is high. In
[17], the authors proposed a different trace signal selection method,
targeting on minimizing the latency for capturing the propagated evi-
dences after bugs are triggered. The method, however, is based on the
assumption that the states’ sequence for exposing error is available,
which may not be obtained as early as the design phase. Furthermore,
another key issue of debuggability on how to determine a subset of
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Figure 4: Example of Design Error Evidence Propagation.

accessible signals to trace in the debugging phase remains untouched.

Tricky design errors may take millions of cycles to be activated
during debug runs [4], when the CUD is accidentally operated into
“corner cases”. If the trigger mechanism is properly designed, how-
ever, the error can generate its evidences from time to time during the
running procedure. In addition, as demonstrated in Fig. 4, the evi-
dences will further propagate forwardly and leave their tracks on FFs
(e.g., the FFs in bold in Fig. 4). This evidences can also be masked by
the controlling values of side-inputs in the process of going through
a logic gate. As a result, some FFs cannot capture evidences (e.g.,
the FFs in blank in Fig. 4). With this observation, if we are able to
observe the error evidences by properly tracing relevant FFs for some
time, the region with error is greatly zoomed in, and hence the root-
cause effort is significantly reduced. Besides, the tracing time is not
necessary to be as many as possible. In [13], the authors proposed
to select and trace two sets of signals in odd time-frames and even
time-frames respectively. Such multiplexed tracing method, however,
requires interconnection fabric to redirect debug data flow in every
clock cycle, which involves large DfD overhead and high power con-
sumption.

In trace-based debug solutions, the number of accessible signals is
much more than the number of signals that can be traced concurrently
in each cycle. Hence, for a suspicious region that is likely contain-
ing errors, it is possible to divide the tracing procedure into different
periods and intelligently select a group of “key” signals from acces-
sible ones for tracing in each period. This strategy can enhance the
capability of capturing error evidences for the region. Motivated by
above, we propose the multiplexed signal tracing method as follows.

Total Design Error Visibility (TDEV), which indicates the overall
capability of detecting design errors in the suspicious region

3. DESIGN ERROR VISIBILITY METRIC

As discussed in Section 2, it is essential to introduce a reasonable
metric to evaluate the effectiveness on capturing the evidences from
possible design errors within a suspicious region. We start with em-
ulating the actual behavior of error evidence propagation, as demon-
strated in Fig. 4. To be specific, when a design error is activated in
functional mode, the phenomenon that a correct ‘0’ is replaced by an
erroneous ‘1’ or a correct ‘1’ is replaced by an erroneous ‘0’ occurs
on at least one node of the circuit. Then the erroneous value propa-
gates in the circuit and might be captured by FFs or outputs. Based
on this observation, we first introduce Evidence Impact (denoted by
EI1/EIO0) to represent the probability that the evidence is propagated
to a certain FF (see Table 1). Different from similar concept of fault
detection probability in manufacturing test [7], for design error we
cannot predict the error occurrence probability, hence Evidence Im-
pact is set to ‘1’ at the possible root-cause location. With the forward
propagation, the evidence tends to be masked because some other
side-inputs can be controlling values. To indicate this weakening ef-
fect, we then introduce a series of weakening parameters (WP) for
various types of gates and express them as the following equations.
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Selected Visibility (SV1/5V0)

For selected trace nodes, SV1 = SV0 = 1; otherwise SV1 =SV0 =0

Design Probability (P1/P0)

The probability that the node is ‘1°/‘0’ in functional mode

Evidence Impact (EI1/EI0)

The probability that evidence ‘1°/°0’ is propagated on one FF

Evidence Visibility (EV1/EV0)

The probability that the evidence ‘1°/°0’ is visible to be captured on one traced FF

Design Error Visibility (DEV1/DEV0)

The probability that the design error with evidence ‘1°/‘0’ is visible with traced signals

Total Design Error Visibility (TDEV)

The capability that design errors in the suspicious region are visible with traced signals

Table 1: Terminologies for Visibility Calculation.

where, nippy; is the number of inputs to the gate and P;(0/1) is
the probability of the logic value (0/1) on side-input i of the gate.
Several methods can be utilized to obtain the above probability. One
method is to run simulation with operational input sequence and then
dump internal values to estimate it. Alternatively, we can simply use
structural analysis to calculate the probability forwardly from primary
inputs, by assuming some control inputs are pre-set as 0/1 to ensure
the CUD is working in functional mode, while all other inputs are
with the probability 0.5 to be value 0/1.

With these notations, after the evidence passes through a gate, it is
weakened as El,,; = El;; x WP. Re-convergent fan-out may cause
multiple propagated evidences to propagate through the same gate.
To capture this effect, we introduce the expression Elyy = JEl;p,,, ¥
W Pon—evi., within which the WP,,,,_.,;. is determined by the inputs
without propagated evidences.

If there is a chance that the evidence is captured by a certain FF,
we need to trace this FF such that the event that the evidence reaches
the FF can be observed. We therefore need to define the selected
visibility (SV') to represent the monitor capability of the traced signals
(the detailed definition are shown in Table 1).

Sequentially, we use Evidence Visibility (E'V) to indicate the prob-
ability that the evidence is visible to be captured on a under-traced
FF, which is given by

EV1=S8VI1XxEIl 4)
EV0O=SV0xEIO (5)

Since the evidences generated from an error can be captured by
one or more traced FFs and the observation of any evidence is help-
ful for detecting the error, we regard the events that each evidence
is captured by traced signals as mutually independent. With this as-
sumption, the probability that a possible design error with evidence
‘1°/°0’ is detected with traced signals can be expressed as

NFFcap

DEV1= |J EVl (6)
k=1
MFFcap

DEVO= | EV;0 7

k=1
where npgcyp is the number of FFs that capture error evidences.
Moreover, in the context of multiplexed tracing, we have several
tracing periods and the evidences’ capture in any period is helpful
for detecting the corresponding error. To capture this effect, we can
rewrite Eq. (8)-(9) as follows.
Mperiod "FFcap
DEV1= ] | Ewl ®)

j=1 k=1
Mperiod "FFcap

DEVO= ] |J EVO 9)
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where mperiog is the number of tracing periods. Again, the evidences’
captures between different period are regarded as independent events.
For a possible design error, we can use the summation of its de-
sign error visibilities with respect to evidence ‘1’ and 0’ to evaluate
the detection capability for the error. The summation of this quan-
tity over all possible errors on suspicious cells is finally defined as
Total Design Error Visibility (TDEV), which indicates the overall ca-
pability of detecting design errors in the suspicious region, and can

be expressed as

Neell
TDEV =y (DEVO+DEV1) (10)
i=1
where n¢e); is the number of cells where possible errors can occur
(namely, suspicious cells) in the suspicious region.

By emulating evidence propagation behavior, this metric provides
a reasonable estimation of the propagation impact for each possi-
ble error, which facilitates to identify those FFs with high chances
to detect errors. At the same time, by combining the visibilities of
all suspicious cells (see Eq. (8)-(11)), we inherently balance the er-
ror detection capability for all suspicious cells in signal grouping.
To be specific, every time we choose a new trace signal, the bene-
fits of potential trace signals are evaluated by the induced gain on
TDEV. Thus, generally speaking, the visibilities of the possible er-
rors that already have high DEV tends to result in less TDEV gain
with new tracing signal; while the errors with low DEV tend to pro-
vide more TDEV enhancement. Consider a simple case as an ex-
ample. Given two suspicious cells a and b, at the end of the first
period we have DEV 1(a) = 0.9, DEV1(b) = 0.1, DEV0(a) = 0, and
DEVO0(b) = 0. In the second period, suppose we have two options to
get 0.5 DEV1 for a and b for this period. Combining the detection
capability contributed by the two periods with Eq. (10), the resulting
DEV1(a) =0.95 and DEV1(b) = 0.55. With Eq. (12), we will select
those trace signals that enhance the error detection capability of suspi-
cious cell b because they bring more TDEV gain. From the above, the
metric TDEYV inherently guides the selection of trace signals to cover
possible errors with low detection capability during signal grouping
procedure.

4. PROPOSED METHODOLOGY

The design flow of the proposed multiplexed signal tracing method
is described in Fig. 5. During design phase, supporting DfD cir-
cuitries to facilitate multiplexed tracing (e.g., interconnection fabric
and debug controller as shown in Fig. 2) are inserted in the design
(detailed in Section 4.1). Then, during the post-silicon debug phase,
for a particular suspicious region relevant to one or more trigger con-
ditions, we use an off-chip algorithm to determine signal grouping for
maximizing error detection capability in that region (detailed in Sec-
tion 4.2). The arrangement is loaded into on-chip debug controller
through JTAG interface to facilitate multiplexed trace control.

When certain pre-defined condition is triggered in a debug run, the
debug controller starts to trace data in a multiplexed fashion. The
dumped information are then analyzed off-line by designers to root
cause design errors. The debug process is terminated if we can suc-
cessfully find the bugs. Otherwise, we either try to zoom in the sus-
picious region with the help of captured evidences or switch to the
other part of the CUD when no error evidence is detected during the
previous debug run. In both cases, the signal grouping algorithm is
used again to obtain the new set of traced signals and the associated
configuration is loaded into debug controller for another debug run.
The above process is conducted iteratively until all design errors are
found and eliminated.

4.1 Supporting DfD Hardware for Multiplexed
Signal Tracing

To facilitate multiplexed signal tracing that are composed of mul-
tiple tracing periods, a few modifications are required on top of the
conventional trace-based DfD infrastructure, as indicated in Fig. 6.

First of all, shadow registers are added into the configuration unit,
which determines which signals are transferred through interconnec-
tion fabric. Within each tracing period, the shadow latches in these
registers can be loaded with the configuration data for next tracing pe-
riod without intervening the normal trace data transfer. Then, when
the new period starts, all the shadow registers are updated by a global
enable signal from debug controller to configure the trace intercon-
nection fabric simultaneously so as to transfer data from another group
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Figure 5: Proposed Trace-Based Debug Scenario.
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of accessible signals to trace buffers/ports. It is important to note that,
the time required to load the shadow register determines the minimum
number of cycles of each tracing period.

In addition, a small RAM needs to be introduced into the on-chip
debug controller to store the configuration data and a timer that con-
trols the data loading into shadow registers and assert the global en-
able signal at the beginning of each tracing period. The controller can
be configured through JTAG interface.
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Figure 6: Diagram of Supporting DfD Hardware.
4.2 Signal Grouping Algorithm

As not all signals can be traced concurrently due to the existence
of the trace interconnection fabric (e.g., any signals going through
the same multiplexer cannot be traced concurrently), it is essential
to develop an algorithm to judiciously group signals in each tracing
period to maximize the error detection capability.

Based on the metric introduced in Section 3, the above problem is
formulated as: Given

o Suspicious region under debug;

e Concurrent tracing constraint from interconnection fabric;
o Relevant accessible signals? determined by designers;

e Trace buffer size;

The number of tracing periods;

To maximize TDEV (i.e., the total design error visibility) of the
circuit under debug.

We tackle this problem in two steps. Firstly, with a set of targeted
cells in suspicous region, we extract the relevant FFs that have the

Not all accessible signals are relevant for each debug run.

potential to catch evidences and estimate corresponding evidence im-
pact by following their evidences’ propagation tracks. In this step,
For each suspicious cell, we initialize EI0/EI1 to be 1, which is for
error evidence 1 and 0, respectively. We then propagate them for-
wardly. The impact is weaken during propagation so that the pro-
cess will be terminated when the impact is close to 0. It can also
be stopped by bounding the number of relevant FFs to a pre-defined
threshold due to the memory cost, as capturing the propagated error
evidences on a few nearby FFs is sufficient to detect the root-cause
error. After that, we propose a heuristic signal grouping algorithm
to maximize TDEV for the general type of interconnection fabric as
follows.

Figure 7: General Interconnection Fabric: An Example.
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Figure 8: Flowchart of Signal Grouping with General Intercon-
nection Fabric.

A general trace interconnection fabric can be the widely-adopted
MUX network, the one with high flexibility introduced in [10] or any
type of design specific structure. We represent the concurrent tracing
relationship within the fabric as a graph, as the example shown in
Fig. 7. Within the graph, a vertex denotes each accessible signal while
an edge denotes the two connected signals cannot be traced together
(e.g., they go through the same multiplexer). Hence a unified MUX
network can be represented by a few cliques with no edge in between
in the graph.

With the above graph representation, we propose a greedy method
as depicted in Fig. 8 to solve the problem, wherein we incrementally
select trace signals period by period to maximize TDEV. To decide
which signals to trace in each sample period, we firstly estimate the
resulted TDEV by temporarily choosing each relevant accessible sig-
nal remaining in the graph. Then, the one with the maximum 7 DEV
is chosen (e.g., b in Fig. 7). After that, we remove all nodes connected
with the already-chosen one (e.g., a and & in Fig. 7) from further se-
lection in the current tracing period, as these signals cannot be traced
together with the selected one in this period. The procedure for each
sample period ends when the number of selected signals reaches trace
buffer width. As discussed in Section 3, the metric TDEYV itself inher-
ently guide us to maximize the probability of detecting design errors
within the suspicious region.
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Figure 9: Experimental Results for s38417.
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Figure 10: Experimental Results for s13207.

S. EXPERIMENTAL RESULTS

5.1 Experiment Setup

We conduct experiments on ISCAS’89 benchmark circuit s13207
and s38417 to evaluate the effectiveness of the proposed solution, and
we consider the general interconnection fabric with 100 random se-
lected accessible signals. As discussed earlier, based on the trace in-
terconnection fabric implemented in the CUD, we can automatically
construct the corresponding relation graph (see Fig. 7) to represent
incompatibility among trace signals. Since this is not available to us,
for the sake of simplicity, we randomly insert edges in the relation
graph in our experiments.

To verify whether the tracing method can observe the errors’ evi-
dences or not, we randomly generate 1000 errors based on the widely-
used “cell replacement” fault model in the literature [5]. Each time,
we inject one of the errors in the circuit into the original netlist to ob-
tain the erroneous netlist. Simulation is then conducted to dump the
actual states. As no dedicated trigger mechanism is used in our exper-
iments, the state dumping starts from the beginning of the simulation.
These states are compared against the “golden vector” obtained from
the simulation with the original netlist to get the propagated error ev-
idences, by finding the difference between actual states and “golden
vector”. Finally, with different signal tracing methods, the evidence
can be treated as visible if the capture FF is currently traced at the
particular cycle. We can compare the number of visible errors from
various signal tracing methodologies to demonstrate their effective-
ness on error detection.

5.2 Experimental Results

Fig. 9 and Fig. 10 present our experimental results for s38417 and
s13207, respectively. We set the length for each tracing period to /k

(i.e., 1024) clock cycles. We also set the trace buffer size to be 64k
and /28k in total and vary their width and corresponding depth to
obtain the results with different buffer usage strategy. For example,
the 64k buffer can be used as 8 x 8k or 16 x 4k. The buffer usage
strategies are marked on X-axis. Hence, the left half of the figure
shows the results for the 64k buffer, while the right half is for the
128k buffer. Buffer depth infers the number of tracing periods, e.g.,
when the buffer depth is set as 8k, we have % = 8 tracing periods.

‘We compare the multiplexed tracing signals grouped with the pro-
posed method (denoted by “Muxed Pro.”) with other solutions, in-
cluding non-multiplexed tracing signals grouped randomly (denoted
by “Non-Muxed Rand”), non-multiplexed tracing signals grouped by
proposed method (denoted by “Non-Muxed Pro.”) and multiplexed
tracing signals grouped randomly (denoted by “Muxed Rand”). All
of them target the same suspicious region covering all the injected
errors, assuming all the accessible signals are relevant. The results
of the proposed evaluation metric and the number of detected errors
resulting in evidences on traced information are denoted by “TDEV”
and “Detected Error Number” in these tables, respectively.

First of all, the trend with our proposed evaluation metric TDEV
in Fig. 9 and Fig. 10 is roughly consistent with that of the number of
detected errors, which demonstrates the effectiveness of this metric.
At the same time, there are a few exceptions (e.g., for s13207 when
the buffer is configured as 8k x 16). This is because, the TDEV is for
evaluating the error detection quality for the whole suspicious region,
while the errors that are actually caught are just part of the signals in
the suspicious region and they are also related to the particular debug
run, which is unknown during the design stage.

In Fig. 9(b) and Fig. 10(b), the white bars with the legend “All”
indicate the number of errors that result in evidences on accessible
signals of the CUD. We can observe that only part of the injected er-



rors can result in evidences on the trace-based DfD structure (24.2%
to 29.6%). This is because: (i). the injected errors can only be ac-
tivated by certain input sequence, which may not occur during the
tracing cycles. (ii). the evidences generated by errors can be masked
during the propagation so that they will not result in evidences on any
FFs. (iii). The trace-based DfD structure only allows to trace 100
out of 1636 and 638 FFs for circuit s38417 and s13207, respectively,
and hence those signals that capture error evidences may not be ac-
cessible. We also notice that the number of detected errors grows
slowly with the increase of trace cycles. This phenomenon can be at-
tributed to the fact that some errors are activated by certain condition
that rarely occurs. In this case, the extension of tracing procedure can
result in higher error detection chance. To note, the number of de-
tected errors indicated with “All” tends to be higher than the one with
the optimal trace signal grouping solution. This is because the DfD
structure constraint only a small part from accessible signals to be
traced. We can observe from results that our solution by tracing part
of accessible signals can detect up to 82.7% of all detectable errors
(as shown in Fig. 10 (b)), which demonstrates the effectiveness of our
method. We also observe that most evidences captured by accessible
signals are within two sequential levels from the root-cause, showing
the effectiveness of trace solutions on error localization.

From the results, we can observe that the proposed multiplexed
tracing solution outperforms significantly over the non-multiplexed
one with the same signal grouping used in our first tracing period.
Even for the closest case having two tracing periods, utilizing mul-
tiplexed tracing can still detect on average 27.8% more errors than
the other. Even with random grouping, multiplexed tracing detects
on average 37.3% more errors than the non-multiplexed one. When
comparing against the case by randomly grouping a set of signals for
each tracing period, as shown from Fig. 9 and Fig. 10, on average
the proposed one detects 1.75 times more errors than the random so-
Iution. Even by comparing the non-multiplexed tracing with signals
selected with proposed method against the multiplexed one with ran-
dom grouping, the first one detects more errors in many cases (e.g.,
the result in Fig. 10 (b)).

The computational time of the proposed method is acceptable. It
takes only tens of seconds for all cases on s38417 and less than ten
seconds for s13207. For s38417, a large share of the computational
effort is spent on error effect estimation, its runtime is almost inde-
pendent of buffer usage strategy. While for s13207, the runtime al-
most grows linearly with the number of tracing periods for s13207.
This is because it does not take much time for error effect estimation
due to the small size of s13207, and hence most effort is spent on
signal grouping.

Finally, to evaluate the area cost for the proposed solution, we im-
plement and synthesize the DfD hardware using a commercial tool for
multiplexed tracing and non-multiplexed tracing, respectively, with
different buffer configurations. As shown in Table 2, the additional
DfD area overhead (in NAND2 gate equivalent) of the proposed so-
lution is quite small, less than 3.5% of the DfD cost for conventional
non-multiplexed tracing. In particular, we can observe that within the
DfD structures to facilitate multiplexed tracing, the storage element
in debug controller dominates the extra DfD cost, while most of the
hardware cost for conventional tracing is from trace buffer. Hence,
for different trace buffer utilization types of the same capacity (e.g.,
8 X 8k, 16 x 4k and 32 X 2k), the original DfD cost remains almost
constant, while the size of storage elements in our debug controller
decreases linearly by the number of tracing periods (e.g., 8 to 4).
Hence, the hardware overhead decreases correspondingly as shown
in Table 2. It also explains why we find similar overhead when we
double the trace buffer capacity (e.g., 8 x 8k to 8 x 16k), as the re-
quired storage element in debug controller also doubles its size with
the increase of tracing periods (e.g., 8 to 16). To note, the number of
tracing periods can be flexibly determined to tradeoff debuggability
and DfD cost.

6. CONCLUSION AND FUTURE WORK

In this work, we propose a novel multiplexed signal tracing method

Buffer Type 8x 8k | 16 x4k | 32x2k | 8x 16k | 16x8k | 32 x4k
# of Period 8 4 2 16 8 4
A(%) 3.50 1.78 0.90 3.47 1.76 0.89
A= xtra Hardware Cost % 100%

" Conventional Hardware Cost

Table 2: Area Overhead of Proposed Multiplexed Tracing.

to maximize the design error detection capability, under various trace
interconnection fabric constraints. Experimental results on ISCAS’89
benchmark circuits demonstrate the effectiveness of our solution. For
future work, we plan to target on two problems: (i). How to select
trace signals during design phase to facilitate better design error de-
tection; (ii). Based on the error detection information that only pro-
vides part-view of the CUD, how to conduct effective diagnosis to
root-cause the error.
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