
Layout-Aware Pseudo-Functional Testing for Critical Paths
Considering Power Supply Noise Effects

Xiao Liu, Yubin Zhang, Feng Yuan, and Qiang Xu
CUhk REliable computing laboratory (CURE)

Department of Computer Science & Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Email: {xliu,ybzhang,fyuan,qxu}@cse.cuhk.edu.hk

Abstract
When testing delay faults on critical paths, conventional struc-
tural test patterns may be applied in functionally-unreachable
states, leading to over-testing or under-testing of the cir-
cuits. In this paper, we propose novel layout-aware pseudo-
functional testing techniques to tackle the above problem.
Firstly, by taking the circuit layout information into account,
functional constraints related to delay faults on critical paths
are extracted. Then, we generate functionally-reachable test
cubes for every true critical path in the circuit. Finally, we fill
the don’t-care bits in the test cubes to maximize power supply
noises on critical paths under the consideration of functional
constraints. The effectiveness of the proposed methodology is
verified with large ISCAS’89 benchmark circuits.

1 Introduction
As semiconductor technology advances, at-speed delay

testing has gained wide acceptance in the industry to guarantee
that integrated circuits (ICs) fully meet customer performance
expectations. This is a quite challenging problem because the
propagation delay on a path is affected by not only the on-
path logic elements and wires but also noises induced from its
neighboring logic cells and interconnects. In particular, power
supply noise (PSN), i.e., the noise on the IC power distribution
network (PDN), has an ever-increasing adverse impact on cir-
cuit timing with technology scaling. As shown in [13], a 1%
voltage change can cause approximately a 4% change in gate
delay in 90-nm, 0.9-V technology. Therefore, it is essential to
take the PSN effects into consideration in at-speed delay test-
ing, especially when targeting delay faults on critical paths.

Various PSN-aware delay testing methodologies have been
proposed in the literature. On the one hand, some researchers
tried to generate test patterns that induce maximum PSN ef-
fects on the paths under test [2, 5, 7, 21], so that the timing
correctness of the shipped IC products can be guaranteed even
in the worst-case scenario. However, recent design evaluations
have revealed that the delay caused by at-speed scan patterns
can be up to 20% longer than any functional patterns [11], due
to the discrepancy between functional mode and test mode in
scan-based testing. Consequently, some good ICs that would
work in application might fail at-speed delay tests, leading to
undesired test yield loss [8]. Therefore, to resolve the above

over-testing problem, on the other hand, various low-power
testing techniques were presented to reduce the PSN effects
in at-speed testing [9, 14, 15, 17]. These test methodologies,
unfortunately, lead to another concern for under-testing, i.e.,
if we over-restrict the PSN effects on critical paths during de-
lay testing, some defective chips containing speed-related de-
fects may pass manufacturing test, leading to test escapes [1].
Therefore, to avoid both over-testing and under-testing, the
real question is: How can we exercise the worst-case timing
of the circuits under test (CUTs) in their functional mode dur-
ing manufacturing test?

Recently, pseudo-functional testing has been proposed to
resolve the discrepancy between circuit activities in functional
mode and that in scan-based test mode [4]. In this technique,
functionally-unreachable states (also known as illegal states
or functional constraints) in the circuit are extracted and fed
to automatic test pattern generation (ATPG) tools to gener-
ate functional-like patterns. By doing so, test patterns that are
scanned in conform “closely” to functionally-reachable states,
and hence the chip is expected to operate close to the func-
tional mode during test application. Pseudo-functional testing
naturally minimizes the possibility of over-testing, but exist-
ing methods (e.g., [4, 6, 18–20]) cannot address the possible
under-testing issue without taking PSN effects into considera-
tion in at-speed delay testing.

In this paper, we propose novel layout-aware pseudo-
functional testing techniques to tackle the above problem. We
first extract those functional constraints related to delay faults
on critical paths by taking the circuit layout information into
account. Then, we inject these constraints into a commercial
ATPG tool to generate functionally-reachable test cubes for
every true critical path in the circuit. Next, we try to identify
the related gates that will induce PSN on critical paths. Fi-
nally, we fill the don’t-care bits (i.e., X-bits) in the test cubes
to maximize PSN effects on these critical paths under the con-
sideration of functional constraints. Experimental results on
ISCAS’89 benchmark circuits demonstrate the effectiveness
of our proposed solution.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work and motivates this work. In Sec-
tions 3 and Section 4, we illustrate the proposed technique in
detail. Experimental results on benchmark circuits are then
presented in Section 5. Finally, Section 6 concludes this work.

2 Preliminaries and Motivation
With technology advancement, the power supply voltage of

integrated circuits has also been scaling to reduce the power
density of the circuits. The reduced supply voltage, however,
inevitably reduces signal noise margin, thus rendering ICs in-
creasingly sensitive to power supply noises such as the induc-
tive noise (L di

dt) caused by sudden current changes and IR-drop
induced by the inherent resistance of the PDN itself.

The ever-increasing sensitivity of circuits’ timing behav-
ior to power supply noise effects is a challenging issue for at-
speed delay testing. Most existing work in PSN-aware delay
testing, either try to maximize PSN effects on critical paths
to reduce test escapes [2, 5, 7, 21] or minimize PSN effects on
them to reduce test overkills [9, 14–17]. Clearly, such one-
sided solutions are inevitable to result in the concern of the
other side. To simultaneously reduce both test escapes and test
overkills when applying at-speed delay tests, the real question
is: is it possible to exercise circuits’ worst-case PSN effects on
critical paths in functional mode?

The answer is positive after studying the root cause of over-
testing, which is mainly due to the discrepancy between cir-
cuits’ activities in functional mode and that in test mode. That
is, in scan-based designs, the circuit states in test mode may
not be functionally-reachable. For example, consider a fi-
nite state machine (FSM) encoded with one-hot code, the le-
gal combinations of values in the circuit’s storage elements
are only those with a single logic ‘1’ and all the others logic
‘0’. With scan-based testing, however, it is possible to have
patterns that contain multiple logic ‘1’s without considering
such functional constraints during the ATPG process. Apply-
ing such non-functional test patterns for delay testing may in-
duce excessive noises that do not occur in functional mode and
hence result in over-testing of the CUTs.

Pseudo-functional testing was proposed to generate
functional-like test patterns and has attracted lots of research
interests recently. In this technique, functionally-unreachable
states in the circuit are extracted and fed to a constrained
ATPG tool, which backtracks immediately when illegal states
are reached during test generation to obtain pseudo-functional
patterns [6]. Illegal state identification is one of the fun-
damental problems in pseudo-functional testing, and it has
been well studied in the literature [4, 12, 18–20]. In particu-
lar, in [18], the authors studied the structural root cause for
illegal states and proposed algorithms that are able to identify
near-complete illegal states in a CUT.

With a large set of identified illegal states, pseudo-
functional testing naturally minimizes the possibility of over-
testing, but existing pseudo-functional ATPG techniques do
not take PSN effects into consideration when generating at-
speed delay test patterns, which may still result in under-
testing of the CUTs.

The above motivates us to take the circuit layout into con-
sideration and maximize power supply noise effects on critical
paths under the consideration of functional constraints. By do-
ing so, we are able to simultaneously reduce both test escapes
and test overkills of the CUTs.

3 Proposed Methodology
The main flow of the proposed layout-aware pseudo-

functional testing methodology is illustrated in Fig. 1. We
first identify true critical paths in the CUT using a commer-
cial static timing analysis tool. Then, for each critical path, we
parse the circuit layout to identify those cells that may induce
power supply noise on it (Step 1). Next, we revise the method
presented in [18] to identify illegal states that are related to
these cells (Step 2). Then, by inserting functional constraints
as virtual cells into the circuit, we are able to use a commercial
ATPG tool to generate pseudo-functional test cubes for delay
faults on critical paths (Step 3). Finally, we use several algo-
rithms to fill X-bits in these test cubes to maximize PSN effects
on critical paths without violating functional constraints (Step
4). The first three steps are introduced in the following sub-
sections, while the last step (as the main contribution of this
work) is detailed in Section 4.

Layout

Timing
analysis

Step 1: Layout-aware PSN-
related cell identification

Critical
path

Functional constraints
insertion

Path Delay Fault
ATPG

Step 4: Pseudo-functional
test cube generation

Step 5: X-filling for maximizing
power supply noise

Final
pattern

Step 3: Relation extraction
with circuit analysis

Step 2: Functional
constraints generationNetlist

Figure 1. Flowchart of Proposed Methodology.

3.1 Layout-Aware PSN-Related Cell Identi-
fication

Power distribution network is typically designed with a hi-
erarchical structure, which traverses several metal layers in
the circuit. Fig. 21 depicts a typical power network structure,
which involves three metal layers (M1, M4, and M5 from bot-
tom up). The power wires on different metal layers are linked
together through vias and eventually connected to the power
pads at the uppermost layer. The devices are arranged below
M1 layer in rows, and obtain power supply from power wires
on M1 layer. It can be easily observed that, for a particular
logic cell, it needs to compete for power supply with its neigh-
boring cells. For a critical path under test, we denote those
on-path logic cells and those cells that induce power supply
noise on them as victim cells and aggressor cells, respectively.

Generally speaking, for each victim cell, its aggressor cells
can be restricted to a rectangle area that is within a few of its
neighboring rows and a certain range along each row [7]. We

1The ground network is with similar structure and is not shown in Fig. 2.

M4 M4

M1

M1

M1

M1

M5

SC SC SC SC SC SC SC

SC SC SC SC SC SC SC SC

Figure 2. An Example Power Distribution Net-
work.

therefore define a so-called E f f ectiveRange as a pre-defined
maximum distance between the aggressor cells and the victim
cells, and we parse the circuit layout DEF file to locate the
aggressor cells.

3.2 Functional Constraint Generation
After obtaining all the logic cells that have impact on the

delay of targeted critical paths (including both aggressor cells
and victim cells, defined as relevant cells), we revise the
method presented in [18] to generate functional constraints
(i.e., illegal states in the circuit).

Different from [18] that tries to extract illegal states of the
entire circuit (and hence is time-consuming for large indus-
trial circuits), we try to generate only those functional con-
straints that are relevant for critical path delays. In order to do
so, we first conduct circuit structural analysis to identify those
scan flip-flops that drive relevant cells in at-speed delay test-
ing. This can be simply obtained by propagating the fan-out
cone of each scan cell for two time-frames. We then make use
of the technique in [18] to acquire all the relevant functional
constraints for critical paths.

Note that, for a critical path, its relevant functional con-
straints can be divided into two groups: one is logically-
relevant functional constraints that are directly related to the
on-path victim cells and the rest is physically-relevant func-
tional constraints that are related to the aggressor cells to the
path under test.

3.3 Pseudo-Functional Path Delay Fault
Test Cube Generation

In this step, we generate pseudo-functional test cubes for
path delay faults (PDFs) on targeted critical paths, by con-
straining the ATPG engine to take the logically-relevant func-
tional constraints of each path into consideration. Note that,
it is not necessary to consider those physically-relevant func-
tional constraints because only those scan cells that are logi-
cally related to the path delay fault will be assigned with spec-
ified values in the generated test cubes.

To let ATPG engine automatically satisfy functional con-
straints during test generation, we insert virtual cells into the
original circuit to represent them. An example is shown in
Fig. 3, wherein illegal state “110” for “FF1 FF2 FF3” is rep-
resented in such manner that the associated virtual output is
logic ‘1’ when this illegal state exists in the generated test
cube. In other words, during the ATPG process, by assigning

the virtual output to be logic ‘0’, the generated test cube au-
tomatically avoids this illegal state. A commercial ATPG tool
is then utilized to generate test cubes for targeted critical paths
with the modified netlist and pre-set values on virtual outputs.
After this step, for each targeted critical path, we have a test
cube that does not contain any illegal states.

FF1

FF2

FF3

Virtual Cells

Virtual
Output

1 1 0

Illegal State:

FF1 FF2 FF3

Figure 3. Example of Virtual Cell Insertion.

4 Pseudo-Functional X-Filling with Maximum
PSN Effects on Critical Paths

With test cube generated for each critical path, our objective
in this step is to fill the X-bits to maximize on-path PSN effects
while still satisfying the path’s relevant functional constraints.

4.1 The Impact of X-Bits on PSN Effects
As filling one X-bit may affect the transitions of many ag-

gressor cells for a critical path, it is essential to have an effec-
tive metrics to evaluate the impact of X-bits on the PSN effects
of the targeted path delay fault. Before introducing our evalu-
ation metrics, let us discuss the impact of different aggressors’
transitions on the PSN effects of a particular on-path victim
cell first.

It is obvious that the closer an aggressor is to a victim cell,
the higher PSN it induces on it. We hence introduce a so-
called PSN effect weight (PEW) for each aggressor to reflect
this phenomenon,

PEW = 1−|Xagg−Xvic|/E f f ectiveRange (1)

where Xagg and Xvic denote the row-coordinate of the ag-
gressor and the victim, respectively.

As pointed out in [7], the transition type of aggressor cells
(e.g., rising or falling) also plays an important role for PSN
effects on a victim cell. Consider an on-path victim cell in
Fig. 4, to maximize power supply noise on it, for those ag-
gressor cells that are in the same row, they are desired to have
the same transition type as the victim cell; for those aggres-
sor cells that are in different row but share a common power
wire with it, they are desired to have a rising transition; while
for the remaining aggressor cells that are in different row but
share a common ground wire with it, they are desired to have a
falling transition. It is obvious that the actual transition type of
aggressor cells are constrained by the functionality of circuit
and they are uncertain before filling all the X-bits in test cubes.
Therefore, we define a probability-based transition PSN met-
ric (PTPM) to evaluate the impact of X-bits on the PSN of
targeted path from transitions of relevant gates as:

PT PM =
n

∑
i=1

m

∑
j=1

(T↓×P(i, j)(↓)+T↑×P(i, j)(↑))×PEW(i, j) (2)

Ground

Power

Cell on the Path (Victim)

Cells in PSN-Related
Region (Aggressors)

Required
Transition Type

Rise

Fall

Same
Ground

Power

Figure 4. Required Transitions to Maximize PSN
Effects.
wherein n is the number of victim cells on the targeted path,

m is the number of aggressors for each victim, P(i, j)(↓ / ↑) is
the probability of jth aggressor, corresponding to ith victim,
to have falling/rising transition, and PEWj is the PSN effect
weight. To maximize PSN, when the falling transition is de-
sired, we have T↓ = 1 and T↑ = 0, when the rising transition is
desired, we have T↑ = 1 and T↓ = 0.

It is also worth noting that, P(i, j)(↓ / ↑) is calculated
by probability-based simulation of the circuit for two time
frames, assuming the probabilities of X-bits in the first time-
frame to be logic value ‘1’/‘0’ as 0.5.

4.2 The Impact of Functional Constraints
on X-Filling

During X-filling, to satisfy functional constraints, the X-
bits in the test cube cannot be filled freely all the time. As the
example shown in Fig. 5, all the X-bits in the initial test cube
can be filled freely at the beginning. However, after some of
them are filled, in order not to violate the relevant illegal state,
the last bit should be implied as ‘1’ 2. Note that, the newly
implied bit may result in the similar situation and other X-bits
may further be implied. Hence, the X-implication should be
conducted iteratively until no more X-bits can be implied by
functional constraints.

Initial Test Cube:

0 1 0 0

After X-filling:

0 X X X

0 1 0 X
Illegal State:

X-implication:

0 1 0 1

Figure 5. Example for X-Implication.

Using X-implication only, however, cannot guarantee all
functional constraint satisfied. There is one type of X-bits that
appears in more than one illegal states and the corresponding
values are ‘1’ in some states and ‘0’ in others (referred as “con-
flict X-bit”), as the example shown in Fig. 6. If these bits are
not handled first, during X-filling, we may run into a situation
that one conflict bit (as indicated in Fig. 6) need to be implied
with opposite values to satisfy different functional constraints.
To tackle this problem, we first analyze relevant illegal states
for each targeted path and we divide X-bits into conflict X-bits
and non-conflict X-bits. During the filling process, conflict X-

2This process is referred to X-implication in the rest of this paper.

bits are handled first to satisfy functional constraints (detailed
in Section 4.4).

Initial Test Cube 1:

0 1 0 0

After X-filling:

0 X X X

0 1 0 X

Illegal State 1:

X-implication to
break illegal state 1:

0 1 0 1

0 X

1 0 0

0 0

0 0

X-implication to
break illegal state 2:

0 1 0 0 0 0

Illegal State 2:

Figure 6. Example for Conflict Bit.

4.3 Proposed X-Filling Algorithm
Based on above discussions, we present a bit-by-bit X-

filling procedure in this section, in which we fill the conflict
X-bits first, followed by those non-conflict X-bits.

4.3.1 X-Filling Order
In a bit-by-bit X-filling process, the filling order has a sig-

nificant impact for the filling results [3]. While it is possible
to temporarily fill every X-bit and calculate its PSN effect ac-
cording to Eq. 2 to order these X-bits, the extensive use of
circuit simulation inevitably leads to high computational com-
plexity. To address the above issue, we implement a circuit
analysis procedure to calculate the so-called filling impact (FI)
of an X-bit and we use this value to order X-bits during the fill-
ing process.

We start by initializing the FI for the scan cell with X-bit to
be 1, and then propagate it through its logic cone for two time-
frames to reach the aggressor cells that are driven by this scan
cell. Every time a gate is passed, the possibility for the impact
of this scan cell to pass through the gate is likely to be reduced
by the other inputs. To estimate such weakening effect, we
define a series of weakening parameters (WP) calculated by
the following equations for various types of gates, in which n is
the number of inputs to the gate and Pi(0/1) is the probability
of the logic values on input i of the gate.

WPand/nand =
n−1

∏
i=1

Pi(1) (3)

WPor/nor =
n−1

∏
i=1

Pi(0) (4)

WPnot/xor/xnor = 1 (5)

The idea behind the above definitions is that all the inputs
except for the affected one should be set as non-controlling
value (e.g., ‘1’ for ‘and’ gate) to propagate this effect. Hence,
after the FI passes through a gate, it is weaken as FIout =
FIin ×WP. Then the filling impact for an X-bit (FIx) is de-
fined as the following equation to include both the PSN effect
weight PEW and FI of every aggressor cell i.

FIx = ∑
i
(FIi×PEWi) (6)

For each targeted path, the above calculation for the filling
impact of X-bits is computed once only and used to determine
the filling order, which is computationally-efficient.

4.3.2 X-Filling Procedure
As discussed earlier, we need to fill those conflict X-bits

first to avoid the ‘unsolvable’ situation as shown in Fig. 6. To
guarantee the filling results have no functional constraint vio-
lations, we use a depth first search method with filling impact-
guided priority to find a valid solution.

As shown in Fig. 7, before a conflict X-bit is filled, two
probability-based simulations are conducted to evaluate their
PSN effects using Eq. 2, by assigning the current X-bit to be
‘1’ and ‘0’, respectively (Line 8). We then fill the X-bit to be
‘0’ if the evaluation metric PT PM(0) > PT PM(1); ‘1’ oth-
erwise (Line 9 to 12). The X-implication is conducted after-
wards (Line 14). next, we check whether any functional con-
straint is violated. If not, we temporarily accept the filling
result and continue the DFS procedure to find a valid X-filling
solution on the remaining conflict X-bits according to the or-
der. Otherwise, we try to fill the opposite logic value of cur-
rent X-bit and call the same DFS procedure (Line 17 to 20).
The whole process terminates when all conflict X-bits are filled
without constraint violation (Line 4 to 6).

Algorithm for Filling Conflict X-bits
1 Function DFS(Current pattern P)
2 If a valid solution has been found
3 return
4 If all conflict bits are filled
5 Declare that the valid solution has been found
6 return
7 Find out the first conflict X-bit i in pattern P
8 PT PM(0)=SIMULATION(i,0), PT PM(1)=SIMULATION(i,1)
9 If PT PM(0) > PT PM(1)
10 A← 0 //Attempt to fill the ith bit with 0 first
11 else
12 A← 1 //Attempt to fill the ith bit with 1 first
13 Fill the ith bit with A, achieving new pattern P ′
14 P ′′←X-IMPLICATION(P ′)
15 If P ′′ does not have constraint violation
16 DFS(P ′′)
17 Fill the ith bit with Ā, achieving new pattern P ′
18 P ′′←X-IMPLICATION(P ′)
19 If P ′′ does not have constraint violation
20 DFS(P ′′)

Figure 7. Procedure for Conflict X-Bit Filling.
For the remaining non-conflict X-bits, as X-implication is

sufficient to satisfy functional constraints, these X-bits are
simply filled bit-by-bit with their filling impact order. For each
X-bit, similarly, we conduct probability-based simulations to
evaluate their PSN effects, by assigning the to-be-filled X-bit
to be ‘1’ and ‘0’, respectively, and we fill the X-bit as ‘0’ if
PT PM(0) > PT PM(1); ‘1’ otherwise. X-implication is then
conducted immediately to guarantee related functional con-
straints satisfied.

5 Experimental Results
To evaluate the effectiveness of the proposed method, we

conduct experiments on two large ISCAS’89 benchmark cir-
cuits, s38417 and s38584. We synthesize and layout these
circuits using a 0.13µm CMOS technology with Vcc = 1.08V .
In our experiments, we apply the proposed technique on 10

longest testable paths in these circuits. For each path, after
generating test patterns with the proposed method, we use
a commercial IR-drop analysis tool to obtain the voltage of
each cell on this path, and then we feedback these values to
the static timing analysis tool to acquire the path delay under
power supply noise effects.

Firstly, let us compare the proposed method with the one
that randomly fills X-bits in test cubes. As presented in Fig. 8,
the bar chart describes the delay values of Path 1 in s38417
by filling the corresponding test cube with 10 random values,
while the line indicates the path delay by proposed method. As
shown in the figure, without considering PSN effects, among
the ten random filled patterns, the first one may lead to over-
testing of the circuit, while other seven may result in “test es-
cape”. There are also two patterns having similar delay with
the one filled using the proposed method. This is just a coinci-
dence because all the ten random-filled patterns violate some
functional constraints.

1 2 3 4 5 6 7 8 9 10
5

5.05

5.1

5.15

5.2

5.25

5.3

5.35

P
at

h
D

el
ay

 (
ns

)

Random
Proposed

Figure 8. Comparison of Path 1 in s38417 be-
tween Random-Fill and Proposed Method.

Next, we compare the proposed method with the one that
randomly fills X-bits in test cubes without violating functional
constraints, as shown in Fig. 9, targeting Path 1 in s38417
again. The bar chart describes 10 delay values by pseudo-
functional random filling, while the line indicates the delay by
proposed method. It can be observed that pseudo-functional
patterns without considering maximizing PSN effects on the
target path can introduce up to 7.9% less delay than the pro-
posed method, which justifies the necessity of the proposed
layout-aware pseudo-functional testing technique.

1 2 3 4 5 6 7 8 9 10
4.8

4.9

5

5.1

5.2

5.3

5.4

P
at

h
D

el
ay

 (
ns

)

PF Random
Proposed

Figure 9. Comparison of Path 1 in s38417 be-
tween Pseudo-Functional Random-Fill and Pro-
posed Method.

Path ID Pre. Fill Max Fill Proposed Time (s)
1 4.41 5.36 5.29 36.2
2 4.43 5.36 5.29 35.9
3 4.36 5.32 5.26 36.3
4 4.36 5.33 5.26 36.3
5 4.35 5.32 5.31 36.1
6 4.41 5.36 5.29 36.5
7 4.33 5.32 5.24 35.8
8 4.40 5.33 5.27 36.0
9 4.38 5.32 5.26 35.8
10 4.38 5.33 5.27 35.9

Ave. 4.38 5.34 5.27

Table 1. Comparison of Critical Path Delay (ns)
in benchmark s38417.

Finally, we compare the proposed method with two PSN-
aware X-filling method, Preferred Fill [10] and Max Fill, as
shown in Table 1 and 2. In Preferred Fill, X-bits are filled to
reduce scan capture power as much as possible and hence im-
plicitly decrease PSN effects on critical paths [10]. The results
(see Column “Pre. Fill”) show that this method is likely to in-
troduce serious test escape problem, since it results in 16.9%
and 15.8% less delay on average when compared that of pat-
terns filled with the proposed method. Max Fill, on the other
hand, is a greedy X-filling heuristic to maximize PSN effects
without considering functional constraints, which fills all X-
bits as non-conflict X-bits without conducting X-implication.
The results (see Column “Max Fill”) show that the generated
non-functional patterns in Max Fill leads to longer path delays
than the proposed method (in the range of 1-4%), which may
cause test overkill problem. Note that, the above difference is
not as significant as the industrial study reported in [11] (test
patterns can induce up to 20% longer delay than any functional
pattern), we attribute it to the fact that our experiments are
conducted with 0.13µm technology with relatively high sup-
ply voltage.

In terms of computational time, the proposed method re-
quires tens of seconds to process each critical path delay test
cube on a 2.13GHz PC with 2GB RAM. Generally speaking,
the relevant X-bits for critical paths in a circuit is within a
range regardless of the circuit size. Therefore, we believe the
proposed method is a scalable solution even for large industrial
circuits.

6 Conclusion
In this paper, we propose novel layout-aware pseudo-

functional testing techniques to exercise the worst-case timing
of critical paths in functional mode, which facilitates to con-
currently reduce test escapes and test overkills. Experimental
results on large ISCAS’89 benchmark circuits demonstrate the
benefits of the proposed methodology over prior works.

7 Acknowledgements
This work was supported in part by the General Research

Fund CUHK417406, CUHK417807, and CUHK418708 from
Hong Kong SAR Research Grants Council (RGC), in part by
National Science Foundation of China (NSFC) under grant
No. 60876029, and in part by a grant N CUHK417/08 from
the NSFC/RGC Joint Research Scheme.

Path ID Pre. Fill Max Fill Proposed Time (s)
1 4.53 5.66 5.57 34.0
2 4.38 5.52 5.37 33.8
3 4.26 5.31 5.21 33.6
4 4.07 5.13 4.96 33.9
5 3.92 4.89 4.77 33.9
6 3.75 4.74 4.57 34.1
7 3.63 4.56 4.44 34.1
8 3.44 4.32 4.17 33.4
9 3.41 4.25 4.16 33.8
10 3.46 4.27 4.11 32.9

Ave. 3.89 4.87 4.73

Table 2. Comparison of Critical Path Delay (ns)
in benchmark s38584.

References
[1] Moderator: K. Butler, Organizer: N. Mukherjee. Power-Aware DFT - Do We

Really Need it? Panel, International Test Conference, 2008.
[2] A. Krstic, Y.-M. Jiang, and K. T. Cheng. Pattern Generation for Delay Testing

and Dynamic Timing Analysis Considering Power-Supply Noise Effects. IEEE
Transactions on Computer-Aided Design, 20(3):416–425, March 2001.

[3] J. Li, Q. Xu, Y. Hu, and X. Li. iFill: An Impact-Oriented X-Filling Method
for Shift- and Capture-Power Reduction in At-Speed Scan-Based Testing. In
Proceedings IEEE/ACM Design, Automation, and Test in Europe (DATE), pages
1184–1189, 2008.

[4] Y.-C. Lin, F. Lu, and K. Cheng. Pseudofunctional Testing. IEEE Transactions on
Computer-Aided Design, 25(8):1535–1546, August 2006.

[5] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng. Path Selection and Pat-
tern Generation for Dynamic Timing Analysis Considering Power Supply Noise
Effects. In Proceedings International Conference on Computer-Aided Design
(ICCAD), page 493–497, 2000.

[6] X. Liu and M. S. Hsiao. A Novel Transition Fault ATPG that Reduces Yield Loss.
IEEE Design & Test of Computers, 22(6):576–584, Nov.-Dec. 2005.

[7] J. Ma, J. Lee, and M. Tehranipoor. Layout-Aware Pattern Generation for Maxi-
mizing Supply Noise Effects on Critical Paths. In Proceedings IEEE VLSI Test
Symposium (VTS), 2009.

[8] P. Maxwell, I. Hartanto, and L. Bentz. Comparing Functional and Structural
Tests. In Proceedings IEEE International Test Conference (ITC), pages 400–407,
2000.

[9] S. Remersaro, X. Lin, S. M. Reddy, I. Pomeranz, and J. Rajski. Scan-Based Tests
with Low Switching Activity. IEEE Design & Test of Computers, 24(3):268–275,
May-June 2007.

[10] S. Remersaro, X. Lin, Z. Zhang, S. Reddy, I. Pomeranz, and J. Rajski. Preferred
Fill: A Scalable Method to Reduce Capture Power for Scan Based Designs. In
Proceedings IEEE International Test Conference (ITC), 2006.

[11] S. Sde-Paz and E. Salomon. Frequency and Power Correlation between At-Speed
Scan and Functional Tests. In Proceedings IEEE International Test Conference
(ITC), paper 13.3, 2008.

[12] M. Syal, K. Chandrasekar, V. Vimjam, M. S. Hsiao, Y.-S. Chang, and
S. Chakravarty. A Study of Implication Based Pseudo Functional Testing. In
Proceedings IEEE International Test Conference (ITC), page paper 24.3, 2006.

[13] C. Tirumurti, S. Kundu, S. Sur-Kolay, and Y.-S. Chang. A Modeling Approach
for Addressing Power Supply Switching Noise Related Failures of Integrated
Circuits. In Proceedings IEEE/ACM Design, Automation, and Test in Europe
(DATE), pages 1078–1083, 2004.

[14] J. Wang and D. M. Walker. Modeling Power Supply Noise in Delay Testing.
IEEE Design & Test of Computers, 24(3):226–233, May-June 2007.

[15] X. Wen, K. Miyase, T. Suzuki, S. Kajihara, Y. Ohsumi, and K. K. Saluja. Critical-
Path-Aware X-Filling for Effective IR-Drop Reduction in At-Speed Scan Testing.
In Proceedings ACM/IEEE Design Automation Conference (DAC), pages 527–
532, June 2007.

[16] Q. Xu, D. Hu, and D. Xiang. Pattern-Directed Circuit Virtual Partitioning for
Test Power Reduction. In Proceedings IEEE International Test Conference (ITC),
paper 25.2, 2007.

[17] F. Yuan and Q. Xu. SoC Test Architecture Design and Optimization Considering
Power Supply Noise Effects. In Proceedings IEEE International Test Conference
(ITC), paper 26.2, 2008.

[18] F. Yuan and Q. Xu. On Systematic Illegal State Identification for Pseudo-
Functional Testing. In Proceedings ACM/IEEE Design Automation Conference
(DAC), pages 702–707, 2009.

[19] F. Yuan and Q. Xu. Compression-Aware Pseudo-Functional Testing. In Proceed-
ings IEEE International Test Conference (ITC), paper 9.1, 2009.

[20] Z. Zhang, S. Reddy, and I. Pomeranz. On Generate Pseudo-Functional Delay
Fault Tests for Scan Designs. In Proceedings IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), pages 215–226, 2005.

[21] S. Zhao and K. Roy. Estimation of Switching Noise on Power Supply Lines in
Deep Sub-Micron CMOS Circuits. In Proceedings International Conference on
VLSI Design, pages 168–173, 2000.

