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Lifetime Reliability for Load-Sharing Redundant
Systems With Arbitrary Failure Distributions
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Abstract—In this work, a general closed-form expression is pre-
sented for the lifetime reliability of load-sharing -out-of- :G hy-
brid redundant systems. In such systems, components are ini-
tially configured as active units. Depending on whether it is per-
forming tasks, an active component can be in either a processing,
or a wait state. Each state corresponds to an arbitrary failure dis-
tribution. The remaining � � are spares to provide fault toler-
ance. Each time an active component fails, a spare one converts into
active mode, until there are no more spares in the system. Then, the
system works in a gracefully degrading manner such that less than

components share the workload, until the number of good com-
ponents is less than . The task allocation, and service are mod-
eled as queueing systems, wherein the utilization ratio essentially
affects the aging effect of components. We integrate the various
failure distributions for components in different operational states
into an analytical model according to the statistical properties of
the task allocation mechanisms, and the components’ processing
capacity, and analyse the lifetime reliability of the entire system.
Finally, three special cases, and a series of numerical experiments
are discussed in detail to show the practical applicability of the pro-
posed approach.

Index Terms—Arbitrary distribution, hybrid -out-of- :G
system, load-sharing, queueing model.

ACRONYM

CMOS complementary metal-oxide semiconductor

FIFO first-in-first-out

IC integrated circuit

MTTF mean time to failure
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NOTATION

number of components in the
system
number of active components
in the standby phase
minimum number of
components required for
system operation
number of elements in set

task arrival rate of the entire
system
task service rate of an active
component
utilization ratio of an active
component
an active component’s task
branch-out probability
general reliability function

reliability function of
processing state
reliability function of wait state

general scale parameter

scale parameter of processing
state
scale parameter of wait state

birth time of a component

vector representing occurrence
time of past component
failures,
-dimensional subvector of ,

cumulative time of a
component with birth time

in the processing state
having failures at
cumulative time of a
component with birth time

in the wait state having
failures at
unified cumulative usage time
of a component with birth time

having failures at
system reliability at time

the probability that the system
contains active components,
and good spare components
at time
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the probability that the
system contains good
components at time
the probability that the
system contains good
components at time , and
failures can be described by
vectors , and
the conditional probability that
the system contains
good components at time
given the failures can be
described by vectors , and
conditional reliability, the
probability that a component
with birth time survives
at time given the system
experiences failures at
respectively
the probability that an indicated
component with birth time
fails at time given the past

failures of the system
occurs at
-dimensional vector

representing the birth time
indices of past component
failures,
-dimensional subvector of ,

set of all possible

the number of in the first
elements of vector
the probability that a system
containing good
components experiences the

failure at time , and the
failure component has birth
time given the past
failures can be described by

and
system mean time to failure

ASSUMPTION

1) The system is a hybrid -out-of- :G system.
2) All components are -independent.
3) A component is in either active mode, or spare mode (as

cold standby). An active component alternates between the
wait state (as warm standby), and the processing state (as
operating component).

4) All active components in this system share the load
equally.

5) The failure-time distributions for both warm standby, and
operating components follow an arbitrary baseline relia-
bility function. They differ in terms of their scale param-
eter. Components in cold standby have a zero failure rate.

Fig. 1. Component behavior of hybrid redundant systems [3].

6) No repair or maintenance is considered.
7) Switching components is a perfect process.

I. INTRODUCTION

In many load-sharing systems, the load to be processed is
specified as tasks, such as applications performed by processing
elements in a multiprocessor computing system, bar codes read
by laser scanners, or cars assembled by robots. The time scale
for processing a single task is usually much smaller than that of
a system’s lifetime. Therefore, depending on whether or not a
component is performing tasks, it may frequently alternate be-
tween the processing state, and the wait state in its lifetime, as
depicted in Fig. 1. Generally speaking, components operate at
higher temperature, higher pressure, and/or higher speed, and
hence will wear out more quickly in the processing state than
in the wait state. Consequently, it is more reasonable to regard
components in the wait state as in warm standby, when com-
pared to prior work that essentially assumes hot standby [1],
[2]. In addition, to provide fault tolerance, a system may con-
tain some spare components which convert into active mode (in-
cluding processing, and wait states), one for one when an active
one fails. Eventually, if no more spare components exist in the
system, when an active component fails, the system will assign
more tasks per unit time to the surviving components, which can
increase their failure rate.

Without loss of generality, we consider hybrid redundant
-out-of- :G systems [4], [5], in which are initially set

as active units, with the remaining components put
aside as spare units. Upon detection of the
failure of an active component,the system attempts to replace
the faulty one with a spare one until there is no spare compo-
nent in the system. This process is called the standby phase.
We assume that a dedicated switching component takes
charge of system reconfiguration, and this process is per-
fect. Because then the system works in a gracefully degrading
manner, we refer to this phase as the degrading phase. That
is, when a component failure is detected, the system attempts
to reconfigure to a system with one fewer component but
active components, until no more than good components
are left in the system, all of which are active. Such a system
functions correctly if at least out of the components do
not fail. When , the system discussed above becomes a
load-sharing -out-of- :G gracefully degrading system; while
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when , it is essentially a standby redundant system. It
is rather challenging to model the lifetime reliability of the
above system. First, an active component can be in two states:
processing, and wait. While the quantity of active components
in the system is clear, that of components in each state at a par-
ticular moment depends on the current workload, and therefore
is uncertain. Second, each state corresponds to its own failure
distribution. To express the reliability of a component, and the
entire system, we need an integrated failure distribution. Note
that, in most cases, we cannot predict the exact arrival time, and
service time of tasks (the only exception is deterministic arrival,
and deterministic service). Therefore we do not know when
a component transitions between processing and wait states.
Moreover, the frequency of state transitions can be quite high,
which also brings challenges to achieve an integrated failure
distribution. This problem becomes even more complicated
when these failure distributions are not exponential. Last but
not least, because active components need to share the load,
failures may result in higher workload on the surviving ones,
and hence affect their failure distributions. The model should
also be able to capture this fact.

To tackle the above problem, in this paper, we develop an an-
alytical model that captures the complex relationship discussed
above. We introduce the cumulative time concept to reflect the
aging effect in each state with arbitrary failure distributions.
Next,the cumulative time in all states are combined in a unified
manner to express the reliability function of a single compo-
nent. After that, we model the lifetime reliability of the entire
system that involves the task allocation mechanism, and redun-
dancy strategies. Then, we discuss several special cases in detail
to show the practical applicability of the proposed technique.

The reminder of this paper is organized as follows. In
Section II, we survey related work. Section III then details
the proposed reliability model. Next, we verify the proposed
models, and demonstrate the detailed analytical procedure with
three special cases in Section IV. We then present a series
of results obtained with the proposed modeling method, and
Monte Carlo integration in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

As highlighted in [1], the key feature of load sharing
-out-of- :G systems is that workload has significant influence

on every component’s failure rate. While there are many studies
on this topic capturing this feature, most of them assume an
exponential lifetime distribution for every component [1], [2],
[6]. By this assumption, the entire system can be represented
by a Markov transition diagram, and hence the complexity
analysis comes down to a relatively simple problem of applying
mature techniques. For example, assuming all functioning
components’ failure rates are the same constant at any time,
and depend on the number of functioning components in the
system, [2] models a load-sharing -out-of- :G system by a
discrete-state, continuous-time homogeneous Markov chain,
and solves its differential equations using inverse Laplace
transforms.

This assumption may be applicable for some special cases,
such as modeling soft errors in IC products, but is obviously not

always applicable. Consider a brand-new unit, and a 10-year
old one. In reality, we usually expect their failure rates to
be different. The exponential failure distribution assumption,
however, implies that the failure rate stays the same after 10
years usage. The main reason for the popularity of the above
assumption is its mathematical tractability rather than accuracy.
To tackle this problem, [7] studied a 1-out-of-2: system with
time-varying failure rates, whose failure distribution can be
expressed in a general polynomial format. For a deeper under-
standing, [1] proposed an analytical model for load-sharing

-out-of- :G system with a general lifetime distribution. This
work modeled the load on a component as a vector , and the
effect of load as . They simply assumed that the effect of
load is multiplicative in time without any justification. Also,
in this work, the load is assumed to be initially, and it
progressively changes to after the failure occurs. Each
load corresponds to a unique failure distribution. Thus, [1]
does not involve warm standby, and the corresponding state
transitions. Moreover, although this paper claimed that the pro-
posed approaches can be easily generalized to systems,
its main contribution is limited to load-sharing 1-out-of-2:G
systems, and gracefully degrading -out-of- :G systems with
equal shared loads. To reduce the computational complexity
induced by multiple integrals for such a system, [8] proposed a
novel method that transfers the complex calculation to two-di-
mensional integrals. This work is quite efficient for analysing
load-sharing gracefully degrading systems, but it is difficult to
be applied to analyse standby redundant systems. More related
works were summarized in [9]–[11].

Another issue relevant to this work is how to model the idle
components. Such a component can be regarded as a cold, hot,
or warm standby unit, which has a zero failure rate, the same
failure rate as active components, or a failure rate in between,
respectively. Because of simplicity, hot, and cold standby are
commonly assumed states in many related papers, which are
summarized in [12]. Also, the models mentioned above (e.g.,
[1], [7]) assumed every component in the system conforms to a
single failure distribution, and hence can only be applied to an-
alyse systems with hot standby components. As discussed ear-
lier, warm standby is clearly a more reasonable description for
the reliability analysis in many cases, and hence it is chosen in
this paper. Reference [13] provided an in-depth discussion of
warm standby. Later, most of the work in this area considered
two-unit warm standby systems. For instance, [14] analysed a
two-unit standby redundant system in which a module can al-
ternate between cold and warm standby states; [15] analysed
the two-unit standby system with general lifetime distributions.
Similar to many previous work on this topic, it is difficult to
extend these models to be applicable to general -out-of- sys-
tems because of the calculation complexity. As for -out-of-
warm-standby systems, [16] provided a closed-form expression
for the -out-of- systems with warm standby components,
but its analysis is again based on the assumption of constant
failure rates in both active, and standby states.

In [17], the authors examined a 1-out-of-3 system that in-
cludes a warm, and a cold standby unit. Recently, another mix-
ture model is presented in [18]. This work aimed to handle

-out-of- :G repairable warm standby systems that con-
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sist of two different types of components, each having its own
state sets: type 1 units, and type 2 units. The operative
failure rates, and standby failure rates of type 1, and 2 are dif-
ferent yet assumed to be exponential.

III. SYSTEM MODEL

In this section, we build our analytical model of lifetime re-
liability for a hybrid redundant load-sharing system. We first
examine the behavior of a single component in such a system,
and construct the unified reliability function accordingly. And
then, we investigate the lifetime reliability of the entire system.
Note that, because of frequent mode transitions between wait
and processing states, the quantity of components in each state
at a particular time point depends on not only previous failure
events, but also current workload. In this context,to capture the
variation of system reliability with time becomes a nontrivial
problem.

A. Reliability of a Surviving Component

1) Component Behavior: Consider a component in the hy-
brid -out-of- :G system. Its initial state can be active, or spare,
as shown in Fig. 1. The spare mode corresponds to the lowest
power consumption, and no interaction with other components
or controller. To be specific, a component in the spare mode does
not undertake any task. The active mode includes two states
depending on whether a component has tasks to perform: pro-
cessing, and wait. We assume tasks are assigned by a controller,
and then performed by a component independently; we ignore
the cases that a few components cooperate on a task. If a task is
assigned to a busy component (which means this component is
processing tasks), it will be stored in a first-in-first-out (FIFO)
buffer with infinite capacity. Once a component finishes its task
at hand, it will fetch a new one from the queue immediately,
unless the queue is empty. In that case, this component will
switch from processing to a wait state. Upon receiving a new
task, a waiting component will enter a processing state again.
Note that, although a component does not process any task in
the wait mode, different from the spare mode, it grows older. In
reality, consider Intel’s StrongARM SA-1100 processor [19] as
an example. Its power consumption in a processing state is 400
mW, and that in the wait state is 50 mW rather than 0 mW,
because some parts are still powered. When an active compo-
nent fails, if there are some spare components in the system,
one of them will be configured to active mode. From then on, it
will serve as an active unit, and share workload with other parts
until it fails, or the entire system breaks down.

2) Load-Sharing Model: As mentioned before, workload has
significant influence on a component’s reliability. Thus, it is
necessary to model for each component the load to be used
in the reliability function construction. Recall that the tasks are
assigned to all active components with equal probability. Thus,
given the set of active components in the system , an ac-
tive component’s task branch-out probability is given by

. For the sake of completeness, we also define as

Fig. 2. Queueing model for task allocation in a load-sharing system.

the set of spare components, and as the set of faulty com-
ponents. The union of these three sets
forms the entire system, where . Although our method
could be easily extended to other queueing models (such as a

queue for central task assignment with bulk task
arrival discussed in [3]), for ease of discussion, we focus on the
distributed task allocation mechanism, and model each compo-
nent as an queueing system (as shown in Fig. 2). To
clarify, the task arrivals to the system are assumed to be Poisson
with rate , and each component maintains a queue, where a
FIFO buffer with infinite capacity is assumed. Because the prob-
ability of a task to be executed by an active component (i.e.,

) is , the task inter-arrival time for an active compo-
nent is exponentially distributed with mean . Further, as-
suming the service time is exponentially distributed with mean

, the probability that an active component is occupied by a
task, i.e., utilization ratio, is given by . For hybrid

-out-of- :G systems, the utilization ratio of active components
is constant in the standby phase, and then gradually in-
creases to at the end of the degrading phase.

3) Unified Reliability Function: We now introduce our ap-
proach to combine the reliability functions in the processing
state with those in the wait state, in a unified manner. The re-
liability functions in these two states can be regarded as having
the same shape, but different scale parameters, which is defined
as a value by which is divided, because in many cases they can
be distinguished by different aging rates.

First of all, we introduce the concept cumulative time in a cer-
tain state up to time , which is defined as how long a component
has spent in such a state from time 0 to . Note that, as we ig-
nore the aging effect in the spare state, we are only interested
in the cumulative time in the processing, and wait states. Re-
call that some components initially serve as spare units. For the
ease of discussion, we define another concept, a component’s
birth time , as the time point when it begins to serve as an ac-
tive component. Before birth time , a component is in the cold
standby mode, and has negligible failure rate. But after that, it al-
ternates between wait and processing states until it breaks down.
The components initially configured as active have birth time

.
Theorem 1: Suppose the system has experienced exactly
failures before time , in the order of occurrence time at

(denoted as vector ), for any surviving compo-
nent with birth time .
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(a) Its cumulative time in the processing state up to
is

(1)
(b) Its cumulative time in the wait state up to is

(2)
The proof of the above theorem is illustrated in the Appendix.
With the cumulative time in two active states, we perform the

integration as follows. The general reliability function which
provides us the function shape is defined as , where
is the general scale parameter. We drop the notation because
of its generality, and refer to the general reliability function as

in the rest of this paper. The functions in processing, and
wait states can be therefore expressed as , and
respectively, where the scale parameters , and represent the
wear-out rates under the two conditions. Typically, .
For the sake of simplification, they are abbreviated as ,
and . By unification, we achieve two simple relationships
between the functions , and

, which enable us to perform reliability function
integration for any surviving component with the help of the
cumulative time obtained by Theorem 1.

Theorem 2: Given a system has experienced failures which
occur at (i.e., vector ) respectively, the proba-
bility that a certain component with birth time survives at
time can be computed as

(3)

where,

(4)

Again, the proof is given in the Appendix.

B. Reliability of a Hybrid -Out-of- :G System

After resolving the lifetime reliability of a single compo-
nent, we then move to study the lifetime reliability of the en-
tire system, calculating its mean time to failure . Let

be the probability that the hybrid redundant system has
active components, and good spare components at time . As

a functioning hybrid -out-of- :G system may have active
components with no more than good spare ones, or
no less than active components without good spare ones, the
system reliability can be expressed by two summations:

(5)

Hence, the mean time to failure of the entire system

(6)

can be written as

(7)

For the sake of simplicity, let be the probability of
a system containing good components, including both
active components, and good spares. Equation (7) can therefore
be rewritten as

(8)

is simply the probability that the system has no fail-
ures up to time . As the spare components have zero
failure rate, is the probability that all active compo-
nents do not fail from to , i.e.,

(9)

If a failure occurs at time , a spare component converts
into active mode with a very short reconfiguration time (when
compared to the system’s lifetime). Before the next failure, this
system consists of active components with birth time ,
and one with birth time . Thus, the conditional probability that
the system contains good components at time ,
given a component with birth time fails at , is given by

(10)

Here, vector (0) in the notation represents
that the failure component has birth time . Related notations
will be formally introduced later.

Because the probability that an indicated component with
birth time fails at time is , and
that there are such type of components, the probability that
any one of them fails at is

(11)

The event that the system experiences exactly one failure up
to is a union of a set of continuous elementary events in which
a failure occurred in an infinitesimal interval at time , and
the probability for this is . By the
theorem of total probability, the unconditional probability can
be obtained by integration over , i.e.,

(12)
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When , because there might be more than one pos-
sible case of failures, the expression of becomes more
complex. To estimate it, we use two row vectors

, and to capture the domi-
nant characteristic of failures. represents the occurrence time
of the failure. indicates the birth time index of the
failure component, meaning that, if the failure component
has birth time , the corresponding birth time index is . In
general, there are elements

(13)

each column corresponding to a failure. The occurrence time
satisfies the constraints that

(14)

Because the failure component must convert into active
mode before , its birth time . On the
other hand, all components start to serve as active ones on or
before . Therefore, the birth time indices satisfy the con-
straints that

(15)

The quantity of in the first elements of vector is denoted
as . Because only one component turns into the active mode
after each failure, there is essentially only one component with
birth time in the entire system if . In addition, the system
contains no more than components with birth time . Hence,
the birth time indices should also satisfy

and (16)

For a possible , let be the -di-
mensional subvector of . Similarly, let
be the corresponding -dimensional subvector of . That is, for
any possible case of failures, its first failures can always be
described by , and . Further, we define

(17)

We therefore express the probability that the system contains
good components having failures whose characteristics

can be described by , and as

(18)

where is the conditional probability that
the system contains good components at time
, given the past failures described by , and .

denotes the probability that,
in the system containing good components, a

component with birth time fails at time given the past
failures can be described by and .

After failures, the number of good components with birth
time is ; and that with birth time is

. Consequently, the conditional probability
can be computed as

(19)
As for the computation of , we

consider two cases: (i) the failure component has birth time
, or (ii) it has birth time . For the first case, the prob-

ability that an indicated component with birth time fails at
time is , and there are surviving
components with birth time in such a system. For the second
case, there is only one good component with birth time , and
the probability for its failure at is . There-
fore, we have

otherwise
(20)

After analysing a single failure case, we can now compute
for all possible cases. Denote the set of all possible

as . Because , we have

(21)

Interchanging the integration limits yields

(22)

IV. SPECIAL CASES

In this section, we simplify the proposed models under the as-
sumption that the system is a gracefully degrading one (Case I),
or a standby redundant one (Case II) respectively, for verifica-
tion purposes. Further, we assume a constant failure rate in both
cases, resulting in exactly the same results as previous work. We
also present a special case in Case III to demonstrate the detailed
analytical procedure by using the proposed approach.
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A. Case I: Gracefully Degrading System

When , the system discussed above becomes a load-
sharing -out-of- :G gracefully degrading system. In this case,
there is only one possible failure case for any , i.e.,

Thus, dropping from notations, and rewriting (22),
(18)–(20), yields

where,

(23)

If we further assume that all components have the same con-
stant failure rate in both processing and wait states, then

and the computation is greatly simplified. For the ease of ex-
pression, let . By Theorems 1, and 2, we have

Thus, by (17),

Substituting them into (23), we obtain

With (8), we obtain

This is the same results shown in previous works [20].

B. Case II: Standby Redundant System

When , this system becomes a load-sharing
-out-of- :G standby redundant system. In this case, the

number of failure components in a functioning system cannot
exceed ; otherwise the system fails. Therefore, a

surviving component’s cumulative time in either the processing
or wait state only depends on its birth time , i.e.,

and

Again, if we further assume the failure rate to be constant,
and , we obtain

Thus, the system reliability at time becomes

and mean time to failure of this system is

which is the same result as that in [10].

C. Case III: 1-Out-of-3:G System With

In this system, , , and . By (8), it is neces-
sary to determine to achieve ,
where can be defined in two equivalent ways: first,the
probability that the system contains good components at
time ; and second, the probability that exactly failures have
happened in the system up to time .

Initially, two components are in the active mode, with the re-
maining one in the spare mode. The active components share
the workload of the entire system. The traffic intensity of each
component is . If no failures occur in the system up to time
, the cumulative time of an active component remaining in the

processing, and wait state are , and re-
spectively. By Theorem 2, the probability that an active compo-
nent survives at time is given by

Substituting this reliability function into (9) yields

(24)
After the first failure, which may occur on either active com-

ponent with the same failure rate, the spare component is acti-
vated; and its traffic intensity is . The traffic intensity of
the surviving active component remains at the past level. There
is only one possible case of failure, that is, , and

. Suppose exactly one failure occurs up to time , and
the occurrence time is denoted as . Then, by Theorem 1, the



326 IEEE TRANSACTIONS ON RELIABILITY, VOL. 59, NO. 2, JUNE 2010

cumulative time of the component with birth time in the pro-
cessing, and wait state are , and respec-
tively; while those time intervals of the component with birth
time are , and respec-
tively. Using Theorem 2, and substituting into (12) yields

(25)

where,

and

After the first failure, two components in the system have dif-
ferent ages, and hence different failure rates. When the system
has experienced two failures up to , there is only one good com-
ponent left in the system at time . This component’s traffic in-
tensity from to is . By using vector , and vector to
describe all possible cases of two failures, we obtain two cases:

and

For the first case, the number of surviving components with
birth time is , and that with birth time
is , meaning that the only good component left
after two failures has birth time . This component’s cumu-
lative time in processing, and wait states are

, and
respectively. Subvector

. By (19), and (20), we obtain

For the second case, the remaining component has birth time
, and subvector is also (0). Similar to the analysis of

the first case, we obtain ,
, and

With (22), we have

(26)

Combining (24)–(26), we finally obtain the lifetime relia-
bility, and mean time to failure of this system:

V. NUMERICAL RESULTS

The relentless scaling of CMOS technology has enabled
the integration of a great amount of embedded processor
cores on a single silicon die. Because of their advantages in
power-efficiency, and short time-to-market, such large-scale
manycore systems have received lots of attention from both
industry [21]–[23], and academia [24], [25]. At the same
time, the ever-increasing on-chip power density accelerates the
aging effects caused by various failure mechanisms, making
their lifetime reliability a serious concern [26], [27]. As a
consequence, designers typically introduce on-chip redundant
cores to make the product fault-tolerant (e.g., [21], [28]). In
this section, we present numerical results obtained with Monte
Carlo integration based on our closed-form expressions for the
lifetime reliability analysis of manycore systems with different
redundancy schemes, and various workloads. In particular, we
first analyse the system with the proposed modeling method
to achieve the closed-form expressions, and then resort to the
Monte Carlo method to numerically approximate the values of
multiple integrals in the resulting expressions.

A. Experimental Setup

Two widely-used non-exponential lifetime distributions are
assumed in the experiments: Weibull, and linear failure rate.
These reliability functions can be written as ,
and , respectively. The scale param-
eters are different in the processing state , and wait state

. Typically, they are in units of years or hours. Clearly,
is no more than . The property of the Weibull distribution,
whose failure rate function , highly
depends on its shape parameter . We set in our ex-
periment, implying an increasing failure rate with respect to
time. The linear failure rate distribution has the hazard function

, where , . When , it
reduces to an exponential distribution; when , it becomes
a Rayleigh distribution. Different from the Weibull distribution,
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TABLE I
LIFETIME RELIABILITY OF MANYCORE SYSTEM WITH CONSTANT FAILURE RATE

Fig. 3. Lifetime enhancement of manycore system. (a) Weibull distribution. (b) Linear failure rate distribution.

the linear failure rate distribution may have non-zero failure rate
at . We set , and in our experiments.

The number of embedded cores in the manycore system is set
to be , meaning that the system has active
cores, while the remaining cores are put aside at time zero.
If an active core is detected to be faulty, the system replaces it
with a spare one until there are no spares in the system. Then
the system enters its degrading phase until the number of good
cores is less than 32. In other words, this system has parameters

, , and . It becomes a
load-sharing -out-of- :G gracefully degrading system when

, and a standby redundant system when .

B. Experimental Results and Discussion

We discuss an issue that attracts attention: how much ben-
efit can be expected from adding redundant cores into a many-
core system? As shown in Table I, if we assume an exponen-
tial lifetime distribution, the sojourn time only depends on the
number of active cores in the system, -independent of the aging
effect. With this assumption, we expect significant lifetime en-
hancement using redundant cores, as shown in the last column
of Table I, where we set . For instance, the system
lifetime increases from 0.2188 to around 0.64 by employing two

redundant cores. Clearly, this result does not conform to our
common sense. In practice, IC products experience increasing
failure rates over their life cycles. In this sense, a Weibull or
linear failure rate distribution could be a better approximation
of such wearout effect, and bring us more reasonable results.

Fig. 3 shows the lifetime enhancement achieved by redun-
dant cores with Weibull and linear failure rate distributions for

. The same quantity of redundant cores could have dif-
ferent redundant schemes, and hence result in devia-
tions. In these figures, we simply plot the maximum
achieved with the given because the area overhead
depends on the core quantity only. Needless to say, the life-
time reliability of manycore systems is enhanced with redun-
dant cores at the cost of area overhead. At the same time, the
lifetime improvement gradually slows down with the increase of

. For example, see the curve for the case with in
Fig. 3(a). The addition of first redundant core results in 26.66%
lifetime extension; those of the second, third, and fourth one
lead to 17.85%, 14.46%, and 9.34% extension, respectively.
Consequently, designers need to set with an appropriate
value to tradeoff area overhead with lifetime extension, rather
than set as large as possible under the area overhead
constraints.
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TABLE II
LIFETIME RELIABILITY OF MANYCORE SYSTEM WITH NON-EXPONENTIAL LIFETIME DISTRIBUTION (WEIBULL)

Fig. 4. Variation in lifetime reliability with workload. (a) Weibull distribution. (b) Linear failure rate distribution.

We also need to place emphasis on the phenomenon that life-
time reliability highly depends on the scale parameters (i.e., ,
and ) in the reliability functions. There are two extreme cases.
The first is , meaning that there is no difference be-
tween wait state and processing state in terms of the reliability
function. It is essentially the so-called hot standby scheme. The
second is , implying that an embedded core in the wait
state is a cold standby component, and cannot fail. Taking the
Linear failure rate distribution as an example, values
in these two cases are 6.4324, and 1.6690 with four redundant
cores, as shown in Fig. 3(a). Due to this huge gap, we advo-
cate to reexamine the conclusions made under the hot or cold
standby assumption, and deal carefully with the components in
the wait state.

A closer observation for various redundant schemes is shown
in Table II, setting , , and . Due
to the increasing failure rate, the manycore system contains no
faulty cores in most of its lifetime, especially for systems suf-
fering from severe wearout effects. For example, consider the
(32 2 1) manycore system. Its sojourn time in the 0-failure
state is 2.2260 years, while the expected value of its whole life-
time is 3.4368 years. From this perspective, one core’s failure
may imply the entire system is old, and we cannot expect much

residual useful lifetime. Another interesting observation is,
given the number of redundant cores, the maximum
could occur with a hybrid redundant scheme. For example,
the manycore system with four redundant cores achieves its
maximum lifetime when , and .

Finally, we study the influence of workloads on the lifetime
reliability, and plot the results for in Fig. 4, where the
values of , and are labeled as in the legend;
and , and .
As can be observed, the workload has significant influence on
the lifetime reliability of manycore systems, and should be paid
much attention by designers. That is, with the increase of work-
load , the system lifetime is significantly shortened, yet the
scale of decrease in is much smaller than that of
the increase in workload. Consider , and
in Fig. 3(b) as an example. The values are 4.5808,
3.6219, and 2.4750 for , 10, and 20, respectively.
We attribute this phenomenon to the wearout effects of warm
standby.

VI. CONCLUSION

In this work, we present a general closed-form expression for
the lifetime reliability of load-sharing -out-of- :G hybrid re-
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dundant systems. The load assigned to the system is modeled
using queueing theory. We integrate the various failure distribu-
tions for components in different operational states into our an-
alytical model with their corresponding aging effects, which are
then used to estimate the lifetime reliability of the entire system.
Finally, the practical applicability of the proposed model is ver-
ified with several special cases, and numerical experiments.

APPENDIX

Proof of Theorem 1

Case 1) Case I. . In this case, a surviving com-
ponent’s birth time . Before

, the component serves as a cold standby. After
that, it alternates between the processing and wait
states. Because the number of faulty components
is no more than , there are exactly ac-
tive components in the system from to . Ac-
cording to queueing theory, the utilization ratio of
an queue is , where is the arrival
rate of this queue. In an equally load-sharing system
with active components, . Because
the time scale of the system lifetime is usually much
larger than that of task processing, the cumulative
time in the processing state can be approximated as

. In addition, because the component
is in either a processing or wait state from to ,
the cumulative time in the wait state

.
Case 2) Case II. . It is important to note that

the birth time of any component must be no later
than , because any surviving component
at time has been configured as ac-
tive at or before . Therefore, the birth time

. From to , there
are active components in the system. Thus, the
utilization ratio in this period is . Hence, a
component’s cumulative time in the processing
state from to is .
From to , ,
the system contains active components.
By the same argument,the component’s cumu-
lative time in the processing state from to

is . Similarly,
from to , it is . Sum-
ming all these terms up results
in (1). As for , we compute it by

, similar to the computation
for Case I.

Proof of Theorem 2

As is a closed interval, we can partition it into sub-
intervals according to state transitions:

. To be specific, at any ,
the component converts from processing mode to wait mode, or
opposite.

The initial reliability of a component is given by

Then, for the first sub-interval , suppose the compo-
nent does not have tasks to process in this time interval. Then
the reliability at time is given by

By this equation, at the end of this sub-interval, we have

Next, we analyse the second sub-interval. Using to repre-
sent the accumulated aging effect in , the reliability at

can be written as

Therefore, at the beginning of this sub-interval,

We then compute by the continuity of the reliability func-
tion; that is, the reliability function must satisfy the constraints

Thus, because of , we obtain

(27)

; and hence

This equation implies that, if a component stays in the pro-
cessing state for

(28)

, then its age is the same as if it had stayed in the wait state for
. After a simple derivation, this equation can be further

rewritten as

So, at time , we have
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By generalizing the above calculation steps, the lifetime reli-
ability of a component at time can be written as

By Theorem 1, , and
have been approximated as , and

respectively. Additionally, this conclusion is
obviously independent of the component’s starting state.
Therefore, (3) holds.
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