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ABSTRACT
In this paper, we consider energy minimization for multiprocessor
system-on-a-chip (MPSoC) under lifetime reliability constraint of the
system, which has become a serious concern for the industry with
technology scaling. As today’s complex embedded systems typically
have multiple execution modes, we first identify a set of “good” task
allocation and schedules for each execution mode in terms of life-
time reliability and/or energy consumption, and then we introduce
novel techniques to obtain an optimal combination of these single-
mode solutions, which is able to minimize the energy consumption of
the entire multi-mode system while satisfying given lifetime reliabil-
ity constraint. Experimental results on several hypothetical MPSoC
platforms with various task graphs demonstrate the effectiveness of
the proposed approach.

1. INTRODUCTION
In response to today’s competitive electronics market, when de-

signing complex embedded systems, it is increasingly popular to em-
ploy pre-designed multiprocessor system-on-a-chip (MPSoC) plat-
forms and map applications onto them to reduce design risk and achieve
short time-to-market [19]. Various platforms with specific function-
alities reflecting the need of the expected application domain have
been developed in the industry recently, e.g., ARM PrimeXsys plat-
form [1].

When building platform-based embedded systems, a basic issues is
to conduct task allocation and scheduling for applications, in which
the allocation of tasks is to effectively utilize the available proces-
sors while scheduling is to meet various requirements (e.g., timing
constraints). Recently, minimizing energy consumption has become
a critical task for embedded system designs, and a widely-used tech-
nique is dynamic voltage scaling (DVS) [9], by which we scale down
the voltage/frequency of individual processors according to temporal
performance requirements of applications. Various energy-efficient
task allocation and scheduling techniques for DVS-enabled embed-
ded systems have been presented in the literature (e.g., [11]).

Despite the significant advancement of platform-based embedded
system design methodologies in recent years, only limited works have
considered the lifetime reliability of the system [7, 23]. With the
ever-increasing on-chip power and temperature densities, however,
the wearout failures (e.g., negative bias temperature instability on
PMOS transistors) have become serious concerns for the industry [3,
12, 21]. As shown in [17], the failure rates for electronic products
can be quite high within its warrantee period and the main reason was
traced to excessive stress on the embedded processors.

Existing energy-efficient task allocation and scheduling techniques
target at reducing the overall energy consumption of the system. The
lifetime of the system, however, is determined by the component with
the shortest service life. Consequently, it is likely that the solution
with the minimum energy consumption results in excessive stress on
certain components, leading to unexpected low lifetime reliability of
the system. In addition, today’s complex embedded systems usually

do not stick to a single execution mode throughout their entire service
lives. Instead, they work across a set of different interacting applica-
tions and operational modes. For instance, modern smart phones not
only provide communication service, but also work as MP3 player,
game console, and digital camera. For such multi-mode embedded
systems [18], the above problem can be further exacerbated due to
inter-mode resource sharing and the associated possible imbalanced
usage of processor cores. For example, an energy-efficient processor
in a heterogeneous MPSoC platform might have higher utilization
rate in most operational modes, thus aging much faster than other
embedded processor due to the excessive stress on it.

From the above, it is essential to explicitly consider lifetime reli-
ability issue in energy-efficient embedded system designs. To tackle
this problem, in this paper, we first show how to conduct energy-
efficient task allocation and scheduling on MPSoC platforms for a
single execution mode, taking the lifetime reliability as a constraint.
For multi-mode embedded systems, since the overall system’s life-
time reliability is also related to the mode execution probabilities, it
is not necessary to apply the same constraint to every mode. That is,
we can afford to have task allocation and schedules for certain modes
with lower reliability if such solutions reduce energy consumption
dramatically, and compensate the reliability loss from other execu-
tion modes. Based on this observation, we propose to identify a set of
“good” task allocation and schedules in terms of lifetime reliability
and/or energy consumption for each execution mode. Then, we intro-
duce novel methodologies to obtain an optimal combination of task
schedules that minimizes the energy consumption of the entire multi-
mode system, while satisfying given systemwide lifetime reliability
constraint. Experimental results on various hypothetic multi-mode
MPSoC platforms show that the proposed solution can significantly
reduce the system energy consumption under reliability constraint.

The reminder of this paper is organized as follows. Section 2
presents preliminaries of this work and formulates the problem stud-
ied in this paper. In Section 3, we present our task allocation and
scheduling algorithm for multi-mode embedded systems. Section 4
presents our experimental results for hypothetical MPSoC platforms.
Finally, Section 5 concludes this work.

2. PRELIMINARIES
2.1 Related Work

Recently, a major trend in embedded system design is towards
energy-efficient computing based on the concept of performance on
demand, by dynamically adjusting the operational voltage and fre-
quency of processors based on instantaneous processing requirement.
There is a rich literature on energy-efficient design methodologies
(e.g., [11]), which mainly resort to DVS and slack reclaiming to cut
down the energy consumption of the embedded processors. In par-
ticular, Schmitz et al. [20] proposed an energy-efficient co-synthesis
framework for multi-mode embedded systems under the consider-
ation of mode execution probabilities, in which a single execution
mode occupies the entire MPSoC at a time.



At the same time, with aggressive technology scaling, the lifetime
reliability of today’s high-performance integrated circuits has also be-
come a major concern for the industry [3]. The wearout failure mech-
anisms that lead to permanent errors of IC products include electro-
migration on the interconnects, TDDB in the gate oxides, negative
bias temperature instability (NBTI) on PMOS transistors, and ther-
mal cycling (TC), and they were shown to be highly related to the
temperature and voltage applied to the circuit. Thus, existing thermal-
aware task scheduling techniques may improve the MPSoC’s lifetime
reliability implicitly, by balancing different processors’ temperatures
or keeping them under a safe threshold. However, as pointed out
in [7], since circuit wearout failures are also dependent on many other
factors (e.g., internal structure, operational frequency and voltage),
without explicitly taking the lifetime reliability into account during
task allocation and scheduling, various processor cores may still age
differently and thus result in shorter lifetime for the MPSoC-based
embedded system.

Recently, the authors of [7] proposed a novel analytical model for
the lifetime reliability of multiprocessor platforms, which, unlike prior
work (e.g., [4, 21]), is able to capture the processors’ accumulated
aging effects. They have also introduced a simulated annealing (SA)
technique to maximize the service life of MPSoC-based embedded
systems under performance constraint. However, energy consump-
tion issues are not considered in [7] and it focused on single execution
mode only. In practice, it is not necessary to prolong the service life
of embedded systems as much as possible. Rather, energy minimiza-
tion should be the primary optimization objective with given lifetime
reliability being used as a constraint.

2.2 Problem Formulation
Based on the above, the problem investigated in this paper is for-

mulated as follows:

Problem: Given
• the floorplan of the platform-based MPSoC embedded system

that consists of ` processor cores;
• n execution modes. Each mode i is represented by a directed

acyclic task graph Gi = (Vi,Ei), wherein each node in Vi indi-
cates a task in Gi, and Ei is the set of directed arcs that represent
precedence constraints;

• the joint probability density function1 that the system is in var-
ious modes fY1,Y2,··· ,Yn(y1,y2, · · · ,yn), where yi represents the
probability that the system is in execution mode i;

• the execution time wi, j,k of task j of mode i on processor k
under maximum supply voltage Vdd ;

• the power consumption Pi, j,k of task j of mode i on processor k
under maximum supply voltage Vdd ;

• deadline di, j of task j of mode i, meaning that task j in Gi
should be finished before di, j;

• target service life L and the corresponding reliability require-
ment η%;

• failure mechanism parameters (e.g., activation energy Ea of
electromigration) and the corresponding failure distributions;

Determine a periodical task allocation and schedule on the given
MPSoC platform for each execution mode such that the expected en-
ergy consumption is minimized, under the performance constraints
that real-time tasks are finished before deadlines and the lifetime re-
liability constraint that the system reliability at the target usage life L
is no less than η%.

Note that, for the ease of discussion, in this work, we assume each
execution mode in a multi-mode system corresponds to one directed
acyclic task graph only. Our proposed approach, however, could be
easily extended to handle multiple task graphs for a single mode by
constructing a hyper task graph and performing task scheduling on
a hyper-period [13], if necessary. In addition, while there are other
hardware resources in the MPSoC platform consuming energy and

1The mode execution probabilities can be estimated as in [20].

suffering from wearout failures, we mainly consider processor cores
in this work due to their heavy stress and varying operational behav-
iors. Our work can be easily extended to take other hardware compo-
nents (with simpler activities) into account, if needed.
2.3 Analytical Models

The energy consumption model used in this work is mainly based
on [10, 16], by which we are able to compute the power consumption
and execution time of task j (in the task graph for execution mode i)
running on processor k given its voltage scaling parameter ρ, denoted
by Pi, j,k(ρ) and wi, j,k(ρ) respectively. Both are normalized to given
values Pi, j,k and wi, j,k when ρ = 1 (i.e., no voltage scaling). The
energy consumption of task schedule for execution mode i depends on
the task assignments and the deadline of entire task graph max j{di, j}.
Denoting by 1{i, j→k} an indicator function that equals 1 if task j is
assigned to processor k while 0 otherwise, the energy consumption of
a certain task schedule in unit time is expressed as

Ei =
1

max j{di, j}∑
j
∑
k

Pi, j,k(ρi, j,k) ·wi, j,k(ρi, j,k) ·1{i, j→k} (1)

A lifetime reliability model that captures the accumulated aging
effects of IC hard errors has been proposed in [7]. We resort to that
model to estimate the reliability stress of task schedules in this work.
Let αk(T ) be the aging effect of processor k in unit time provided
operational temperature T . The aging effect of processor k in a certain
task schedule is therefore

Ai,k = ∑
j

[wi, j,k(ρ) ·1{i, j→k}
αk(Ti, j,k)

− wi, j,k(ρ) ·1{i, j→k}
αk(Tamb)

]
+

di

αk(Tamb)

where, Tamb is the ambient temperature. Then, suppose the system
remains in mode i through its service life, we can express system
reliability at the target service life L with the aging effect additivity
proved in [7] as

Ri = exp
[
−∑

k
(

Ai,k

max j{di, j} ·L)βk
]

(2)

3. PROPOSED ALGORITHM FOR MULTI-
MODE EMBEDDED SYSTEMS

Since the lifetime reliability constraint is a systemwide constraint
(unlike the performance constraint for real-time tasks), it is not neces-
sary to apply the same reliability constraint to every execution mode
for multi-mode MPSoC embedded systems. In this section, we show
how to take advantage of this flexibility to minimize energy consump-
tion for multi-mode embedded systems. To be specific, we first gen-
erate “good” solutions in terms of reliability and/or energy for each
execution mode (Section 3.1-3.3) and then we search for an optimal
combination of them to obtain minimized energy while satisfying the
systemwide lifetime reliability constraint (Section 3.4).
3.1 Feasible Solution Set

When we loosen the lifetime reliability constraint for a single ex-
ecution mode, there are many possible task allocation and schedule
solutions. However, if one solution is associated with higher energy
consumption and at the same time has lower lifetime reliability when
compared to another solution, it definitely should not be considered
for the combination of solutions of all execution modes.

Before introducing the searching procedure, we first introduce a
key concept in our proposed methodology. Among the task allocation
and schedule solutions for a certain task graph (denoted as set X),
there exists a subset Y that satisfies the following two conditions.

Internal stability Given two solutions u,v ∈ Y , if u consumes more
energy than v, it must have higher lifetime reliability at the target
service life, and vice versa.

External stability For any solution w ∈ X \Y , there exists at least
one solution u ∈ Y such that u consumes less energy and have higher
lifetime reliability than w.



We refer to Y as the feasible solution set (i.e., pareto optimal so-
lution set), denoted as F in the rest of this paper. Now, our problem
of task allocation and scheduling for a single execution mode comes
down to identifying F . Fig. 1 shows an example, wherein several so-
lutions are plotted on a two-dimensional plane as points according to
their lifetime reliability and energy consumption. The feasible solu-
tion set in this case is F = {O, D, E}. Consider a solution outside
this set, say G. It implies higher energy consumption and lower life-
time reliability than solution D. Note that solution O should be kept
although it violates the global reliability constraint, because it is a
possible candidate in the final combined solutions in our multi-mode
systems.

3.2 Searching Procedure for a Single Mode
The simulated annealing technique could be used to obtain a single

solution with minimum energy consumption under lifetime reliabil-
ity and performance constraint for the task scheduling problem (e.g.,
[7]). To find a set of feasible solutions as candidates for later multi-
mode combination, we modify the classic procedure and highlight the
difference with Fig. 2.

In a typical SA-based algorithm, it is only necessary to keep the
current solution during the searching procedure and the best solution
explored so far, but in our method, every newfound solution is first
checked with its cost, which will be introduced in Section 3.2.2, to
determine whether it should be accepted (Line 7). If accepted and
meeting performance constraint, depending on which feasible solu-
tion set identification strategy is chosen (detailed in Section 3.3), it
is either added into the possible solution set P (Line 11) or identified
together with original feasible solution set (Line 13). Note that, if
the static strategy is chosen, after this searching procedure all found
solutions are kept in the set P . The static identification is conducted
and yields the feasible solution set F (Line 16). In contrast, if we
perform the dynamic identification during the searching procedure,
the resulting set P is essentially the feasible solution set F (Line 18).

3.2.1 Solution Representation
The most straightforward representation to specify schedule X is

(schedule order sequence; resource binding sequence), which can
be used to construct task schedules directly [7] and corresponds to
unique reliability, energy consumption and schedule length (also known
as makespan). This simple representation, however, leads to huge de-
sign exploration space. Let vi be the number of nodes in the task graph
for execution mode i. With ` processors in the system, the solution
exploration space is as high as (vi! · `vi).

Fortunately, we notice that, without considering DVS, both energy
consumption and lifetime reliability depend mainly on task allocation
and are almost independent of their schedule orders (see Eq. (1) and
Eq. (2)). In addition, with known task allocation, there is a rich liter-
ature (e.g., [14, 15]) on how to conduct task scheduling to meet dead-
lines and reduce the total schedule length. Based on the above, we
propose to represent the solutions with task allocation only, shrink-
ing the solution space to `vi . The random move strategy is also quite
simple with this representation, i.e., we randomly pick up a task and
assign it to another processor core, different from the original one.

3.2.2 Cost Function
As the simulated annealing searching procedure is guided to the so-

lution with minimum cost, we should define a cost function such that

I

IIIII

IV

Figure 1: Feasible Solution Set Identification.

1 Build an initial solution X and initialize P as {X}
2 While T > Tend
3 For the iteration i from 1 to Niter
4 X’ ← Random_Move(X)
5 Cold ← Cal_Cost(X)
6 Cnew ← Cal_Cost(X’)
7 If Cnew < Cold or exp

(Cold−Cnew
T

)
> rand()

8 X ← X’ // accept X’
9 If X’/∈ P and X’ meet performance constraint
10 If static identification
11 P ← Include(P , X’)
12 Else If dynamic identification
13 P ← Identify(P , X’) // see Sec. 3.3.2
14 T ← T ×Rcooling

15 If static identification
16 F ← Identify(P ) // see Sec. 3.3.1
17 Else If dynamic identification
18 F ← P

Figure 2: Main Flow of Searching for Feasible Solution Set.

the task schedule with higher reliability and lower energy consump-
tion has less cost. Also, to meet the performance constraint, a heavy
penalty should be given to the task assignment that cannot meet this
constraint. Denoting by mi, j the earliest finish time of task j given
resource binding of mode i, we therefore define the cost function as

Ci = γ ·1{∃ j: mi, j>di, j}−Ri×Ei

Here, γ represents a significant large number. The first term, which
equals γ if there exists at least one task (say, task j) exceeds its dead-
line (i.e., mi, j > di, j) while 0 otherwise, is the penalty of violating
performance constraint. To determine this value, we need to estimate
the schedule length, which depends on not only assignment but also
the schedule. While we can use exhaustive search to obtain the min-
imum value and the corresponding task schedule, given the task allo-
cation solution, we can resort to well-studied heuristics (e.g., [15]) to
acquire an optimized task schedule.

We use minus for the second term because solutions with lower
Ri are with less lifetime reliability and hence should have higher cost
during the simulated annealing process. Without considering DVS, Ei
and Ri can be computed by Eq. (1) and Eq. (2). Yet it is very impor-
tant to note that DVS is helpful to both energy savings and reliability
improvement in most cases, as shown in Fig. 3. We therefore make
use of the timing slacks to determine appropriate voltage scales for
DVS-enabled processors to minimize energy under performance and
lifetime reliability constraint.

50 60 70 80 90 100
0

20

40

60

80

100

ρ (%)

A
gi

ng
 E

ffe
ct

 R
at

io
 (

%
)

 

 

P = 5W
P = 7.5W
P = 10W
P = 12.5W

Figure 3: Influence of Voltage Scaling on Aging Effect.
To be specific, we first compute the range of possible task execution

time and the associated voltage scaling parameter with the follow-
ing procedure. Given the task schedule reconstructed with solution
representation, suppose the entire task schedule is fulfilled ahead of
deadline max j{di, j} without voltage scaling, all tasks in the sched-
ule are uniformly “stretched” and the ratio is denoted by global scale
parameter θg

i . In addition, we notice that some tasks can be further
elongated without affecting the scheduling of any other tasks. That is
to say, a task can be further extended if it finishes before the starting
time of all of its successors on task graph and the starting time of the
next task on the same processor core. We define the local scale pa-
rameter for such a task j as θl

i, j,k, given it is assigned to processor k.
In particular, these values are set to 1 if no extension is appropriate.
Thus, the execution time of task j is bounded by wi, j,k ·θg

i ·θl
i, j,k and



thus the upper bound of voltage scaling parameter could be computed
accordingly.

Then, as in most cases a processor core can only work under a
few voltage levels, we determine voltage assignment for each task by
choosing the voltage state that results in the maximum cost reduction.
And finally we reevaluate the energy consumption of the resource
binding sequence by using Eq. (1).

3.3 Feasible Solution Set Identification
With a number of recorded solutions obtained using the above pro-

cedure, this section is concerned with identifying the feasible solution
set out of them.

3.3.1 Static Strategy
Let us start from a simple case in which all solutions have been

found out and stored before our feasible solution set identification
process (this assumption will be lifted later).

Before presenting the proposed approach, we first introduce some
definitions. All the found task allocation and schedule solutions are
examined according to the lifetime reliability model and energy model
in Section 2.3, and marked on a two-dimensional plane whose x-axis
and y-axis represent the lifetime reliability at the end of target service
life (provided the system remains in this mode) and the expected en-
ergy consumption, respectively. With respect to a point, we divide the
plane into four domains, referred as domain I, II, III, and IV. Fig. 1
illustrates a domain division respect to point O. The positive x-axis
and negative y-axis belong to domain II; while the negative x-axis and
positive y-axis belong to domain IV. We define original point as the
point with the lowest energy consumption and, in case of ties, with
the highest lifetime reliability on this plane, denoted as point O.

Theorem 1 Point O corresponds to a feasible solution, and all other
feasible solutions only exist in its domain I.

Proof Since solution O consumes the least energy, there is no points
falling in its domain II or III. For the solutions in its domain IV, since
they are associated with higher energy consumption and lower relia-
bility than O, they cannot be feasible. Also, solutions with the same
energy consumption as that of O but lower lifetime reliability (e.g.,
point B and C in Fig. 1) are apparently not feasible. Therefore, all
feasible solutions are in domain I of point O. ¤

It is also worth noting that the converse of this theorem is not true,
that is, not all points in domain I of point O are feasible solutions.

We propose to sweep domain I with respect to point O in a coun-
terclockwise manner, and check the reached points (i.e., solutions)
according to the following theorem. A feasible solution set F is ini-
tialized as {O} before sweeping. If a reached solution is a feasible
one, it is included into F before examining the next one.

Theorem 2 A new solution N is a feasible one if and only if it is in
domain I or III of all elements in set F .

Proof Suppose point N is feasible and it is in the domain II of another
feasible solution X∈ F , by counterclockwise sweeping we must have
come across point N before X and put it into F already. Therefore, the
supposition does not hold. Next, we assume point N is in the domain
IV of any solution X in set F . In this case, solution N costs more
energy and results in lower reliability when compared to solution X,
and hence is not a feasible solution. ¤

Consider the example shown in Fig. 1. By sweeping counterclock-
wisely, we first come across point D. It is in the domain I of point
O, which is the only element in F at this moment, and therefore in-
cluded into the feasible solution set. Next one is E. It is in domain I
of point O and domain III of point D, and hence also included. Then,
we come across point F, which is not a feasible solution as it falls into
domain IV of point D. The final one is G. As it locates in domain IV
of D and E, it is also not feasible. Therefore, the end result is F ={O,
D, E}.

3.3.2 Dynamic Strategy
It is important to highlight that the above static identification strat-

egy requires to find all solutions and store them before the identifica-
tion process, thus involving heavy memory overhead, especially when
there are a large number of possible solutions. This problem can be
avoided if we can identify feasible solutions in a random order. By
doing so, feasible solution set F is updated whenever a newfound
solution is generated, and hence we only need to maintain the cur-
rent feasible solution set. In the following, a dynamic identification
strategy to achieve the above objective is presented.

The feasible solution set F is initialized as empty. Every newfound
solution is processed according to the following three rules.

Rule 1 If the new solution is in domain I or III of ALL elements in set
F , it should be included into the feasible set F .

Rule 2 If the new solution is in domain II of ANY solution X (where
X∈ F ), we include the new solution into F and at the same time
eliminate X from F .

Rule 3 If the new solution is in domain IV of ANY solution X (where
X∈ F ), we ignore the new solution.

Rule 1 is consistent with Theorem 2. Rule 2 holds because the new
solution must consume less energy and have higher reliability than
solution X, if it is in domain II of X. Hence, X should be replaced by
the new solution. As for Rule 3, given the new solution is in domain
IV of solution X, it is worse than X in terms of both reliability and
energy saving, and hence is not feasible. Note that, it is impossible
that a newfound solution is marked in domain II of some feasible set
elements and domain IV of some other elements simultaneously.

Consider the example shown in Fig. 1 again. Let us examine the
dynamic identification with a random order: C, O, E, D, F, B, A, G.
The procedure is shown in Fig. 4, leading to the same feasible solution
set as that obtained using static strategy (see Section 3.3.1).

original F new solution updated F
∅ C {C}

{C} O {O}
{O} E {O, E}

{O, E} D {O, E, D}
{O, E, D} F {O, E, D}
{O, E, D} B {O, E, D}
{O, E, D} A {O, E, D}
{O, E, D} G {O, E, D}

Figure 4: An Example Identification Procedure.
3.4 Multi-Mode Combination

Given the feasible solution set for every execution mode, we show
how to combine them to achieve minimum energy consumption under
systemwide lifetime reliability constraint in this subsection.

Suppose the feasible solution set Fi of mode i is composed of qi
elements. We denote by E`

i the energy consumption given the `th

feasible solution (` = 1, · · · ,qi) for execution mode i. In addition,
we introduce a function 1{`⇒i}, which equals to 1 if we choose the
`th solution from the feasible solution set Fi for mode i; otherwise 0.
With these notations, the energy consumption for a fixed execution
probability combination can be expressed as

E(y1,y2, · · · ,yn) = ∑
i

yi ·∑̀E`
i ·1{`⇒i}

Subject to the constraint that

∀i : ∑̀1{`⇒i} = 1 (3)

More generally, when we consider the usage information obtained
from a large user group, we can use a joint probability density func-
tion fY1,Y2,··· ,Yn(y1,y2, · · · ,yn) to represent the probabilities that the
system is in various execution modes. Thus, the optimization ob-
jective becomes to minimize the expected energy consumption over
service life, that is, to minimize E[E(Y1,Y2, · · · ,Yn)], where E[X ] in-
dicates the expectation of random variable X .

As the performance constraints of all execution modes have been
guaranteed in the proposed searching procedure, besides Eq. (3) we



need to consider the lifetime reliability constraint only. Similar to the
energy consumption issue, we compute the expected value given the
fixed probabilities yi for execution mode i as

R(y1,y2, · · · ,yn) = exp
[−∑

k
(∑

i

yi ·∑` A`
i,k ·1{`⇒i}

max j{di, j} ·L)βk
]

where, A`
i,k represents the aging effect of task schedule ` on pro-

cessor k in execution mode i. The reliability constraint comes down
to keep the expected lifetime reliability over the execution probability
distribution exceeding a threshold, i.e.,

E[R(Y1,Y2, · · · ,Yn)]≥ η%
We therefore formulate the multi-mode solution combination prob-

lem as follows:

min E[E(Y1,Y2, · · · ,Yn)]
st. E[R(Y1,Y2, · · · ,Yn)]≥ η%

∀i : ∑` 1{`⇒i} = 1
∀i, ` : 1{`⇒i}=0 or 1

This optimization problem can be solved quite efficiently since the
number of execution modes for an embedded system is typically small
(tens of modes for very complex systems).

4. EXPERIMENTAL RESULTS
4.1 Experimental Setup

We conduct two sets of experiments with different task graphs and
hypothetical MPSoC platforms to evaluate the proposed approach.
All task graphs are generated by TGFF [5]. The power consumption
of tasks on processor cores are randomly generated, while the range
is set according to state-of-the-art technology [22]. Although the pro-
posed approach is applicable for the combination of multiple failure
mechanisms, since there is no public data on the influence weight of
various hard errors, we use the well-studied electromigration failure
model presented in [6] for our experiments. The parameters are set
to cross-sectional area of conductor Ac = 6.4×10−8cm2, the current
density J = 1.5× 106A/cm2 and the activation energy Ea = 0.48eV .
The simulated annealing parameters are set to initial temperature 100,
terminal temperature Tend = 10−5, cooling rate Rcooling = 0.99, and
iteration count I = 20.

To demonstrate the effectiveness of the proposed algorithms, we
compare the proposed multi-mode approach, the proposed single-
mode approach wherein all execution mode needs to satisfy the given
reliability constraint, and a greedy heuristic constructed by ourselves
due to the lack of prior work on the same topic. In this heuristic, we
first build a task schedule to shorten the schedule length and reduce
energy consumption with a list scheduling heuristic [2]. Note that, to
take both energy consumption and performance into account, the crit-
ical path length of task j on processor k is redefined as cpl′(τ j, pk) =
cpl(τ j, pk)−Pj,k according to the heuristics in [8], where cpl(τ j, pk)
is the critical path length of a task τ j scheduled on processor pk [2].
We then attempt to meet the reliability constraint in a greedy manner,
that is, if the system reliability constraint is violated, the processor
core with the minimum lifetime reliability is selected in each iteration
and the task causing the highest stress is assigned onto another core
without violating performance constraints. The moved task is then
locked. The procedure terminates if no more moves are available or
reliability constraint can be met.
4.2 Case Study

We consider three task graphs with task quantities 6, 7, and 3 (de-
noted as task graph (a), (b), and (c) respectively hereafter) in the first
experiment, each corresponding to a particular execution mode, and
schedule them on two processor cores with failure distribution slope
parameter β = 1.5, 2, respectively. The probabilities that the system is
in execution modes (a)-(c) are set to be 0.3, 0.3, and 0.4, respectively.
By conducting the proposed searching procedure we obtain a set of

Task
Graph
Label

Solution
No.

Resource
Binding

Sequence
Ri (%) Ei max

j
{mi, j}

(a)

1 39.16 23.179 52.835 (0, 0, 1, 0, 1, 1)
2 36.70 22.992 46.742 (1, 0, 1, 0, 1, 0)
3 34.91 22.370 50.028 (0, 0, 1, 1, 1, 1)
4 34.18 21.312 37.021 (1, 0, 1, 0, 1, 1)
5 27.92 20.503 34.214 (1, 0, 1, 1, 1, 1)
6 17.05 20.061 33.807 (1, 1, 1, 0, 1, 1)
7 11.80 19.253 31.001 (1, 1, 1, 1, 1, 1)

(b)

1 65.09 15.437 71.702 (1, 0, 1, 1, 1, 0, 0)
2 59.19 15.358 78.068 (1, 1, 1, 1, 0, 0, 0)
3 56.94 14.921 62.918 (1, 0, 1, 1, 0, 0, 0)
4 47.54 14.910 57.684 (1, 0, 0, 1, 0, 0, 0)
5 45.49 14.488 52.101 (1, 0, 1, 0, 0, 0, 0)
6 36.51 14.477 46.867 (1, 0, 0, 0, 0, 0, 0)

(c)

1 44.05 23.036 33.275 (1, 1, 0)
2 41.98 22.559 25.813 (0, 1, 0)
3 39.77 19.889 27.235 (1, 0, 1)
4 35.33 17.034 23.355 (1, 0, 0)
5 27.10 16.556 15.892 (0, 0, 0)

Ri: lifetime reliability at the target service life given mode i;
Ei: energy consumption for execution mode i;

Table 1: Feasible Solution Set (End Result).

feasible solutions for each mode, sorted in the order of Ri and listed
in Table 1. Some schedules (e.g., solution 2-7 for task graph (a)) can-
not meet the lifetime reliability constraint, but they are kept because
some other task graphs (e.g., task graph (b)) may provide reliability
margin.

Then, by optimization, we obtain the combination with the mini-
mum expected energy consumption 16.875 meeting the lifetime relia-
bility requirement Ri ≥ 36.8% (or e−1) at the target service life L = 10
years [12]. We choose solution 7, 4, 5 for task graph (a), (b), and (c),
respectively.

We compare this result with that obtained by the baseline greedy
heuristic and the proposed single-mode algorithms. The selected so-
lutions are illustrated in Table 2. The baseline approach cannot pro-
vide a solution meeting this requirement because of task graph (a).
On the other hand, because the single-mode method does not allow
the reliability constraint violation of any modes, it results in signifi-
cant reliability margin. The multi-mode method, by contrast, makes
full use of such margin, and therefore provides 14.1% energy saving
when compared with the single-mode approach.

4.3 Sensitivity Analysis
It is interesting to analyze the impact of lifetime reliability thresh-

old on the effectiveness of the proposed algorithm. As shown in
Fig. 5, no solutions can be found using the baseline method with a
tight reliability threshold (i.e., higher than 32%), while the single-
mode approach results in good solutions until the reliability threshold
increases to 39%. The proposed multi-mode approach is able to give
solutions when the reliability threshold is as high as 49%.

If the reliability threshold can be relaxed, both the energy con-
sumptions obtained by the single-mode method and multi-mode one
decrease, and finally they converge when the threshold decreases to
11.8%. In the range 11.8–39%, the proposed approach always leads
to better result than the single-mode one. The energy consumption of
the baseline approach also decreases with the relaxation of reliability
requirement, but it always results in the highest energy consumption
among these methods. In particular, when the reliability threshold is
11.8%, the energy consumption obtained with the baseline method is
17.27. With the same energy consumption, the proposed single-mode
and multi-mode approach are able to achieve much higher lifetime
reliability 27% and 42% (see the black stars) after 10-year service.
Generally speaking, the warrantee period for electronic products are
shorter than their designed service life, and we are interested in the
failure rates at this time point. Suppose our system’s warrantee pe-
riod is 3-year, the failure rates for these three methods are 17.9%,
15.2% and 11.7%, respectively. In other words, there are roughly
6.2% less failures with our proposed method when compared to the
greedy heuristic at the end of the warrantee period.



Approach
Task

Graph
Label

Resource
Binding

Sequence
Ri(%) Ei max

j
{mi, j} E[E]

Baseline
(a) – – – –

–(b) 42.71 15.008 43.283 (0, 0, 0, 1, 0, 0, 0)
(c) 41.98 22.559 25.813 (0, 1, 0)

Single
Mode

(a) 39.16 23.179 52.835 (0, 0, 1, 0, 1, 1)
19.255(b) 45.49 14.488 52.101 (1, 0, 1, 0, 0, 0, 0)

(c) 39.77 19.889 27.235 (1, 0, 1)

Multi
Mode

(a) 11.80 19.253 31.001 (1, 1, 1, 1, 1, 1)
16.875(b) 47.54 14.910 57.684 (1, 0, 0, 1, 0, 0, 0)

(c) 27.10 16.556 15.892 (0, 0, 0)

Table 2: Energy Consumption Comparison between the Single-
Mode Method and the Multi-Mode Combination Approach.

4.4 Extensive Results
In this experiment, we consider relatively large MPSoC platform

and the associated task graphs, wherein we have 5 execution modes
and their task quantities are 69, 7, 14, 3, and 29 (denoted as task graph
(d)-(h) respectively), mapping onto a 8-core heterogeneous MPSoC.
The maximum in- and out-degree of these task graphs are 3 and 2
respectively. The task graphs are also generated by TGFF [5]. The
failure distribution slope parameters β for processor cores are 2, 4,
and six 1.5, respectively.

As shown in Fig. 6, only when the reliability threshold is lower
than 29%, we can obtain solutions for all execution modes using the
baseline greedy heuristic. In this range, both single-mode and multi-
mode approaches provide up to 26.3% and 27.8% energy reduction
when compared with the greedy solutions, respectively.

The single-mode approach is able to meet tighter reliability con-
straints and save more energy when compared to the greedy heuristic.
But still, when the reliability threshold is higher than 39.7%, there is
no solution for some execution modes and hence the entire system.
For instance, when threshold is 45%, no task schedule meeting both
constraints can be found for modes (d) and (e). With the proposed
multi-mode combination approach, however, we can obtain a solu-
tion for the entire multi-mode system. This is because some other
modes, such as (g), provides sufficient reliability margin. Besides,
the multi-mode approach always achieves lower energy consumption
when compared with the single-mode approach, because it explores a
larger solution space that includes the solution obtained by the single-
mode method.

Finally, we allocate these task graphs onto a 8-core homogeneous
MPSoC platform, where all processor cores have the same architec-
ture and hence the same failure distribution (β = 1.5), and consume
the same execution time and power consumption on each task. In
this case, the three methods obtain solutions with the same energy
consumption when the reliability constraint is set as η% = 27.7%,
but the proposed multi-mode approach is able to achieve higher life-
time reliability, η% = 37.3%. This is because, for each single exe-
cution mode, all task schedules in the feasible solution set obtained
with the proposed algorithm have the same lifetime reliability and
energy consumption, but different resource allocation. The proposed
multi-mode combination step tends to choose the task schedules for
multiple execution modes such that all processor cores have similar
wearout stress. This feature, however, cannot be exploited by the
other two methods.
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Figure 5: Variation in Energy Consumption with Reliability
Threshold.
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Figure 6: Comparison between Energy Consumption of Multi-
Mode System under Constraints.

5. CONCLUSION
In this work, we propose novel task allocation and scheduling algo-

rithms to minimize the expected energy consumption of multi-mode
embedded systems under performance and lifetime reliability con-
straints. As shown in our experimental results, the proposed method-
ology is able to meet tight reliability constraints and results in signif-
icant energy savings, especially for heterogeneous MPSoCs.
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