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ABSTRACT
Aggressive technology scaling has an ever-increasing adverse im-
pact on the lifetime reliability of microprocessors. This paper pro-
poses a novel simulation framework for evaluating the lifetime relia-
bility of processor-based system-on-a-chips (SoCs), namely AgeSim,
which facilitates designers to make design decisions that affect SoCs’
mean time to failure. Unlike existing work, AgeSim can simulate fail-
ure mechanisms with arbitrary lifetime distributions and do not re-
quire to trace the system’s reliability-related factors over its entire
lifetime, and hence is more efficient and accurate. Two case studies
are conducted to show the flexibility and effectiveness of the pro-
posed methodology.

1. INTRODUCTION
Today’s system-on-a-chips (SoCs) typically contain one or more

embedded processors. While the relentless scaling of CMOS tech-
nology has brought such processor-based systems with enhanced
functionality and improved performance in every new generation,
at the same time, the associated ever-increasing on-chip power and
temperature densities make failure mechanisms such as electromi-
gration and time dependent dielectric breakdown (TDDB) serious
threats for the lifetime reliability of embedded processors [5, 24].
Industrial studies have shown that the failure rates for electrical sys-
tems within its warranty period can be very high and the main reason
for such high failure rate was traced to over-heating of the embedded
processors [17, 23].

Needless to say, designers need to make sure that their system
meets the lifetime reliability requirement. To achieve this objec-
tive, there are many reliability-related decisions to make at design
stage. For example, various dynamic power/thermal management
(DPM/DTM) policies have been proposed for saving power and/or
reducing power density in thermal hot spots and they have gained
wide acceptance in the industry (e.g., [3, 6, 21]). These policies
apparently affect processors’ lifetime reliability significantly and we
need to decide which policies to include in the design and how to
tune their parameters under lifetime reliability constraint. In ad-
dition, providing fault-tolerance capabilities on-chip by incorporat-
ing redundant circuitries is an effective way for lifetime reliability
enhancement [2, 25]. How much redundancy is enough to ensure
the system’s service life is an important decision to make at design
stage to achieve reliable yet low-cost designs. Moreover, for multi-
processor SoCs (MPSoCs), how do we allocate applications to pro-
cessors has a significant impact on the stress upon them and different
allocation strategies may lead to remarkably different mean time to
failure (MTTF) of the system [14]. Hence, again, when designers
decide their task allocation strategies, they need to take the lifetime
reliability factor into account.

Since the stress on processors vary significantly at runtime with
different workloads, making the right decisions for the above men-
tioned design issues is extremely difficult, if not impossible, with-
out an accurate lifetime reliability simulation framework. Obviously,
it is unacceptable to build an experimental system and trace all the
reliability-related factors over its lifetime (in the range of years) and
use them for simulation. How to design an efficient yet accurate

lifetime reliability simulator is therefore also a quite challenging
problem, and there is only limited work in the literature in this do-
main [10, 19]. For the sake of simplicity, [10, 19] assumed an ex-
ponential lifetime distribution for each failure mechanism. In other
words, the failure rate of the circuit is assumed to be only depen-
dent on its instantaneous behavior (e.g., temperature and voltage),
independent of its usage history. This assumption is apparently in-
accurate: a typical wear-out failure mechanism will have increasing
failure rate as the circuit ages even if the operational temperature and
voltage remain the same [12, 13].

In this paper, we propose a novel aging-aware simulation frame-
work for evaluating the lifetime reliability of processor-based SoCs,
namely AgeSim. AgeSim can simulate failure mechanisms with ar-
bitrary lifetime distributions and hence is able to take their aging ef-
fects into account, which results in more accurate simulation results.
In addition, AgeSim does not require to trace the system’s reliability-
related factors over its entire lifetime. Instead, tracing the repre-
sentative application flows running on embedded processors once is
sufficient for our simulation without sacrificing its accuracy much.
The main contributions of our work include:

• we propose a so-called aging rate concept to “hide” the impact
of the SoC’s reliability-related usage strategies (e.g., various
DPM policies, trigger mechanisms, and application flow char-
acteristics) with a single value, and we present a mathematical
proof on how to express reliability function with aging rate.
This novel concept enables us to simulate the representative
workloads once instead of simulating the SoC’s activities over
its entire lifetime;

• we theoretically extend the above model to multi-processor
systems with redundancy;

• we present a novel simulation flow that extracts the distribu-
tions of processors’ activities when executing representative
workloads, which facilitates us to obtain the system’s perfor-
mance, MTTF, and energy consumptions efficiently;

The remainder of this paper is organized as follows. In Section 2,
we present preliminaries and motivation for this work. The proposed
lifetime reliability simulation framework AgeSim is then introduced
in Section 3. Next, Section 4 details the calculation of aging rate
with the simulation results of representative workloads and validates
its accuracy. We then extend the proposed lifetime reliability model
for MPSoCs with redundant processor cores in Section 5. Two case
studies are conducted in Section 6 to demonstrate the flexibility and
effectiveness of the proposed methodology. Finally, Section 7 con-
cludes this paper.

2. PRELIMINARIES AND MOTIVATION
There are many kinds of failure mechanisms that could result in

permanent errors of integrated circuits (ICs). The most representa-
tive ones are electromigration (EM) on the interconnects, TDDB in
the gate oxides, thermal cycling (TC), and negative bias tempera-
ture instability (NBTI) on PMOS transistors. These failure mecha-
nisms have an increasingly adverse effect with technology scaling,
and hence are serious concerns for the semiconductor industry.
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While the above failure mechanisms have been extensively stud-
ied at the circuit level historically, it is essential to investigate their
impact at the system level when analyzing the lifetime reliability of
processor-based systems. This is because, these failures are strongly
related to the temperature and voltage applied to the circuit [1], while
the processor’s temperature vary significantly at runtime with dif-
ferent workloads. In addition, today’s electrical systems are essen-
tially adaptive systems, which change their runtime behaviors for
power/thermal reduction. To be specific, the DPM and/or DTM
policies being widely used in the industry include thermal throt-
tling [9], module shutdown [4], dynamic voltage and frequency scal-
ing (DVFS) [8], and task migration among processor cores [21]. All
have significant impact on the stress upon the embedded processors
and hence their failure rates, which makes the lifetime reliability
analysis quite complex.

Srinivasan et al. [24] described a so-called RAMP model for life-
time reliability analysis for microprocessors and proposed to con-
duct dynamic reliability management (DRM) using this model. In
this work, the authors assumed a uniform device density over the
chip and an identical vulnerability of devices to failure mechanisms.
Later, Shin et al. [20] introduced a structure-aware model that takes
the vulnerability of basic structures of the microarchitecture (e.g.,
register files, latches and logic) to different failure mechanisms into
account. Exponential distribution for failure mechanisms were as-
sumed in [20, 24] (equivalently, there are no aging effects for failure
mechanisms), which makes these models inherently inaccurate.

There were also some recent work on simulation-based lifetime
reliability analysis, which can be used to evaluate different DPM
policies [10, 19]. These simulators contain a power management
unit, implementing DPM policies, and a reliability monitoring unit,
which gathers reliability-related information in the system (e.g., tem-
perature and voltage) and uses them to obtain instantaneous failure
rates. Similar to [20, 24], failure mechanisms’ aging effects were not
considered and hence they lead to inaccurate simulation results.

With the more realistic non-exponential lifetime distributions, cir-
cuits’ reliability at a specific time point t depends on both its cur-
rent reliability-related factors (e.g., temperature) and its past aging
effects. That is, even if a processor experiences the same stress at
two different time points, their failure rates are different. To achieve
accurate simulation, one possible method is to trace the processors’
temperature and its execution parameters that affects reliability (e.g.,
voltage and frequency) throughout the entire lifetime, compute the
corresponding lifetime reliability sequence, and finally integrate it
over time t to obtain MTTF. Let us take the commonly-used Weibull
distribution R (t) = e−( t

α )β
for describing reliability function [1] as

an example, where the scale parameter α depends on reliability-
factors that changes at runtime (including temperature T and proces-
sors’ execution state s) and shape parameter β hides the reliability-
related factors that do not vary with time (e.g., structural properties
of the circuits). Here, β > 1, if the failure rate increases over time.
Depending on the temperature and execution state, the time horizon
can be divided into a series of intervals (say, d intervals). By using
this method, denoting by α(Tj,s j) the scale parameters in the jth in-
terval and ∆ jτ the interval length, the reliability at the dth interval can

be computed by R (t) = e
−( ∆1τ

α(T1 ,s1) +
∆2τ

α(T2 ,s2) +···+ ∆d−1τ
α(Td−1 ,sd−1) +

t−∑d−1
i=1 ∆iτ

α(Td ,sd ) )β
.

Recently, Karl et al. [15] considered general lifetime distribution
for failure mechanisms, and proposed to conduct DVFS according
to reliability budget. In this paper, to verify the effectiveness of
their proposed DRM policy, the authors conducted a 10-year life-
time simulation in their experiments using the above method. They
collected real workload data from desktop computers and fill the 10-
year time with randomly selected 1-hour workloads. Within each
1-hour period, they used a single temperature value to calculate re-
liability. This ignorance of temperature variation within the period
results in lack of accuracy for their simulation results. Using a fine-
grained simulation can mitigate the accuracy problem, however, it
would lead to unaffordable simulation time.
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Figure 1: Lifetime Reliability Simulation Framework - AgeSim.
For systems at design stage, unlike in [15], it is impossible to

obtain real workload information and simulate over its entire ser-
vice life. In fact, due to the time-consuming temperature simula-
tion, we can only simulate the system’s execution for a short period.
Therefore, we are facing the following challenging problem: How
to achieve efficient yet accurate lifetime reliability simulation with
such limited information, when failure mechanisms follow arbitrary
failure rate distributions?

In addition, incorporating redundant circuitries on-chip is an effec-
tive way for lifetime reliability enhancement. Prior work (e.g., [10])
models multi-processor systems as parallel-serial systems [16] and
calculates the lifetime reliability of the entire system accordingly.
Using this model, however, also leads to inaccurate analytical results
as it assumes all processors experience the same aging effects before
they fail. Let us consider a standby redundant multi-processor sys-
tem as an example. In such system, certain processors are initially
set as spares and they become active only when some other active
ones fail. Apparently, at the time point that a spare processor become
active, it has a much smaller failure rate when compared to those pro-
cessors that have already functioned for a long period. This effect,
however, cannot be captured in the parallel-serial model. Conse-
quently, how to take the various aging effects of different processors
in a multi-processor system when simulating its lifetime reliability is
also a challenging problem.

The above challenges motivate the proposed simulation frame-
work investigated in this paper.

3. THE PROPOSED FRAMEWORK
Different from previous work, we propose to trace the represen-

tative workloads running on embedded processors in a fine-grained
manner and use them to analyze the system’s lifetime. This is feasi-
ble because as long as the probability of the target system being in
each execution state and the temperature distribution obtained by the
proposed approach conform to that in the whole service life, it can
be used to represent the usage strategy of the system. In other words,
the recorded information in this time duration is consistent with the
usage strategy of the entire lifetime. Thus, if we can find out a quan-
tity Ω (namely aging rate) that is able to capture the impact of the
processor’s usage strategy on its aging effect and at the same time
it is independent of time t, we are able to evaluate the processors’
reliability with arbitrary failure distribution at any time in its service
life. Before describing how to calculate Ω in detail (see Section 4),
let us present the overall lifetime reliability simulation framework in
this section.



Our fine-grained simulator AgeSim, used to evaluate the influence
of various usage strategies on processor-based SoCs, is composed of
three closely-related parts: power/thermal manager, power simula-
tor, and temperature simulator, forming a feedback control loop, as
shown in Fig. 1. Here, usage strategy of a system includes its appli-
cation flow characteristics (e.g., the distribution of application ser-
vice time), power states, and trigger mechanism for state transitions.
For systems containing more than one processor core, it also includes
load-sharing strategy among multiple cores, and redundancy scheme
(e.g., gracefully degrading system), if any. Note that, we mainly
consider the lifetime reliability of processor cores in AgeSim as they
typically experience the highest wearout stress in the system when
compared to other hardware resources (e.g., peripherals). If, how-
ever, the reliability of these components are also of concern, our
simulator can be easily extended to include them in the simulation
framework.

The power/thermal manager determines the execution state of pro-
cessors in the next time step based on what have occurred in the
current time step. It is viewed as a black box, whose inputs and out-
puts are clear but can be implemented in any proper manner (power
state machine is one of the choices [19]). It is worth noting that if
the target system is a multi-processor system-on-a-chip (MPSoC),
this part should include an application scheduler, which determines
the processor cores that are used to execute each application. The
power simulator evaluates the power consumption of every com-
ponent according to their execution states and current application.
The temperature simulator then takes the power consumption val-
ues and the temperature in the previous time step as inputs to obtain
the temperature in the current time step. In AgeSim, we integrate
HotSpot [21] into our simulator for accurate temperature computa-
tion. In our current implementation, temperature is used to trigger
the execution state changes for a particular processor, if any. In case
that the system’s DPM/DTM policy requires other trigger mecha-
nisms (e.g., processors’ activity count [6]), they can be easily inte-
grated into our simulation framework.

During simulation, we record the fine-grained temperature and ex-
ecution state for every processor in each time step into a trace file.
They are then used to compute the aging rate Ω and the expected life-
time of the system. At the same time, AgeSim also outputs the perfor-
mance (e.g., mean response time) and energy consumption based on
the traced information, which facilitates designers to evaluate their
system from various aspects.
4. AGING RATE CALCULATION

According to earlier discussions, the key issue to achieve effi-
cient yet accurate lifetime reliability simulation is to compute a time-
independent aging rate Ω effectively with the limited traced informa-
tion for representative workloads, so that we can express reliability
as a function of Ω and t. This section shows how to achieve this ob-
jective using mathematical analysis. We tackle this problem by two
steps: we first deduct a close-form lifetime reliability function with
processors’ time-varying operational states and temperature accord-
ing to the reliability definition and property (Section 4.1), and then
extract the time-independent aging rate parameter from this function
(Section 4.2). The accuracy of the proposed model is validated in
Section 4.3. It is important to note that, we target general failure
distributions and we capture the aging impact of different workloads
on processor cores, instead of simply averaging out the aging-related
parameters.
4.1 Lifetime Reliability Calculation

Existing circuit-level reliability models for hard failure mecha-
nisms are not readily applicable to analyze processors’ lifetime be-
cause their operational state and temperature vary significantly at
run-time. We therefore propose a new high-level analytical model
in this work.

Let R (t,Θ) be a general failure distribution, where Θ represents
the general scale parameter by which time t is divided. For instance,
α is the scale parameter in Weibull distribution R = e−( t

α )β
. As

mentioned before, this parameter Θ is a function of temperature T .
In addition, it also depends on several parameters that vary with pro-
cessors’ execution state, e.g., supply voltage and frequency for DVS-
enabled processors. We therefore introduce another variable s to rep-
resent execution state and imply the state-related parameters. With
these two variables, Θ can be written as θ(T,s). Without loss of gen-
erality, we assume there exists a set of possible execution states s and
denote the set as S .

As both T and s vary with respect to time t, we consider a finite
sequence 0 = τ0 < τ1 < · · ·< τd = t as a subdivision of time horizon
[0, t], including d intervals. Each interval j has the length ∆ jτ = τ j −
τ j−1 and corresponds to a subsequence of temperature under a fixed
operational state s j. For all ε > 0, there exists δ > 0 such that if the
length of the largest interval [τi,τi+1] (i = argmax j(τ j+1−τ j)) is less
than δ, the temperature variation within any interval is less than ε.
Thus, for each interval j we can select an arbitrary temperature value
from its temperature variation range for the entire interval, denoted
as Tj. The corresponding scale parameter is therefore θ(Tj,s j).

With the general failure distribution R (t,Θ), since time t is di-
vided by scale parameter, the reliability at time τ in the first interval
(i.e., τ0 ≤ τ < τ1) can be expressed as

R(τ) = R
( Θ

θ(T1,s1)
· (τ− τ0)

)
, τ0 ≤ τ < τ1 (1)

Then, we move to consider the jth interval, where j > 1. Denot-
ing by c j the accumulated aging effect at the end of the jth interval.
Apparently, c0 = 0. The lifetime reliability at time τ (τ j−1 ≤ τ < τ j)
is

R(τ) = R
(
c j−1 +

Θ
θ(Tj,s j)

· (τ− τ j−1)
)
, τ j−1 ≤ τ < τ j (2)

With this equation, at the end of this interval (i.e., τ = τ−j )

R(τ−j ) = R
(
c j−1 +

Θ
θ(Tj,s j)

· (τ j − τ j−1)
)

(3)

This time point is also the beginning of the ( j + 1)st interval.
Therefore, we have

R(τ+
j ) = R (c j) (4)

By the continuity of reliability function, we have R(τ−j ) = R(τ+
j )

and we can express c j as:

c j = c j−1 +
Θ

θ(Tj,s j)
· (τ j − τ j−1) (5)

With this expression, we obtain the reliability at time t

R(t) = R (Θ ·
d

∑
j=1

1
θ(Tj,s j)

· (τ j − τ j−1))

= R (Θ ·
d

∑
j=1

1
θ(Tj,s j)

·∆ jτ)) (6)

Taking limit as max j ∆ jτ → 0 and d → ∞, we have

R(t) = R (Θ · lim
d→∞

max j ∆ j τ→0

d

∑
j=1

1
θ(Tj,s j)

·∆ jτ)) (7)

In this equation, the state parameter s j in any time interval j must
belong to the set S . We introduce an indicator function 1 j

s to repre-
sent whether the state in the jth interval is s. That is to say, if in the
jth time interval the processor is in execution state s, this function
equals 1; otherwise, it is zero. With this notation, we can express the
aging effects in various states separately and rewrite Eq. (7) as their
summation, i.e.,

R(t) = R (Θ · ∑
s∈S

lim
d→∞

max j ∆ jτ→0

d

∑
j=1

1
j
s

θ(Tj,s)
·∆ jτ)) (8)

For integration, we define a filter function over time horizon 1s(τ)
such that it is one if τ falls into an interval with state s while zero
otherwise. Therefore, we have

R(t) = R (Θ · ∑
s∈S

Z t

0

1s(τ)
θ(T,s)

dτ) (9)



4.2 Aging Rate Extraction
In the above, we have successfully express processors’ reliabil-

ity function using their high-level operational states and temperature
values. However, as we integrate 1

θ(T,s) over time in Eq. (9), we have
not obtained the time-independent quantity yet. Fortunately, on the
time horizon, the temperature T is a function of time τ. With this
observation, we define ψ(T,s)dT as the accumulated time in state
s in an infinitesimal temperature interval dT around T and use it to
substitute dτ in Eq. (9), leading to

R(t) = R (Θ · ∑
s∈S

Z ∞

0

1
θ(T,s)

·ψ(T,s)dT ) (10)

The only term depending on time in Eq. (10) is ψ(T,s). We use
πs to represent the probability a core being in state s, and ν(T,s) to
indicate the conditional probability density function of a core having
temperature T , given state s. These values can be easily extracted
via simulation. Fig. 2 shows two example temperature distributions
extracted from the trace file for applying random task allocation on a
9-core processor (see Section 6.2 for detail). The accumulated time
can therefore be expressed as the product of three quantities, i.e.,
ψ(T,s) = πs ·ν(T,s) · t. Substituting it back to Eq. (10), we have

R(t) = R (Θ · ∑
s∈S

Z ∞

0

1
θ(T,s)

·πs ·ν(T,s) · tdT ) (11)

We define

Ω ≡ ∑
s∈S

∞Z

0

1
θ(T,s)

·πs ·ν(T,s)dT (12)

Since the current time t is independent of all terms in the definition
of Ω, we have successfully obtained a time-independent variable Ω,
referred as aging rate, to express the reliability at time t as

R(t) = R (Θ ·Ω · t) (13)
It is necessary to highlight that, since the characteristics of the

representative workloads is consistent with that of entire lifetime,
this equation is applicable for any time t in the entire service life.
Consider Weibull distribution, that is, R (t) = e−( t

Θ )β
. Substituting it

into Eq. (13) yields

R(t) = e−( Θ·Ω·t
Θ )β

= e−(Ω·t)β
(14)

Another point that should be highlighted is how to obtain the scale
parameter θ(Tj,s j) with its parameters Tj and s j. As discussed be-
fore, existing circuit-level models for failure mechanism cannot be
used directly, because they assume constant temperature and fixed
aging-related parameters throughout the entire service life. For ex-
ample, a widely-accepted lifetime reliability model for electromigra-
tion is given by MT T FEM ∝ (Vdd × f )−2e

Ea
kT [11], assuming fixed

absolute temperature T , supply voltage Vdd and clock frequency f .
Here, Ea and k are material related constant and the Boltzmann’s
constant respectively. However, since temperature Tj and operational
state s j that implies state-related parameters (e.g., supply voltage and
frequency) at the jth time interval can be assumed as constant pa-
rameters with our fine-grained tracing, existing failure models can
be used to calculate θ(Tj,s j) for this particular time interval.

If the target system contains one or more processors without re-
dundancy (the number of processor cores is n), given core i’s aging
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Figure 2: Temperature Distribution Examples.
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rate Ωs,i in each state s, the system’s service life can be simply com-
puted by integrating the system reliability over time t, i.e.,

MT T F =
∞Z

0

n

∏
i=1

R
(
Θ · ∑

s∈S

πs,i ·Ωs,i · t
)
dt (15)

Note that, while we mainly discuss MTTF in this work because
it is one of the most important lifetime reliability metrics, with the
extracted aging rate, AgeSim can be easily extended to analyze other
reliability metrics (e.g., failure in time) and performability metrics
(e.g., mean computation before failure).

4.3 Model Validation
Let us consider the 9-core processor again to demonstrate the ac-

curacy of the proposed method. We compute its aging rate Ω with
the trace file for one hour and then use Ω to calculate the system’s
lifetime reliability according to Eq. (13). For comparison, we have
also tried to calculate the reliability according to the method used
in [15]. Here, we trace the system operations for one hour and fill
the system’s service lifetime with workloads that are consistent to the
system’s usage strategy. We then use the average temperature value
to calculate the lifetime reliability of the system. Both are compared
with the results calculated by the definition of Weibull failure dis-
tribution directly, which has exactly the same workload as that for
evaluating the method in [15]. The system lifetime reliability ob-
tained using these three approaches are shown in Fig. 3. As can be
observed from this figure, the proposed AgeSim can achieve almost
identical reliability values when compared to that computed accord-
ing to reliability definition. Using average temperature to obtain life-
time reliability, however, results in quite large errors.

It should be also noted that, the proposed method could be easily
extended to analyze systems with multiple representative workloads
(e.g., multi-mode MPSoCs [18]). We can organize these workloads
into a hyper-workload according to their occurrence probabilities,
and then take it as the input to AgeSim. Alternatively, we can extract
the aging rate Ωi and occurrence probability pi for every execution
mode with representative workload i. Similar to the above mathe-
matical deduction, the unified aging rate is simply

Ωu = ∑
i

Ωi · pi (16)

5. LIFETIME RELIABILITY MODEL FOR
MPSOCS WITH REDUNDANCY

In this section, we extend the previous model to analyze MPSoCs
with redundant processor cores. Consider an MPSoC containing a
set of {1, · · · ,n} identical processor cores and it functions if no less
than k components are good (e.g., Sony playstation game console
requires seven out of eight synergistic processing elements in Cell
processor to function [22]). The usage strategy of such a system
can be changed a few times during its service life. For example, for
gracefully degrading system, initially all cores are good ones and
they share the system workload. Once a core fails, the workloads
originally assigned to it need to be shared by the surviving cores,
leading to heavier stress on them. Therefore, according to the usage
strategy of cores, we divide the time horizon into several stages. In
each stage, the usage of each core follows a fixed strategy.



Let us use Ri,`(t) to denote the reliability of core i at stage `. It
depends on not only the characteristic at stage `, but also that at pre-
vious stages. Without loss of generality, we assume core i can be in a
series of states S j at stage j. Accordingly, the aging rate and proba-
bility in state s∈ S j are referred as Ωs,i, j and πs,i, j, respectively. With
these notations, the reliability of core i at stage ` can be expressed as

Ri,`(t) = R
(

Θ ·
[ `−1

∑
j=0

∑
s∈S j

πs,i, j ·Ωs,i, j · (t j+1 − t j)

+ ∑
a∈S`

πs,i,` ·Ωs,i,` · (t − t`)
])

(17)

It is important to note that probably not all cores are surviving or in
power-on state at this stage. Let L` be the set of power-on surviving
cores at stage `. If any one of them fails, the system will leave stage `
and enter stage (`+1) or becomes faulty. Therefore, the conditional
probability that the system remains in stage ` at time t provided the
past events h` is given by

Psys
` (t|h`) = ∏

i∈L`

Ri,`(t) (18)

The history h` can be characterized by two vectors: the events
e` = {e1, · · · ,e`} and their occurrence time t` = {t1, · · · , t`}. For
instance, e2 = {core 15 fails, core 6 fails} and t2 = {t1, t2} represent
that at time t1 core 15 fails and at time t2 core 6 fails. The vector e`

directly affects the set of good cores with power supply L`. We can
therefore rewrite Eq. (18) as

Psys
` (t|t`;e`) = ∏

i∈L(e`)
Ri,`(t) (19)

To uncondition it, we consider vectors e` and t` separately. We
do not know the exact occurrence time of the past ` failures, but we
are certain that the `th event must occur before current time t (i.e.,
within time [0, t]), the (`− 1)st event occurs before the `th one (i.e.,
in [0, t`]). Hence, we have an inequality that 0 < t1 < t2 < · · · <
t`−1 < t`. On the other hand, since all power-on cores are likely to
have failures, the possible first ` events of the system may not be
unique. To include all possible cases, we denote them by a set E`.
By the theorem of total probability, the unconditioned probability is

Psys
` (t) =

tZ

0

dt`

t`Z

0

dt`−1 · · ·
t2Z

0

dt1 ∑
e`∈E`

Psys
` (t|t`;e`)Pr[t`;e`] (20)

Since our redundant system functions if no less than k cores are
good, the reliability of such a system is equivalent to the sum of
probability for a series of events that exactly ` core failures happen
before time t. Its service life hence can be calculated as

MT T Fsys =
∞Z

0

n−k

∑̀
=0

Psys
` (t)dt (21)

6. CASE STUDIES
In this section, we conduct two case studies to show the flexi-

bility and effectiveness of the proposed AgeSim simulation frame-
work. Due to the lack of public benchmark workloads, we use high-
level synthetic workloads in our simulation, which are an application
flow consisting of a large number of applications. For each applica-
tion, their power consumptions at each execution state are given. We
evaluate the lifetime reliability of processor-based SoCs with various
system load ρ and it is obtained as follows. The application arrival to
the system is assumed as a Poisson process with arrival rate λ, while
the service time is an exponential distribution with mean 1/µ in our
case studies1. Denoting by n the number of cores in the system,
system load ρ is defined as λ/nµ. In practice, designers should pro-
vide the above information when running representative workloads
on their systems.

Our framework is applicable for any failure mechanism model or
the combination of these models. Due to the lack of public data
on the relative weights for various failure mechanisms, however, we
1Our framework is applicable for any application flow characteristics.
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Figure 4: The Impact of Dynamic Voltage Frequency Scaling.
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select to use electromigration model presented in [11] in our case
studies and the parameters are set as follows: the cross-sectional
area of conductor Ac = 6.4×10−8cm2, the current density J = 1.5×
106A/cm2 and the activation energy Ea = 0.48eV . In addition, we
use Weibull distribution to describe wearout effects with shape pa-
rameter β = 4.0, implying increasing failure rate with respect to time.

6.1 Dynamic Voltage and Frequency Scaling
With DVFS, a processor core can be in one of four states: high

voltage run, low voltage run, high voltage idle, and low voltage
idle. Here, high voltage suggests the supply voltage Vdd , while low
voltage corresponds to 90%Vdd or 80%Vdd (denoted as DVFS1 and
DVFS2, respectively). A core is in run state if it has applications to
perform, while in idle state otherwise. When the processor’s temper-
ature is higher/lower than a threshold TH /TL, it decreases/increases
its supply voltage and frequency. The processor’s voltage does not
change for the transitions between run and idle state due to the as-
sociated high overhead. We set TH = 348.15K and TL = 338.15K.
Based on the model proposed in [7], the time required for voltage
changes in DVFS1 and DVFS2 is 22µs and 44µs, respectively. The
frequency and power consumption in various states are computed
according to the model presented in [4].

Fig. 4(a) shows the lifetime reliability metrics in these three cases
with different system workloads and their expected service lives are
shown in Fig. 4(b). When the system load is only 0.1, the aging rates
caused by three configurations are almost the same. This is because,
when the workload is too light, the DVFS policy is applied only in
very rare cases. That is, the core alternates between high voltage
run and high voltage idle states in the major portion of its lifetime,
and seldom enters the low voltage states even if DVFS is used (see
Fig. 5). Note that, the bars in each group in Fig. 5 (e.g., nine bars
on the left side for No DVFS case) represents system load 0.1-0.9
from left to right. With DVFS1, when the system load increases,
as long as the workload is not too heavy, the aging rate increases,
but the growth rate is lower than that without DVFS due to the fact
that the processor spends more and more time in low voltage states
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Figure 6: Comparison of Task Allocation Schemes.

with the increase of workloads. An interesting phenomenon is that
when the system load increases to 0.9, the aging rate of DVFS1 case
decreases. We attribute it to the fact that the processor remains in the
low voltage states all the time with such high workload (see Fig. 5).
Next, we move to consider DVFS2, wherein frequency, voltage, and
power consumption in low voltage states are much smaller than those
with DVFS1. In this case, when the system load is greater than 0.2,
its aging rate starts to decrease. This is due to the fact that the circuit
spend more time in low voltage state with the increase of workloads,
while the wearout stress in low voltage run state becomes even lower
than that in high voltage idle state with DVFS2.

As discussed in Section 3, the performance and power consump-
tion can also be obtained with AgeSim. The results for all cases are
shown in Fig. 4(c) and Fig. 4(d), respectively. We observe severe per-
formance degradation and some power savings by applying DVFS
policy when the system load is high (e.g., ρ ≥ 0.8).

6.2 Task Allocation on Multi-Core Processors
Due to process variation, processor cores in a homogeneous multi-

core processor may have different operational frequencies. When an
application arrives at the processor, a simple method is to randomly
choose any available core to process this task, namely random strat-
egy. To optimize performance, however, one may use the available
core with the highest frequency to process it. We call this strategy as
performance-aware strategy. Two application schedulers are imple-
mented in our simulator accordingly.

Considering a 9-core processor with cores running at different fre-
quencies (the maximum difference is 30%), we analyze the aging
rate of each core with AgeSim and show the result in Fig. 6(a). When
performance-aware strategy is used, we can observe significant vari-
ance among aging rates of different cores, especially when system
workload is low. This is expected because those high-frequency
cores are used much more often than those low-frequency ones un-
der such circumstances. In contrast, the difference of cores’ aging
rates is relatively small if random allocation is assumed. Their im-
pact on MTTF can be seen in Fig. 6(b), in which the lifetime reduc-
tion caused by unbalanced usage is quite serious when the system
load is smaller than 0.5. When the system workloads become very
high (e.g., ρ = 0.9), the aging rates with the two different allocation
strategies are similar. This is because all processor cores are busy in
most of their lifetime no matter which allocation strategy is chosen.
In addition, the benefit of the performance-aware allocation strategy
in terms of performance is shown in Fig. 6(c), which has a shorter
mean response time.

7. CONCLUSION
With the relentless scaling of CMOS technology, the lifetime re-

liability of processor-based SoCs has become a serious concern for
the industry. To meet the reliability requirement, designers need to
know the impact of various usage strategies on the system lifetime.
To facilitate this process, this paper proposes an accurate yet effi-
cient simulation framework, which is applicable for evaluating any
DPM/DTM policies, application flow characteristics and even task
allocation algorithms, by tracing the system’s reliability-related fac-
tors for representative workloads only. Two case studies are con-
ducted to demonstrate the effectiveness of the proposed framework.
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