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Abstract

We propose to use discrete optimal transport normalizing flows (OT-NF) for the1

simultaneous synthesis of brain images through the years, and the explicit control2

of such progression. The OT-NF formulation, based on the minimization of the3

sliced-Wasserstein distance, allows inferring such trajectories in the absence of4

longitudinal data. The proposed framework could allow the imputation of brain5

images, conditioned on non-constant insults or stimuli.6

1 Introduction7

From birth to death, the brain undergoes subtle and non-linear changes. Extensive clinical research8

has been conducted to characterize them throughout their lifetime. These studies are based on the9

recruitment and analysis of brain images at different time points. Some of them have succeeded in10

following up on the same subjects through the years. However, the number of subjects undergoing11

all the acquisitions is usually very low, requiring a great deal of effort and a considerable amount of12

time to obtain complete enough databases. Consequently, most of these studies have opted to infer13

population-level trends using regression models or atlases that best fit cross-sectional data at different14

time points.15

Thanks to them, we now know how the average brain develops and degenerates, and we can approx-16

imately predict how a specific brain will progress over the years. Nevertheless, changes might be17

heterogeneous in the population, both spatially and temporally, traits that the previous methods might18

not be able to capture. There is therefore a need to find more precise predictive methods. This could19

have a range of clinical implications, from the imputation of longitudinal data in incomplete datasets20

to the detection of small variations with respect to the expected trajectories, which could allow early21

diagnosis of neurodevelopmental or neurodegenerative conditions.22

The use of generative models may be suitable for the described problem, as they have been proven to23

be very effective in the generation of high-quality synthetic data. To date, few studies have proposed24

similar approaches for brain prognosis. On the one hand, [1] trained a conditional variational25

autoencoder (cVAE) to predict the metabolic topography of subjects at different ages, whereas [7]26

built a generative adversarial network (GAN) that was able to predict morphological age progression27

while preserving subject’s identity. In both cases, networks could be conditioned on additional clinical28

information and were trained using cross-sectional data.29

Although providing very accurate results, none of these methods offer explicit control over the30

trajectory of latent variables. The manifold on which predicted system dynamics are embedded31
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remains unknown and conditioning on additional clinical information, by design, can only be32

introduced as a constant factor. Recently, [6] and [2] proposed to consider the challenge of estimating33

these paths as one of dynamic optimal transport. To do so, the authors proposed the use of normalizing34

flows (NF). In their original formulation, NF are generative models able to learn bijective functions35

approximating any complex distribution from a simpler known distribution, such as a Gaussian,36

taking advantage of the change of variable rule; but the authors expanded the method allowing the37

network to learn such transforms between any pair of unknown distributions, using the minimization38

of the Wasserstein distance, providing promising results in the continuous and discrete formulations,39

respectively.40

In this work, we exploit this idea to explicitly model individual brain trajectories, using cross-sectional41

data in a reduced space, while allowing to get back individual predicted synthetic images at different42

ages.43

2 The proposed method44

Figure 1: General algorithmic flow.

The dimensionality of input images was first reduced using principal component analysis (PCA). The45

first 50 components were used, keeping 70% of the total variance. The discrete optimal transport46

normalizing flow (OT-NF) was implemented in this low-dimensional space.47

For the NF, we particularly implemented the RealNVP architecture [3], composed of 6 coupling48

layers (CL), each of them encoding for a specific age range between 20 and 70 years old or more,49

which was the range included in the database used. Thus, each of these CL constituted not only the50

transformation core of the network but also the estimator for each of the age ranges.51

Each CL was composed of 3 steps. For each step, half of the latent variables were masked (x1
i ),52

whereas the other half (x2
i ) was used for the estimation of scaling (s) and translation (t) factors. These53

factors were then used for the affine transformation of x1
i :54

x2
i+1 = x2

i

x1
i+1 = s(x2

i )x
1
i + t(x2

i )
(1)

Where i stands for the transformation step. In this manner, the transformation is invertible and the55

Jacobian of the transform is triangular, with an easy-to-compute determinant. For each step in the56

CL, the masking was alternated. The factors s and t were computed through the training of small57

networks composed of 5 dense layers, with ReLU activation function, except for the last layer with58

linear and tanh activation functions, for t and s respectively.59

To train the discrete OT-NF, here we adopted the strategy proposed by [2]. Monge’s formulation of60

OT states that given a pair of probability measures µ and ν, from X and Y metric spaces, there exists61

a diffeomorphism T : X → Y such that it allows reaching an infimum for a given cost function c:62

inf
T

{∫
X

c(x, T (x))dµ(x)
∣∣∣T ∗(µ) = ν

}
(2)

Being T ∗(·) the forward operator of T (·). The latter diffeomorphism is called the optimal transporta-63

tion map. However, the existence and uniqueness of such a function cannot be guaranteed. Therefore,64

the authors propose a relaxation of Monge’s OT problem, by replacing the equality T ∗(µ) = ν with65

the minimization of the distance between T ∗(µ) and ν. In this manner, given a cost function c, now66

the OT problem, in the discrete form, can be relaxed to the following training loss:67
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min
T

{
d(T ∗(µ), ν) + λ

∑
c(x, T (x))

}
(3)

In this case, we have chosen d(·, ·) to be the sliced-Wasserstein distance (SWD) between the output of68

the last CL and the target distribution. The Euclidean distance between adjacent transformed points69

was chosen to be the regularizer c, and λ was set to 1. Since the shortest Euclidean distance between70

two points is a straight line, in a first attempt to preserve the manifold of the transformations, we added71

an extra loss consisting of the SWD between the output of some of the CL and the corresponding72

experimental age distribution.73

For the dimensionality reduction, the scikit-learn implementation of the PCA (v. 1.1.1.) was employed.74

The discrete OT-NF was implemented using the Keras library (v.2.4.0), and the network was trained75

using a gradient descent algorithm (Adam [5]).76

3 Preliminary results77

T1-weighted MR images from the IXI-Database [4] were used, a dataset designed for the study of78

brain development. It contains images from healthy subjects in an age range between 20 and 80 years79

old. The subsample used was acquired at two different scanners: a 1.5T Philips system (332 subjects80

from Guy’s Hospital, London, UK), and a 3T Philips system (185 subjects from Hammersmith81

Hospital, London, UK). All images were normalized, bias-field corrected, and transformed to the82

MNI space, using both rigid and affine transforms. For each subject, 40 consecutive centered axial83

slices were included. The selected dataset was reduced using PCA, and the first two PCs were used84

to plot distributions for monitoring purposes.85

Once trained, the discrete OT-NF was used to transform the input distribution, in black (i.e., brain86

images at age twenty); to the target distribution, in red (i.e., brain images at age seventy), as seen87

in Figure 2. The output of each CL, also in black, represents the estimated distribution for the88

corresponding age range. By performing the inverse PCA on the transformed latent variables, we89

obtained an estimate of specific brain images in each of the corresponding ages.90

4 Conclusion and limitations91

We propose an approach for structural brain image prediction with explicit control of sample trajecto-92

ries in the absence of longitudinal data for training, taking advantage of discrete OT-NF. We present93

here some results, in which OT paths were estimated in a low-dimensional space obtained by PCA.94

As a consequence, the quality of the retrieved predicted images was not yet comparable to those of [1]95

or [7], and only general aging trends could be discerned in the resulting images, the most notable of96

which were the decrease in brain tissue with the associated increase in ventricle volume. Attention to97

detail is of paramount importance for clinical applications. Therefore, future work includes improving98

image quality. One possibility is the use of other more powerful dimensionality reduction techniques,99

such as VAE and its variants; while another possibility is a multiscale approach, taking advantage100

of alternative computationally efficient but accurate SWD metrics. Moreover, the results need to be101

validated using real longitudinal data sets. Despite all the aforementioned, the proposed framework102

allows synthesizing brain images while simultaneously monitoring brain progression, opening the103

possibility of conditioning by insults/stimuli affecting only specific time points.104
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6 Potential societal impact109

In this abstract, we propose the use of discrete OT-NF for the prediction of brain progression. Such110

application could have a range of clinical implications, from the imputation of data in incomplete111
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Figure 2: Detail on the discrete OT-NF architecture, with the changing distribution, represented using
the first two PCs; and the corresponding predicted brain images per decade/CL.

datasets to the early detection of deviations from expected trajectories in neurodevelopmental and112

neurodegenerative disorders. Nevertheless, attention to detail and extensive validation of the method113

is required before reaching any potential clinical use. Moreover, in any of the cases, such methods114

should not be designed for replacing medical knowledge, but as auxiliary tools for decision-making.115

Therefore, interpretability is of utmost importance. In this direction, the formulation of the proposed116

method should have an additional advantage when compared to other approaches, as it allows the117

explicit modeling of the manifold of trajectories.118
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