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Abstract

Quantification of the volume of ascites can be an accurate predictor of clinical
outcomes to certain pathological setting, e.g., cases of ovarian cancer. Due to
the properties of ascites being a liquid, accurate segmentation can be quite a
challenging task. In this paper, we show that by tuning nnU-Net, a model that learns
the heuristics of the data, it is possible to achieve state-of-the-art segmentation
performance. Our trained model, was able to achieve a segmentation Dice score
of 0.66, with 0.67 precision and 0.68 recall on pathological test cases. This is a
distinct improvement over current state-of-the-art.

1 Introduction

Background: Ascites, by definition, is the accumulation of fluid in the peritoneal cavity that causes
abdominal swelling. It is a condition commonly found in people who have cirrhosis of the liver
(80% of cases), but can also be caused by other conditions, such as; cancer (10%), heart failure (3%),
tuberculosis (2%), pancreatic disease (1%), or others (2%) [1]. The peritoneum, a sheet of tissue
that lines the abdominopelvic cavity, surrounds the abdominal organs, i.e., stomach, bowels, liver,
kidneys, and ovaries. It consists of parietal and visceral layers; the parietal peritoneum lines the
abdominal and pelvic walls, and the visceral peritoneum wraps around the organs. The peritoneal
cavity (i.e. the space in between) is where ascites manifests. Quantification of the volume of ascites
can be an accurate indicator of disease severity, e.g., in the case of ovarian cancer, the volume of
ascites at initial diagnosis of ovarian cancer is correlated with worse progression-free survival (PFS)
and overall survival (OS) [9].

Segmentation of ascites can be a challenging feat, and is hindered by its properties of being a fluid.
Unlike body organs, ascites cannot be inferred by a shape prior as it can be randomly distributed in
the lower abdomen and pelvic region. Furthermore, the intensity profile of ascites is similar to other
liquids in the abdominal region, e.g., water, urine, bile, etc. As CNNs overall are biased towards
textures [2], it can potentially induce unanticipated false positives. Thus, it is preferable for 3D
volumetric methods over 2D linear analysis for 2 purposes; to ensure connectivity in the axial plane
and to incorporate anatomical location constraints.

Related Works: Segmentation and/or detection of ascites does not seem to be commonly explored in
literature. Winkel et al [10] in 2019 proposed a detection based model to discriminate CT images with
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and without fluid. Their model was able to achieve 85% sensitivity and 95% specificity in detection
performance, however, additional manual analysis was required to quantify the volume in order to
judge pathological severity. Ko et al. [5] in 2022 developed a method for automatic detection and
quantification of ascites using 2D U-Net models (U-Net, Bi-directional U-Net and Recurrent Residual
U-Net and Residual U-Net). In their approach, they found the Residual U-Net was best performing,
achieving 96% sensitivity, 96% specificity, and 96% accuracy in segmentation performance. Nag et
al. [6] in 2022 also developed a method for automatic detection and quantification of ascites, however,
unlike Ko et al, their method was implemented in 3D to ensure segmentation connectivity in adjacent
CT slices. The 3D model was provided anatomical location (in the form of a normalised score that
spans from the chest to the lower extremities) of each voxel, achieving a Dice score of 0.65 after post
processing.

With the advent of deep learning, and the introduction of U-Net [8], there has since been an upsurge
of U-Net like variants for medical image segmentation. Unlike most variants in recent literature,
nnU-Net [4] (No New U-Net) took a different approach of learning the data heuristics to determine
the most appropriate training hyper-parameters instead of modifying the network architecture.

Contribution: Our model is able to distinguish ascites accurately from urine, water, bile, etc.,
achieving an average test dice of 0.66. Despite being trained only on contrast CT scans, the model
is still able to segment ascites in non-contrast CT scans with high accuracy without the need of
post-processing.

2 Methods

Our model is trained from a dataset consisting of both public (TCGA-OV [3]) and private (scans of
patients from two clinical trials; NCT02203513 and NCT02484404) data. For both sources, labels of
ascites were manually created by a trained expert under the supervision of a senior radiologist. As
code and/or data is not public for related works, the methods in Ko et al. [5] were reimplemented in
Tensorflow 2.0 + Keras and retrained on our dataset. A five-fold cross-validation was performed to
assess the models’ generalization ability. We further analyze the robustness of the models using the
Dice metric, Jaccard Index, Precision, Recall, Sensitivity and Specificity.

3 Experiments and Results

Experiments were conducted on a mix of public and private in-house data. For the training dataset; 70
scans in total were taken from The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) [3],
with an additional 30 scans taken from the NIH National Cancer Institute and NIH Clinical Center
liver cirrhosis dataset. For the testing dataset; 10 scans were used from TCGA-OV dataset, 15 scans
from the in-house liver cirrhosis dataset, and an additional 10 from an in-house ovarian cancer dataset.
The training dataset consists of only intravenous contrast-enhanced CT scans, whilst the testing set is
a mixture of contrast and non-contrast CT scans.

We compare our method to the most similar works in recent literature. For the 2D method in Ko et
al. [5], their best performing network “2D Deep Residual U-Net (four residual blocks)” is chosen
as a comparison point. 2D CT slices of size 512 × 512 were used to train the network without
re-sampling to isotropic 1mm×1mm. The network was trained for 200 epochs with a batch size
of 8 and learning rate of 10−4 using the Adam optimiser. Training took approximately 2 days to
reach convergence. For 3D Residual U-Net and BLE-U-Net [6], the networks were also trained using
Adam optimiser with an initial learning rate of 10−4 and a batch size of 2 for 400 epochs. Random
sub-patch sampling (patch_size = 64×64×64) was used for training, with sliding window inference
(patch_size = 64×64×64 and stride = 60 allowing for 4px overlap) was used for testing. Training
took approximately 12 hours to reach convergence. Both models were reimplemented and trained
according to the descriptions provided by the original authors to the best of our abilities.

Our proposed method uses an nnU-Net [4] at its core. The network was trained using an SGD
optimiser with an initial learning rate of 10−2 and a batch size of 2. Training took approximately
2 days to reach convergence. For all experiments, the CT intensity window was set at [−175, 275]
HU and subsequently intensity normalised to [0, 1]. The loss function is a combination of binary
cross-entropy and soft Dice loss with equal weighting (Equation 1). All experiments were conducted
on an NVIDIA DGX-1 machine with A100 GPUs. Table 1 shows the results of all methods.

2



L(y, ŷ) = 1−
2 ·

∑N
i=0 yi · ŷi∑N

i=0(yi + ŷi) + ϵ
− 1

N

N∑
i=0

(
yi · log ŷi + (1− yi) · log(1− ŷi)

)
(1)

F1 / Dice Jaccard Precision Rec./Sen. Specificity

2D Residual U-Net [5] 0.641 0.499 0.684 0.636 0.989
[0.621,0.661] [0.476,0.522] [0.657,0.711] [0.610,0.662] [0.988,0.990]

3D Residual U-Net 0.561 0.416 0.704 0.509 0.990
[0.547,0.575] [0.402,0.430] [0.678,0.730] [0.491,0.527] [0.989,0.991]

3D BLE-U-Net [6] 0.471 0.337 0.582 0.464 0.984
[0.433,0.509] [0.304,0.370] [0.510,0.654] [0.386,0.542] [0.981,0.987]

nnU-Net (proposed) 0.658 0.519 0.670 0.683 0.988
[0.644,0.672] [0.503,0.535] [0.646,0.694] [0.664,0.702] [0.987,0.989]

Table 1: Quantitative Results of Ascites Segmentation Models. [·] denotes Confidence Interval at
95%. Top half table: performance of models in related works. Bottom half table: proposed method
using nnU-Net.

The 2D Residual U-Net was able to achieve an average Dice score of 0.64, with Jaccard, precision,
rec./sen., and specificity of 0.50, 0.68, 0.64 and 0.99, respectively. With a CI-95 value in the order
of 10−2, the models are fairly robust in their predictions. The performance of the 3D Residual
U-Net and 3D BLE-U-Net models, however, were not able to surpass the 2D method. The proposed
nnU-Net method achieved the best scores in all of our experiments, attaining an average Dice, Jaccard,
precision, rec./sen., and specificity of 0.66, 0.52, 0.67, 0.68 and 0.99, respectively. Compared to the
2D Residual U-Net, it also attained a lower confidence interval indicating a more robust model.

It is desirable, for the application of ascites segmentation, that the model is best trained in 3D. As
ascites is a liquid, it does not have a definitive shape prior, and thus, the network learns to segment
via texture and intensity. This is evident in Figure 1, which shows a particularly challenging case.
The 2D model has segmented parts of the stomach and intestines as ascites, due to ascites having
similar intensity profile to water, which is not the case for the 3D models.

Figure 1: Predicted Ascites on Test Image
{L-to-R: Ground Truth, 2D Residual U-Net, 3D Residual U-Net, 3D BLE-U-Net, nnU-Net}

nnU-Net tends to under-segment regions of ascites, whereas 3D Residual U-Net and BLE-U-Net
tends to over-segment. This is evident in the region of ascites in the top-right area of Figure 1, and
is reflected by the respective precision score attained. The volume of ascites can be inferred from
the predicted segmentation masks, and by definition, an accumulation of more than 25ml of fluid
constitutes as a positive case of ascites. The exact volume needn’t be precise, but clinical outcomes
becomes distinct if thresholded by 1500ml to classify patients into small and large ascites groups [7].

4 Discussion and Conclusion

In this paper, we have presented a 3D segmentation model to accurately segment ascites, in the
abdomen and pelvis, for the cancer analysis. As nnU-Net discerns the appropriate training parameters
by analyzing the heuristics of the data, it is able to train a network to draw a decision boundary more
accurately between ascites and other liquids with similar intensity profile such as water, urine, bile,
etc. The network trained was able to achieve an average Dice and precision score of 0.7 and 0.75
respectively. This is higher than state-of-the-art methods in the recent literature.
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Potential Negative Societal Impact Statement

To our knowledge, segmentation of ascites have not been vastly explored in recent literature, as well
as the the impact of ascites volume on clinical outcomes. However, existing studies have shown
that ascites volume and clinical outcomes can be correlated, thus showing potential of investigation.
The alternative to our method would be to use manual segmentation methods such as thresholding,
region-growing, etc. But this can be a time consuming and challenging task, as ascites mimics liquid
profiles of other bodily fluids around the area. As with any Deep Learning method, it is impossible
to guarantee a perfect performing model. We hope the model can provide segmentations as a good
starting point, and not to take the prediction by face value.
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