Deployment of deep models for intra-operative margin
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Abstract

Real-time margin assessment in breast cancer surgeries is critical to reduce positive
margin rates. The iKnife is an intra-operative modality that captures the molec-
ular signature of tissues and can be paired with Al to facilitate real-time tissue
characterization. As training these Al models is typically done with homogeneous
ex-vivo iKnife data, intra-operative deployment is challenging because of tissue
heterogeneity and unseen classes. In this study, we explore different mechanisms
to address the intra-operative deployment challenge. Using cross validation and
comparison to baseline methods, we show that the intermediate attention of graph
transformer model as well as the uncertainty estimation of Bayesian neural net-
work can be used to to reduce false positive rate of breast cancer surgery. We
conclude that the class prediction output is not enough for successful deployment
and additional interpretability features are needed to improve the performance.

1 Introduction

It is estimated that 1 in 8 women will develop breast cancer in their lifetime [[1]]. Breast conserving
surgery (BCS) is a preferred treatment option for breast cancer as it minimizes healthy tissue loss.
Complete cancer resection in BCS is critical to prevent cancer recurrence and is quantified by
histopathology assessment of the resection margins of the surgical specimen, post-operatively. It is
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Figure 1: Overview of the methodology for training models on ex-vivo dataset, and deploying the
trained model intra-operatively.

estimated that as many as 35% of patients who undergo BCS end up with positive margins, which
indicates that cancer was left behind [9]. Various imaging and metabolomic-sensing modalities
can be used intraoperatively to augment the surgeon’s ability to identify tumor boundaries and
reduce positive margins. The intelligent knife (iKnife) is one such modality, composed of a surgical
electrocautery device, and a smoke evacuation tube that is attached to a mass spectrometer. The
surgical byproduct (smoke) is used to capture the metabolomic signature of tissue in real-time [3]]. It
has been demonstrated that deep learning models can be used on iKnife data to characterize tissue, as

either healthy or cancerous [8]][12][10][7](3].

Similar to other applications in computer-assisted surgery, mainly ex-vivo datasets are used to train
deep learning models from iKnife data. The mass spectra are collected using precise point burns
from homogeneous regions of surgically removed specimens, under the supervision of a pathologist.
The class label of spectra are further validated according to the order and location of the point burns
by histopathology assessment. This collection protocol results in datasets with clean samples/labels,
which facilitate training and exploration of the underlying molecular mechanisms. Deploying these
methods intra-operatively is more challenging due to tissue heterogeneity and the presence of unseen
pathology during surgery (e.g. skin and vessles in BCS). These data points can be considered
out of distribution (OOD) and can disrupt the performance of deep models during intra-operative
deployment. Therefore, it is critical to use models that benefit from learning from ex-vivo data but
are also equipped with mechanisms to handle unseen intra-operative labels.

In this paper, we explore the ex-vivo (quantitative) and intra-operative (qualitative) performances of
two approaches for iKnife margin assessment. In addition to class predictions, these models generate
secondary outputs (intermediate attention and estimated uncertainty, respectively) to increase the
interpretability of the results and hence, improve intra-operative deployment and utility.

2 Methodology

Dataset Figure[I|shows an overview of the proposed methodology. As shown in the figure, two set
of data are used in this study. The ex-vivo dataset is collected from resected breast tissues extracted
in BSC and consists of 41 cancer and 103 normal spectra with pathology validated labels. The
intra-operative data is a consecutive iKnife recording of a full BSC case for around 27 minutes at
a sampling rate of 1Hz (1616 spectra). Each spectrum is associated with the time sequence of the
operation and labelled qualitatively based on call-outs from the surgeon and matched with pathology
reporting. Each spectrum undergoes standard preprocessing steps including lockmass correction,
normalization, and binning, and is truncated to a range of mass-to-charge ratio (m/z) of 100-1000.

Model Training As mentioned, we use and evaluate two deep models for margin evaluation using
mass spectrometry data that provide the uncertainty of the predictions, as well as identify the attention
mechanisms of the models. We demonstrate that these complementary approaches have the potential
to enable intraoperative deployment of the deep models: Graph transformers and Bayesian Neural



Table 1: Cross-validated performance of models on ex-vivo dataset

Model Balanced Acc  Sensitivity  Specificity AUC

GT 91.1 4.5 85.7+£94 96.6+4.6 0.95+0.03
CNN (baseline) 84.1+99 722+189 96.0+6.1 0.94+0.04
BNN 90.3+7.5 87.6+£83 93.0%£82 095+0.04

MLP (baseline) 87.4+6.8 77.1+125 97.8+42 093+0.05

Networks. Graph transformers are graph-based deep models that utilize a multi-head (parallel)
attention mechanism in each layer to improve model stability, performance, and interpretability [4]].
Here, the intermediate attention paid to graph nodes are considered as a secondary output of the
model to improve intra-operative deployment. In this study, a 3-layer GT with 10 attention heads and
10 hidden features is used. To be able to use this model on our data, each spectrum is converted to
an individual graph. In this graph representation, each node contains ions from a specific spectral
subband and is connected to other nodes with overlapping subbands. Different subband widths are
used for nodes to create a multi-level hierarchical graph [[7l]. Bayesian neural networks use Bayesian
inference to predict the distribution of the output [6]. By leveraging the Monte-Carlo dropout and
placing a Gaussian distribution over the output layer of the network, BNN is capable of estimating
prediction uncertainty in addition to the class [6]. These per-sample uncertainty values can be used
during deployment to filter out low confidence predictions. For this study, a BNN with 3 fully
connected layers (128, 64, and 2 units) is implemented.

Experiments For ex-vivo training, the dataset is first divided into 4 folds, preserving cancer to
normal ratio per fold and restricting all data from each patient to one fold only. The GT and BNN
models are then trained and validated in a 4-fold cross-validated scheme. In addition, two baselines
including a convolutional network (CNN) and a dense network (MLP) are also cross-validated and
the average and standard deviation of the performance metrics are monitored for comparison. After
optimizing the ex-vivo prediction performance, the models are used for intra-operative deployment.
First, only the model predictions are visualized and compared with the reference labels created from
surgeon callouts. Then, the secondary outputs (node attentions for GT and uncertainty for BNN)
and their effect on deployment performance are explored. While for BNN the predictions with low
confidence are dropped, we propose a node dropout for GT that drops the nodes that are attracting
attentions from the uncertain spectral subbands.

3 Results and discussions

The ex-vivo performance of models and baselines are summarized in Table[T} As can be seen, both
proposed models outperform the baselines. The improvement in balanced accuracy is statistically
significant (all p-values<0.001). The model with highest test performance (among cross-validation
configuration) is selected for the intra-operative deployment. The reference surgery callout for the
intraoperative case is visualized in Fig[2]A. In addition to healthy and cancer breast, the skin was also
cut in some instances of the surgery, which is OOD for the ex-vivo models. The direct prediction
results of BNN and GT models are shown in Fig[2] B and D, respectively. As can be seen, there are
different false positive instances where normal breast or skin burns are detected as positive margin.
By discarding the prediction instances whose uncertainty is high, the intra-operative performance of
BNN is improved as shown in Fig[2] C. For the GT model, the attention patterns show that the nodes
covering m/z 650-750 are activated mainly when the skin is cut. By dropping out these nodes from
graphs during deployment, the false positive range improves as shown in Fig 2] E.

4 Conclusion and Future Work

Training medical deep models with ex-vivo data is practical as the data is more readily available,
homogeneous, and clean. However, deployment of these models in intra-operative setups can be
challenging due to the presence of unseen label, which cannot be addressed solely by class prediction.
We showed that additional mechanism like attention and uncertainty estimation can improve the
performance of intra-operative deployment. Particularly, the GT and BNN models improve false
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Figure 2: Intra-operative model deployment. Qualitative labeling of breast surgery based on surgeon’s
callouts (A) Predictions of BNN model before (B) and after uncertainty-based filtering (C). Predictions
of GT model before (D) and after attention-based node dropout (E).

positive rates for BCS. our future aim is to explore more OOD and uncertainty compatible models for
surgical margin assessment.

Statement on potentially negative Social Impact

Both attention mechanism and uncertainty estimation presented here can improve the interpretability
of deep models. This becomes more crucial for clinical application where the additional transparency
directly improves the clinical decision making. However, patient variability can negatively impact
the interpretation of these mechanisms. The iKnife modality is a new technology with currently
limited access worldwide. Extensive experiments and more patient recruitment is needed to eliminate
patient-variability bias in decision making and to ensure the positive impact for all.
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