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Abstract

The main aim of this work is to improve the visualization of abnormalities in
Optical Coherence Tomography (OCT) images of the human retina. OCT images
have substantial noise, which can affect the classification and visualization per-
formance of a neural network. In this work, we show that denoising improves
visualization without affecting the classification performance considering the spe-
cific pathology of Pigmented Epithelial Detachment (PED). The noise in OCT
images may lead to unstable training and poor classification/visualization perfor-
mance. Hence, the need for image quality enhancement. We consider several
image denoising techniques, namely, K-Singular Value Decomposition (K-SVD),
Bilateral filter optimized using Poisson Unbiased Risk Estimate (PURE), Poisson
Unbiased Risk Estimate - Linear Expansion of Thresholds (PURE-LET), Guided
filter, Rolling Guidance filter, Gated Convolutional and Deconvolutional Structure
(GCDS), Denoising Convolution Neural Network (DnCNN), and DnCNN with
skip connections. We compare the classification and visualization results obtained
from the model trained on noisy images with that trained on enhanced images.
Several class activation mapping (CAM) based techniques have been developed,
for instance, Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM, and Self-
Matching CAM, which are also the visualization techniques that we employ in this
paper. Our results show that denoising improves visualization performance by a
factor of ~10 in Jaccard Index, taking the expert segmentation as the ground-truth.

1 Introduction

Optical Coherence Tomography (OCT) is a non-invasive imaging modality that is used to image
tissues such as the retina of the eye. An OCT image is produced by capturing the reflected light
from the retina and the optic nerve. It can be used to diagnose and manage eye diseases such as
glaucoma, diabetic retinopathy, Pigmented Epithelial Detachment (PED), Cystoid Macular Edema
(CME), Age-related Macular Degeneration (AMD), Retinal Vein Occlusion (RVO) [1]. Over the
past few years, there has been an explosion in the medical data that is being generated. Hence, there
is a need for automatic screening techniques, and Deep Neural Networks (DNNs) have emerged
as a powerful tool for screening. Yet, there are many unanswered questions around them. One of
the critical problems is the explainability of DNNs. A deep learning model cannot be deployed for
real-life applications based on classification metrics alone. It is important to ascertain that the model’s
visual explanation is clinically relevant, consistent and correlated with that of the pathologist’s
analysis and decision-making. In this paper, the focus is on OCT image analysis, specifically for
PED, and the objective is to improve the visual explanation of the network without affecting the
classification performance of a DNN. Several deep learning based models [2H6] have been developed,
which have performed reasonably well for classifying various pathologies in the OCT images. Recent
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works [7, 18] have used various explainable techniques for verifying the localization performance of
deep learning-based classification models. For instance, Choi et al. [9] have used Grad-CAM++ to
highlight the myopic regions in the image. Most of the neural networks in the aforementioned works
are trained on noisy images, which causes the model to fit to noise as well, which may in turn affect
the visualization performance. In this work, we show how the visualization performance of a DNN
can be improved by mild denoising.

2 Dataset

The dataset consists of OCT B-scan images stacked in the form of cubes obtained using two types
of machines made by Carl Zeiss, namely, CIRRUS and PRIMUS. There are in turn two variants of
CIRRUS machines, one that captures 200 images per OCT cube and the other 128 images per OCT
cube. There are two types of PRIMUS machines, of which one captures 128 images per cube, and the
other captures 32 images per cube. The training and test data consist of 2,07,535 and 52,650 images,
respectively. Each image in the B-scan from CIRRUS and PRIMUS machines is of size 1024 x 512
and 1024 x 200, respectively. The ground truth segmentation data is available for 73 OCT cubes
each in turn containing 128 B-scans making up a total of 9344 (73 x 128) images. Of these 3686
images contain PED pathology. The segmentation ground truth is given by an expert and is used for
the computation of Jaccard Index/Intersection over Union (IoU) and Dice score.

3 Methodology

To begin with, we enhance the noisy OCT images using a denoiser. We then train binary classification
models using both noisy and enhanced images. Finally, using the ground-truth segmentation data for
the PED pathology, we calculate IoU and Dice scores for each classification model.

3.1 Image Denoising

We consider the standard denoising techniques, namely, K-Singular Value Decomposition (K-SVD)
[LO], Guided filter [[11]], Rolling Guidance filter [12], Poisson Unbiased Risk Estimate — Linear
Expansion of Thresholds (PURE-LET) [13]], Bilateral filter optimized using Poisson Unbiased Risk
Estimate (PURE) [14]] and deep learning based techniques such as Denoising Convolution Neural
Network (DnCNN) [[15], DnCNN with skip connections (DnCNNS)[[16]], and Gated Convolutional
and Deonvolutional Structure (GCDS) [17]. Our observation has been that the images denoised
using the deep learning techniques have fewer artifacts than the others and hence, for subsequent
classification and visualization, we employ only the deep learning based techniques.

3.2 Classification

We trained binary classification models using noisy images and the enhanced images obtained from
DnCNN, DnCNNS, and GCDS. We used an Inception-ResNet-v2 [18]] model pre-trained on the
ImageNet dataset [[19]]. We fine-tuned the pre-trained model using OCT classification training data.
We used a learning rate of 104, the Adam optimizer [20]], and Categorical Cross Entropy (CCE)
[21] loss function. We train the classifier over 2,07,535 images with a batch size of 15 for one epoch.
In order to mitigate class imbalance, we oversampled the images having PED pathology. Hereafter,
we refer to the classification models trained on noisy images, DnCNN, DnCNNS, GCDS enhanced
images as the Noisy model, DnCNN model, DnCNNS model, GCDS model, respectively. TableT]
shows the classification results obtained for the four classification models.

3.3 Visualization

For visualization of the PED pathology, we employ standard visualization techniques such as Grad-
CAM [22], Grad-CAM++ [23]], Score-CAM [24], Ablation-CAM [25]], and Self-Matching CAM [26]]
(SM-CAM). Table 2] shows the IoU and Dice scores obtained for the aforementioned visualization
techniques. We calculated the heatmaps using these visualization techniques and obtained the
corresponding binary maps using Otsu thresholding. Subsequently, we calculate the IoU and Dice
scores by making use of the binary maps and the corresponding masks from the expert annotated
segmentation ground-truth.

4 Experimental Results

The classifiers are tested on 52,650 images that are not seen during training. Table [I] shows the
classification performance of four models assessed using standard performance measures. We observe



Table 1: Comparison of classification performance for four models on 52,650 test images
Performance measure | Noisy | DnCNN | DnCNNS | GCDS

True Positive 2714 2924 2722 2699
False Positive 2511 2438 1536 2795
True Negative 46434 46507 47409 | 46150
False Negative 991 781 983 1006
Accuracy 0.9334 | 0.9389 0.9521 | 0.9278
Precision 0.5194 | 0.5453 0.6392 | 0.4913
Sensitivity 0.7325 0.7892 0.7347 | 0.7285
Specificity 0.9486 0.9502 0.9686 | 0.9429
Flscore 0.6078 0.6450 0.6837 | 0.5868

Table 2: A comparison of visualization performance of the four classification models.
| Grad-CAM | Grad-CAM++ | Score-CAM | Ablation-CAM | SM-CAM |

| IoU| Dice| IoU| Dice| IoU| Dice| IoU| Dice| IoU| Dice

Noisy 0.1100 | 0.1924 | 0.0174 | 0.0311 | 0.0175]0.0313 | 0.0176 | 0.0315|0.0787 | 0.1390
DnCNN |0.1024 | 0.1800 | 0.1014 | 0.1783 | 0.1118 | 0.1944 | 0.1068 | 0.1878 | 0.0920 | 0.1633
DnCNNS | 0.1077 | 0.1875]0.1042 | 0.1824 | 0.1079 | 0.1878 | 0.1098 | 0.1921 | 0.1519 | 0.2543
GCDS 0.1033]0.1819 | 0.1187 | 0.2055 | 0.1170 | 0.2033 | 0.1186 | 0.2054 | 0.1239|0.2119

that DnCNN and DnCNNS models perform better than the noisy model, whereas GCDS is marginally
poorer than the noisy model. Table 2]shows the visualization results obtained for four classification
models. We observe that the visualization results have improved for the model trained on denoised
images compared to the noisy model with the exception of Grad-CAM. This may be because of the
averaging of the gradients that takes place in Grad-CAM, which causes smearing of the heatmap.
The percentage improvement in IoU, Dice scores for Grad-CAM++, Score-CAM, Ablation-CAM,
and Self-matching CAM is more than the percentage decrement in the case of Grad-CAM. FigurelT]
shows the heatmaps obtained using the noisy model and the GCDS model in comparison with the
ground truth. We observe that the Grad-CAM-++ output obtained using GCDS model is more in
agreement with the ground truth than the noisy model. The spurious results in Fig. [1b[show that the
classification model has fitted noise as well. On the other hand, Fig. shows that the GCDS model
focuses on the relevant regions, and is in better agreement with the ground truth. Thus, the GCDS
model improved the visualization. This phenomenon has been observed with other CAM techniques
and for other models as well. Additional results are provided in the supporting document.
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Figure 1: GradCAM++ visualization vs. ground-truth: (a) Ground-truth segmentation; (b) Heatmap
obtained using the noisy model; (c) Heatmap obtained using the GCDS model.
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5 Conclusion

The key objective of this work is to demonstrate that mild image denoising improves visualization
of a deep learning classification model. Considering OCT images and PED as an example, we
showed, by means of several visualization tools, that there is a significant improvement in quantitative



visualization performance measures compared to the noisy model. Qualitative results also confirm
these improvements. However, we would also like to add that there is a significant scope for further
improvement in the performance metrics.
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7 Potential negative societal impact

We do not foresee any negative societal impact. An improvement in visualization performance is only
likely to increase confidence in adopting the deep learning classification model.
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1 Qualitative results

In this section, we show an OCT image having PED pathology, and apply Grad-CAM, Grad-
CAM++, Score-CAM, Ablation-CAM, Self-Matching CAM using the four classification models.
Figure [T| shows the noisy OCT image and its corresponding ground truth. Figures [2]to[5]show the
visualizations results obtained from the Noisy model, DnCNN model, DnCNNS model, and GCDS

model, respectively.

(a) (b)

Figure 1: OCT image and its ground-truth: (a) Ground-truth segmentation for PED pathology; (b)
Noisy OCT image.

We observe from Figure [2} that Grad-CAM++, Score-CAM, Ablation-CAM, Self-Matching CAM
are not highlighting the clinically relevant regions in the image. On the other hand, in Figures 3] to[5]
we see that the highlighted portion in the heatmaps are more in agreement with the ground-truth.
Therefore, we conclude that denoising improves visualization for the OCT images.
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Figure 2: Noisy model visualization results: (a) Noisy OCT image; Heatmap obtained using (b)
Grad-CAM; (c) Grad-CAM++; (d) Score-CAM; (e) Ablation-CAM; (f) Self-Matching CAM.
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Figure 3: DnCNN model visualization results: (a) Image denoised using DnCNN model; Heatmap
obtained using (b) Grad-CAM; (c) Grad-CAM++; (d) Score-CAM; (e) Ablation-CAM; (f) Self-
Matching CAM.
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Figure 4: DnCNNS model visualization results: (a) Image denoised using DnCNNS model; Heatmap
obtained using (b) Grad-CAM; (c) Grad-CAM++; (d) Score-CAM; (e) Ablation-CAM; (f) Self-
Matching CAM.
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Figure 5: GCDS model visualization results: (a) Image denoised using GCDS model; Heatmap

obtained using (b) Grad-CAM,; (c) Grad-CAM++; (d) Score-CAM; (e) Ablation-CAM; (f) Self-
Matching CAM.
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