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Abstract

The interpretability of deep learning (DL) for Alzheimer’s disease (AD) prediction
has provided supporting evidence for the timely intervention of disease progression.
In particular, counterfactual reasoning is gradually being employed in the medical
field, providing refined visual explanatory maps. However, most visual explanatory
maps still rely on visual inspection without quantifying their validity, being a
barrier for non-expert individuals. To this end, we propose a novel framework
to analyze the counterfactual reasoning-based visual explanation by transforming
them into quantitative features. Furthermore, we develop a simple shallow linear
classifier to boost the effectiveness of quantitative features while promoting the
model’s interpretability and achieving superior predictive performance compared
to the DL model. By doing so, our method further provides an ADness index that
can be used to intuitively comprehend a patient’s brain status with respect to AD.

1 Introduction

Alzheimer’s disease (AD) is known as one of the most prevalent causes of dementia worldwide,
which is an irreversible neurodegenerative disease accompanied by memory loss and impairment
of cognitive functions [2]. However, as the currently available medication is merely to delay the
AD progression, it is of paramount importance to early distinguish and manage the prodromal or
preclinical stage, i.e., mild cognitive impairment (MCI), that begins to decline cognitive function
across the symptomatic spectrum from the cognitively normal (CN) [7].

In this light, structural MRI (sMRI)-based AD prediction via deep learning (DL) approaches has
shown superior predictive performance against conventional machine learning (ML) techniques by au-
tomatically identifying AD-manifested patterns for each patient. Nevertheless, DL models’ inherently
opaque “black box” nature has the chronic drawback of making it difficult to describe the model’s
decision. To resolve this issue, explainable artificial intelligence [1] has been increasingly exploited
in the field of medical research. In particular, counterfactual reasoning has recently emerged that can
provide a qualitative explanation of the model’s decision given hypothetical scenarios by generating
refined visual explanatory maps—so-called counterfactual maps (CF maps) [9]. However, although
those CF maps can visually exhibit brain regions affected by atrophic variations, visual explanations
do not quantify clinical validity and still rely on subjective visual inspection. Furthermore, there are
objectively interpretive limitations for clinicians to utilize as auxiliary diagnostic information.

In this study, we propose a novel framework for quantifying counterfactual-induced feature repre-
sentation and interpretable brain regional-specific AD identification. To this end, we adopt the gray
matter (GM) density map as the quantitative feature that precisely measures the volumetric changes in
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Figure 1: Illustration of GM density-based analysis to quantify the explainability of DL models.

GM, associated with brain atrophies [6]. Furthermore, we devise a lightweight counterfactual-guided
attentive feature representation and a linear classifier (LiCoL), which can derive outstanding perfor-
mance compared to DL models and provide a quantitative interpretation of the model’s decision with
an ADness index that numerically indicates the subregional state of the brain via an attentive score.

2 Method

To construct the counterfactual data (c-sMRI), we exploit the counterfactual map generator proposed
in [9] and real data (r-sMRI). Subsequently, acquired r-/c-sMRI are transformed into the GM density
map (i.e., r-GM and c-GM) by performing thorough preprocessing and non-linear registration steps.

Given the manipulated r-GM and c-GM, we perform a series of GM density-based in-depth analyses
and assessments (Fig. 1). We first estimate the representative difference map by subtracting and
averaging r-GM images Xr from their counterpart c-GM images Xc. The percentile is then calculated
to merely highlight the significant voxels. We thus obtain the AD-effect map via 1

N

∑N
i=1 |Xr

i −Xc
i |,

where N and | · | respectively denote the total number of samples and the absolute operation.
Subsequently, the AAL3 atlas template [10] is overlaid on the AD-effect map to parcellate it into
individual regions, so that we attain trimmed regions and their corresponding voxel indices V . By
averaging the voxel values of indices V within the adopted regions, we eventually define the region
of interests (ROIs), so-called AD-effect ROI xq ∈ RR×1, which consists of R number of ROIs.

Our LiCoL is built on the self-attention mechanism [11], which is comprised of query, key, and value
as inputs to identify the significantly contributed ROIs by itself, considering the global relationship
among ROIs. We utilize the query as AD-effect ROIs xq whereas the key and value are individually
established from each training sample according to the voxel indices V as xs ∈ RR×1. By multiplying
the learnable embedding layer w ∈ R1×D to the query, key, and value, we obtain the embedded
matrices Q, K, V ∈ RR×D, accordingly. Thereafter, we compute the counterfactual-guided attention
matrix as A = g

(
QK⊤
√
d

)
V, where ⊤ and d denote a transpose operation and a scaling factor,

respectively, and g denotes the softmax function. Having applied the channel-wise mean pooling
MP→ to reshape the output of the counterfactual-guided attention A to match the size of the input
query xq, we then employ a residual connection using an element-wise addition, followed by ROI-
wise mean pooling MP↓ to obtain the final prediction score ŷ = g(MP↓ (MP→(A) + xq)). Finally,
our LiCoL is trained by a cross-entropy (CE) loss against the ground truth y, i.e., EX∼PX

[CE(ŷ,y)].

Table 1: Results of sorted top-10 ROIs that contributed the most to prediction among AD-effect ROIs
according to averaged attentive scores. L/R indicate the left and right hemisphere, respectively.

Order CN vs. MCI MCI vs. AD CN vs. AD
1st Superior frontal gyrus, dorsolateral (L) Superior frontal gyrus, medial (R) Hippocampus (L)
2nd Precentral gyrus (R) Insula (L) Superior frontal gyrus, medial orbital (L)
3rd Anterior cingulate cortex, supracallosal (R) Inferior frontal gyrus, triangular part (L) Superior frontal gyrus, medial orbital (R)
4th Lobule IX of cerebellar hemisphere (R) Fusiform gyrus (R) Middle temporal gyrus (R)
5th Precuneus (R) Anterior cingulate cortex, subgenual (L) Precuneus (R)
6th Superior frontal gyrus, medial (L) Supplementary motor area (L) Cuneus (L)
7th Fusiform gyrus (R) Middle cingulate & paracingulate gyri (R) Superior temporal gyrus (L)
8th Insula (R) Hippocampus (L) Insula (R)
9th Middle frontal gyrus (R) Middle cingulate & paracingulate gyri (L) Inferior frontal gyrus, opercular part (R)
10th Postcentral gyrus (L) Lobule VI of cerebellar hemisphere (R) Cuneus (R)
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Figure 2: Classification performance results compared with ML-/DL-based models. ∗ and ∗∗ indicate
the statistical significance by the Wilcoxon signed-rank test at p < 0.05 and p < 0.01, respectively.

3 Experimental Results

Dataset and Data Preprocessing We evaluated our method using the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset [8], which consists of 1,540 subjects. By conducting a series of
preprocessing [5, 4] and extra procedures (i.e., down-scaling and subject-wise normalization) on raw
3D MRI scans, we attained the preprocessed MRI scans, each with a dimensionality of 96×114×96.

Figure 3: Visualization of AD-
effect maps on various scenarios.

AD-Effect Map To quantitatively investigate the anatomical
variations in GM density, we estimated the AD-effect map,
which involves disease-induced regional localization (Fig. 3).
We observed that while some areas in which have related to the
AD progression (e.g., hippocampus and insula) were prominent
in AD-effect maps of all scenarios, scenario-specific areas were
evoked depending on the diverse levels of severity. As a result,
the number of AD-effect ROIs in each scenario (a), (b), and (c)
in Fig. 3 was composed of 56, 75, and 79 ROIs, respectively.
Furthermore, based on the classification performance in Fig. 2, we were convinced that our AD-effect
map reflected the most probable discriminative areas to classify the scenario-specific clinical stages.

Performance Evaluation We evaluated the effectiveness of our LiCoL utilizing the AD-effect
ROIs compared to ML-based models (i.e., RF and SVM) and DL-based models (i.e., ResNet18 [3]
and self-attention-based 3D ResAttNet [12]) in terms of four evaluation metrics: a receiver operating
characteristic curve (AUC), accuracy, sensitivity, and specificity. We observed that our method
achieved the highest performance over the AUC and accuracy in all classification scenarios as well as
baselines (Fig. 2). Most remarkably, our LiCoL derived considerable performance improvement in the
CN vs. MCI scenario, despite that this scenario was challenging to distinguish AD-affected regions
owing to subtle anatomical changes. Meanwhile, it should be noted that typical DL models are built on
layers of complex networks with non-linearity, yielding superior predictive performance but inevitably
sacrificing interpretability. In contrast, our LiCoL allowed outstanding classification performance
while intuitively interpreting the rationale of the model’s decision via a linear architecture (Fig. 1).

ADness Index We used the counterfactual-guided attention matrix A (described in Section 2) as
the quantitative region-wise ADness index to elucidate our LiCoL’s decision in any classification
scenario. As shown in Table 1, we illustrate the sorted top-10 AD-effect ROIs based on region-wise
ADness index (i.e., averaged attentive score) for all test samples in each scenario. According to this
result, we found that the insula and superior frontal gyrus have contributed to the prediction in all
scenarios. This implies the GM density of these regions was noticeably reduced by atrophic variations,
suggesting that their ROIs are vital biomarkers across the AD spectrum. One can further observe that
the hippocampus, fusiform gyrus, anterior cingulate cortex, and inferior frontal gyrus were influential
regions contributing to disease prediction in scenarios involving MCI and AD patients. Consequently,
based on these extended investigations, we argued that the ADness index enables us to interpret the
counterfactual-guided attentive representation concerning the subregional status of each subject’s
brain and to explain the output decision via the subregional ADness indices in a quantitative way.
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4 Conclusion

We introduced a novel quantitative feature-based in-depth analysis using counterfactual-guided deep
feature representation with enhancing AD predictive performance compared to ML-/DL-based models.
As a result, our method could be one of the milestones toward the comprehensible explanation of the
DL models’ decision from the clinician’s perspective on neurodegenerative disease prediction.
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Potential Negative Societal Impacts

In order to produce the counterfactual sample for the quantitative feature-based analysis in this study,
we exploited the counterfactual reasoning generator, which is built upon the generative adversarial
network (GAN). The GAN-based counterfactual reasoning model applied in the medical field has
the capacity to generate a realistic synthesized sample without the need to use sensitive information
over the patient while maintaining essential characteristics of the original sample. Even though the
development of GAN-based approaches unlocks the way to mitigate the scarcity of labeled data
in healthcare services as well as to investigate the status of patients before and after disease onset
(e.g., normal control or severe Alzheimer’s), it may pose a social ethics issue that accompanies
by potential risks. As an example, synthetic clinical data can be abused as a means to arbitrarily
manipulate clinical outcomes to gain formal approval in receiving access or financial support for
clinical-related scenarios. In other words, if such faulty medical applications are unexpectedly
authorized and commercialized, it might suggest that improper medical treatment could exacerbate
disease progression or have life-threatening fatal consequences. Therefore, it is necessary to take
technical and institutional responses thoroughly that register the strict regulation or judge the results
of a clinical trial.
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