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Abstract

Diffuse myocardial diseases can be diagnosed using T1 mapping technique based
on T1 relaxation times from MRI data. The T1 relaxation parameter is acquired
through pixel-wise fitting of the MRI signal. Hence, pixels misalignment resulted
by cardiac motion leads to an inaccurate T1-mapping. Therefore, registration is
needed. However, due to the intensity differences between the different time-points,
recent unsupervised deep-learning approaches based on minimizing the mean-
squared-error (MSE) between the images cannot be utilized directly. To overcome
this challenge, we propose a new double-stage method, in which a style-transfer is
used to harmonize the signal intensities over time, followed by an unsupervised
deep-learning based minimization of the MSE between the images. We evaluated
our approach on a publicly available cardiac T1 mapping database of 210 subjects.
Our approach achieved the best median model-fitting R2 compared to baseline
methods (0.9794, vs. 0.9651/0.9744/0.9756) and T1 values which are much closer
to the the expected myocardial T1 value. Furthermore, both metrics have less
variability compared to the other methods.

1 Introduction

T1 relaxation time is a key source of soft tissue contrast in MRI. Mapping of each pixel T1 relaxation
time, can depict relatively small variations within the cardiac muscle, highlight tissue pathology such
as acute myocardial infarction, chronic scar tissue, or detect fatty infiltration. (14)

Creating T1 mapping (Fig.1) requires a time series of aligned images in which each pixel describes
the same tissue across time. Nonetheless, during image acquisition there are inevitable cardiac
motion, respiratory motion and involuntary patient motion (15). Therefore there is a great need of
image registration before curve fitting (4). In recent years, additional to traditional and to machine
learning methods, deep learning-based methods have emerged (2). Usually, the standard metric
for deep learning registration, where the images for alignment differ in their appearance, is Mutual
Information (MI) (1; 5; 13; 16). Unfortunately, this metric is far behind within-contrast metrics such
as Normal Cross Correlation (NCC) and Mean Square Error (MSE) in terms of accuracy (6; 7).

To tackle the motion-related challenges involved in cardiac T1 mapping, we propose changing the
style of all the time series images to the same style using a style transformer approach (11). Then, we
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Figure 1: Schematic description of T1 mapping for a single pixel. (a) myocardial images at 11
sequential time points (displayed at their absolute value). (b) Fitting an inversion recovery curve
of the magnetization Mz over different time points t and extracting the corresponding T1 and M0

parameters. (c) Displaying T1 mapping for all the pixels in the image.

Figure 2: (a) Illustration of the training process. First, harmonization of the fixed and moving images
using the style network, and afterward, registration of the harmonized images using voxelmorph. (b)
Illustration of the inference time - First, harmonization of the fixed and moving images using the
style network, calculating the the deformation field for the harmonized pair images and applying it to
the original moving image.

propose using the harmonized images as input to the within-contrast registration network based on
MSE loss (2) that fits cases of images with similar contrast and intensity distributions.

2 Methods

Our proposed method consists of two sequential stages. The first stage is a preparation stage, adjusting
the color style of each image in the MRI sequence according to the first image color style using
StyleGAN architecture (9; 11). Once all the images consist of the same color style, the registration
can be learned using voxelmorph (2) based on the mean square error indices as the loss function. The
voxelmorph architecture is used for pairwise registration. Aligning a moving image IM to a fixed
image IF by yielding an optimized deformation field ϕ and a warped image IM ◦ ϕ.(2; 8).

During the network training, firstly, for each patient, every image in the N length sequence images
ItM , {t ∈ 1, · · ··, N} harmonized to the first time point image I0F as a reference style, using StyleGAN
as the style transfer network. Following, the voxelmorph network was trained on the harmonized
images, while for each patient, the moving image is one of ItM,stayled, {t ∈ 1, · · ··, N} and the
fixed image is I0F . The above training process is demonstrated in Fig.2(a). In inference time as
demonstrated in Fig.2(b), the deformation field is calculated according to the harmonized moving
image, but the yielded deformation field is applied on the original moving images.

In order to evaluate the proposed metric, a publicly available myocardial T1 mapping dataset was
used. (3) The dataset includes 210 patients with known or suspected cardiovascular diseases. For each
patient, 5 slices at 11 time points were available with their corresponding myocardial segmentation
map.

*Equal contribution
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2.1 Implementation details

The implementation was based on PyTorch and ran on NVIDIA Tesla V100 GPU with 32G RAM. The
style transfer network was trained for 100k iterations with λcycle = 100, λstyle = 20, λdivergence =
1, style dimension and batch size of 4. The registration network was trained for 50k iterations with
λsmooth = 0.003 and a batch size of 64. For both network, ADAM optimizer was used with a
learning rate of 1 · 10−4.

3 Results

In order to evaluate the effectiveness of our two-staged method, the results were compared with the
state of the art deep learning algorithms for medical image registration: pairwise VoxelMorph with
mutual information loss (2) and pairwise SynthMorph (6), as well as with non-registered images. The
four methods were evaluated comparing the pixels R2 and T1 value. The mean and median values
are presented in Table.1 and their values distribution is presented in Fig.3.

T1 value is vary according to the magnetic field, the imaging protocol, gender and the specific
cardiovascular disease. (10; 12). Moreover, according to the imaging protocol, the images are
relatively aligned with no significant movements during time. Therefore, it is reasonable to deduce
that the original images estimated median T1 value is closer to the actual median value. For the
VoxelMorph algorithm, although the mean R2 was higher than the non-registered images, the median
R2 was lower, indicates an higher variation in the estimated T1 results. The proposed method
and the SynthMorph, both, have reasonably close T1 value and high R2 value with less variability.
Nonetheless, for both criteria, our proposed method is slightly better.

Figure 3: 2D boxplot comparing R2 and T1 value for different registration methods. (left) zoom
out, (right) zoom in to the interquartile interval. Our StyleReg method achieves the highest median
R2 value while keeping the T1 around the median of the original T1 values. The full circles are the
intersection between T1 and R2 medians.

Table 1: Evaluation of the four algorithms according to R2 and T1 mean and median results.

meanR2 ± std medianR2 meanT1 ± std[ms] medianT1[ms]
Original 0.9267± 0.1136 0.9756 1155.6256± 244.6994 1131.5202
SynthMorph 0.9416± 0.0932 0.9744 1130.248± 223.1061 1110.2073
VoxelMorph 0.9443± 0.0722 0.9651 964.8632± 195.3005 976.1892
StyleReg 0.9436± 0.0919 0.9794 1154.3392± 210.2422 1136.8539

4 Conclusion

Varying appearance over the different time points, impose challenging registration task. In this work
We propose a two-step method based on style transfer as preprocessing harmonization step before
registration. Our approach benefits the within-contrast registration while we solve a cross-contrast
problem. Our experimental results on a publicly available cardiac T1 mapping of 210 patients show
that our process improves regressions R2 and the accuracy of the T1 values, which are much closer to
the myocardial expected T1 values compared to state-of-the-art methods. Our method was trained
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on myocardial T1w images but can extend to other quantitative MRI tasks, which includes different
contrasts images registration.
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