
Towards Geometry-Aware Cell Segmentation in
Microscopy Images

Zhexu Jin
Division of Natural and Applied Sciences

Duke Kunshan University
Jiangsu, China

zhexu.jin@duke.edu

Gaoyang Li
School of Life Sciences and Technology

Tongji University
Shanghai, China

lgyzngc@tongji.edu.cn

Huanshen Cao
Division of Natural and Applied Sciences

Duke Kunshan University
Jiangsu, China

hc284@duke.edu

Dongmian Zou
Division of Natural and Applied Sciences

Duke Kunshan University
Jiangsu, China

dongmian.zou@duke.edu

Abstract

We present a new approach to distance based cell instance segmentation. Specifi-
cally, we design a new loss that more faithfully matches the shapes in segmentation
geometry based on computational topology. This loss takes advantage of regularity
of the distance maps that require learning. We test our approach using microscopy
images consisting of many tissue types in human cells. The results indicate that the
new formulation consistently improves the segmentation performance of commonly
used network architectures, and the best result advances state-of-the-art.

1 Introduction

Cell segmentation is a long-standing task now taken to a higher level by deep learning. Identifying
cell and cell nucleus boundaries is critical to a suite of biological and medical applications such
as development, disease diagnosis, and structural and functional relationships [7]. In particular, an
accurate description of the geometry of a cell and its nucleus, rather than location of the cell instance,
is important for analyzing cell morphology [18, 15, 4].

Recently, many deep learning methods for cell segmentation have been developed. One dominating
type of deep learning approach is distance-based, due to the special geometrical construction of cells
compared to other instance segmentation tasks [23, 20, 9, 7]. Such approach has two stages, as shown
in Figure 1. First, a distance transformed map is created from each cell segmentation instance, which
is used for supervised training of a neural network. Then, the trained network is applied to each
unlabeled cell microscopy image and predicts the distance transformed map, with which a watershed
algorithm is used to obtain an instance segmentation for each cell.

However, the aforementioned approaches have ignored the regularity of the transformed inner-distance
since the network may be unaware of the geometry of cells and produce irregular and noisy output
during inference. In particular, some perturbations in the distance transformed map may lead to high
regression loss, while harmless to watershed procedure. However, some other perturbation may be
detrimental to watershed procedure, while producing small regression loss. This is problematic during
post-processing, since the watershed segmentation cannot produce stable instance segmentation under
a noisy distance map. To address this issue, we leverage the crucial geometric information and
propose a geometry-aware loss function for cell segmentation.
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Figure 1: Pipeline for commonly used distance cell segmentation approach.

2 Methodology

Transformer for Medical Image Segmentation Transformers have outperformed many other
architectures on various image tasks, including instance and semantic segmentation [5, 12, 11]. A
Fourier decomposition of the learned feature space by multi-headed self-attention layer [16] has
shown that multi-headed self-attention facilitates the network to learn low-frequency features. Thus,
models equipped with multi-headed self-attention layers are more robust to high-frequency noise. The
denoising characteristic of multi-headed self-attention layers has made the transformer architecture
variants more suitable for segmentation tasks in medical imaging than traditional convolutional
networks. For example, [17] used a transformer for yeast cell instance segmentation, which achieved
competitive results. Many other works also used transformers for blood vessel and other image data
with tubular structure [19, 14]. In this work, we primarily use a Unet with transformer blocks in each
stage. We consider two different backbone ResNext [22] and the Swin transformer [3].

Geometrically Aware Loss To alleviate the effect of choosing a distance threshold for a watershed
boundary, we enforce the network to learn the geometrical shape of the cell by adding a regularization
term to the mean squared error (MSE) loss function of the Unet. The resulting geometry-aware loss is

L(D, “D) = MSE(D, “D) + λ
∑
i,j

1
(Di,j−τ)(“Di,j−τ)≤0

.

Here, D denotes the ground-truth distance transformed matrix and “D denotes the predicted distance
transformed matrix. The indices i, j indicate pixel locations. 1 is the indicator function which
equals 1 if the condition holds and 0 otherwise. τ matches the masking threshold used during
post-processing the distance transformed mask where we run the watershed algorithm. λ is the
regularization parameter. This regularization enforces the net to rely on the mask threshold.

From the viewpoint of persistent homology, the regularization term can be considered as a metric
on the 0-dimensional homology group H0 in the first step of simplex filtration [6]. Here H0 is
characterized by Betti number 0, β0. Since Betti numbers βi can be understood as the number of
i-dimensional holes in a simplicial complex, β0 in our case can be intuitively understood as the
number of connected components. Thus, our loss characterizes the number of connected components
at the beginning of simplex filtration. The idea of persistence homology is to track the change of
the topological features in the simplicial component evolves over time. The theoretical background
in algebraic topology has made persistent homology useful in segmentation applications [1, 10, 8].
However, no extension has been made to instance segmentation or microscopy image data with a
cellular structure. In our case, since persistent homology is stable with small perturbation in the
simplicial complex, we believe it is particularly helpful for the noisy images. Our work presents the
first attempt at incorporating the idea into cell instance segmentation.

We use an example to demonstrate the effectiveness of our proposed loss in Figure 2. Notice that
for the two cells highlighted in red bounding boxes, the SwinUnet model trained with geometric
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Figure 2: Example of the segmentation results on the same testing image with our proposed geometric
loss and without the geometric loss. Left: the ground truth segmentation; Center and Right: the
inner-distance produced by SwinUnet trained without and with geometry-aware loss, respectively.

loss successfully differentiates the two cell nuclei that have been merged together. Clearly, with the
geometric loss, the network can better differentiate boundaries between different cell instances.

3 Results and Discussion

Dataset We consider the publicly available annotated human tissue microscopy image dataset
TissueNet [7]. The dataset contains 2580 training microscopy images of 512 by 512 resolution, 1324
validation images and 3118 testing images both of 256 by 256 pixel resolution. The dataset represents
6 different human tissue types: immune, pancreas, gi, lung, breast and skin. To generate the training
set, a random crop and random flip are performed on the original 512 by 512 resolution image to
obtain the 256 by 256 resolution image.

Implementation Details We evaluate two segmentation architectures: Unet++[24] with ResNext[22]
and the SwinUnet [3] as segmentation backbone. The SwinUnet is composed of 4 encoder blocks
and 4 decoder blocks with a window size of 8. The network is trained using the AdamW [13]
optimizer on two different loss formulations with a batch size of 32 and a learning rate of 0.001 for
250 epochs. Both architectures include the plain version and the geometric loss version. We also
include the original Mesmer [7], which is considered the state-of-the-art. For post-processing, we use
the watershed algorithm publicly available in scikit-image [21].

Results We present our quantitative results in Table 1, which shows both the mean intersection over
union (IoU) and F1-score for the segmentation. The F1-scores are calculated where the true positive
is defined by a 0.5 IoU threshold. The results reveal that both network models are improved with
our proposed loss. In particular, the geometric loss with the SwinUnet backbone performs the best
among all methods, excelling the Mesmer baseline. The results demonstrate that networks trained
with our proposed loss more faithfully represents the ground-truth shape of the cell nuclei.

Table 1: Results for Methods with and without Geometry-Aware Losses

Precision Recall F1-score Average IoU

Mesmer [7] 0.8117 0.6685 0.7332 0.8460

Plain Resnext-Unet++ 0.7975 0.6394 0.7098 0.7406
Resnext-Unet++ & Geometric Loss 0.8069 0.6895 0.7259 0.7484

Plain SwinUnet 0.8674 0.8513 0.8592 0.8835
SwinUnet & Geometric Loss 0.8748 0.8594 0.8670 0.9030
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Discussion Our results show the effectiveness of using geometric information in devising a segmen-
tation algorithm. For future work, we will fully leverage the idea of persistent homology, and provide
more theoretical work and experimentation. Diverse datasets will be used to exploit the full potential
of prior geometry information for cell segmentation.

One potential problem, when we use the theory of Persistence Homology to design the loss function
for segmentation, is the instability of generators [2]. Specifically, distances based on the topological
features are agnostic to the exact locations in the image with which the topological features are
associated. Given that there are many cell instances in each cell microscopy image, the loss maybe
unaware when the detected topological feature is out of place. In future work, we intend to address
this problem by fusing the positional patterns into the distances between topological features.
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Potential Negative Societal Impact

We believe that a segmentation algorithm that correctly characterizes the geometric shape of cell
nuclei would support medical research in the long run. One potential negative impact is that supervised
learning methods depend on human labeling of the dataset, which may contain mistakes and harmful
for medical uses. Nevertheless, this is not a direct impact coming from our work. Robust frameworks
or data cleaning will help alleviate this problem.
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