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Abstract

Applications of deep learning solutions, which are usually trained with large amount
of dataset, in controlling the spread of Coronavirus Disease 2019 (COVID-19)
have shown promising results. Motivated by the lack of large number of well-
annotated dataset during the onset of a novel disease, we present a high-performing,
interpretable few-shot learning network that detects positive COVID-19 cases with
limited examples of ultrasound images. Extensive experiments are conducted
to evaluate model performance under different encoder architectures, number of
training shots and classification problem complexity. When trained with only
5-shots, network classifies between positive and negative COVID-19 cases with
99.3% overall accuracy, 99.5% recall and 99.25% precision for positive cases.
Network explainability is evaluated with two visual explanation tools and reviewed
by a practicing clinician to ensure validity of network’s decision-making process.

1 Introduction

The adoption of rapid and effective screening methods to prevent further spread of the COVID-19
and lessen the burden on healthcare providers continues to be a necessity. Among all imaging
modalities, point-of-care ultrasound (POCUS) imaging is the most accessible and least expensive,
and it allows radiologists to identify symptoms and assess severity through visual inspection of the
chest ultrasound images [1]. Applications of deep learning in medical image analysis have also shown
promising results lately, suggesting that artificial intelligence (Al)-based solutions can accelerate the
diagnosis of COVID-19. Multiple works have demonstrated the effectiveness of deep learning in the
classification of the computed tomography (CT) scans and X-ray images [2; 3; 45 15]], showing above
97% precision/recall in detecting COVID-19 positive cases. However, deep learning requires a large
set of training examples [3; 65 [7].

Due to the nature of novel diseases, the availability of such a huge amount of well-annotated data
poses a great challenge. Motivated by this, we present an explainable deep prototypical network
that learns to detect COVID-19 positive cases with high precision and recall from a very limited
number of lung ultrasound (LUS) images. Our contribution is at least two folds: (1) when trained
with only 5 shots, the network classifies between positive and negative COVID-19 cases with 99.3%
overall accuracy, 99.5% recall and 99.25% precision for COVID-19 positive cases; (2) to ensure
fairness and accountability, the network benefits from an explainability module, assessing decisions
with visual explanation tools, i.e., Grad-CAM [8] and GSInquire [9]. Intensive experimentation was
conducted (e.g., different image encoders, varying training shots and number of classes) to assess the
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Figure 1: a) Network design. b) Example network performance with increasing shots

performance of the network. Moreover, our contributing clinician carefully verified and validated
the pipeline and produced results to ensure the validity of the proposed solution from the clinical
perspective.

2 Data and Methods

The COVIDx-US|dataset v1.4. [10] is used for this study. The dataset contains 242 videos and 29,651
processed LUS images of patients with COVID-19 infection, non-COVID-19 infection, other lung
conditions, and normal control cases. COVIDx-US provides images captured with two kinds of probe,
linear probe which produces a square/rectangular image, or convex probe which has a wider field of
view [L1]. Due to the difference in field of view and low numbers of COVID-19 positive images with
linear probe, linear probe data are excluded to reduce noise for the network. A total number of 25,262
convex LUS images are then randomly split into train set containing 90% of images in each class
and test set with the remaining 10% of images. All images are rescaled to 224 x 224 pixels. The
dataset is further augmented by rotating each image by 90°, 180°, 270°, resulting in a total of 101,048
images (25,262*4). Image rotation is an appropriate augmentation technique for our problem, as it
keeps the images and areas of interest for clinical decisions unaltered and in-bound [12].

Few-shot learning is an approach where the model learns from a limited number of observations [13]].
As a metric learning few-shot model, a prototypical network expects that there exists an embedding
space in which points cluster around a single prototype representation for each class, and unlabelled
data can be classified based on closeness to the class prototypes [13]. We define the problem as a
K-way N-shot classification task, where K denotes the number of different classes and /N denotes
the number of examples presented for each class in the dataset. The few-shot classification with a
prototypical network can be summarized into three steps: (1) encoding of the images in a query set of
M unlabelled images and a support set of N labelled images, (2) generating class prototypes from
support sets, and (3) assigning labels to query samples based on the distance to the class prototypes.
Figure [I]shows the network architecture and sample performance results. During the training phase,
a convolutional neural network encoder is trained to transform images to an embedding space and
learn the non-linear mapping. Class prototypes are then computed as the mean of its support set
vectors. The squared Euclidean distances between class prototypes to a query point are computed,
and the SoftMax function is applied over distances to the prototypes to compute the probabilities
of the query image being in each class. The network learns by minimizing the loss term, i.e., the
negative log-SoftMax function. An episodic approach is used to train the network, where in each
training episode, the few-shot task is simulated by sampling the data point in mini-batches.

To facilitate effective training process and prevent over-fitting, early stopping is implemented to
stop the training process when loss term is not improved after 5 epochs. A total of 10 epochs is
set for all training processes and 200 episodes is set for each training epoch. The performance of
the network is evaluated using the overall accuracy, and the precision and recall for the COVID-19
class. To comprehensively assess the performance of the proposed network in detecting COVID-19
positive cases from ultrasound images, we evaluated the impact of various training conditions such
as (1) image encoders, (2) number of shots available for training, and (3) classification task types
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Experiment Description
Parameters
Models | 1 Pre-trained ResNet 18 with ImageNet, with trainable parameters on the last 4
convolutional layers and final connected layer
2 Pre-trained ResNet 50 with ImageNet, with trainable parameters on the last 3
convolutional layers and final layer Seshot 100-shot
Training Shots 5, 10, 20, 30, 40, 50, 75, 100, 150, 200 i
Classification  2-way Data from all 3 other classes, namely 'normal’ class, 'non-COVID-19' class
Formulation and 'other’ class, are viewed as a combined COVID-19 negative class. The

Model  Accuracy Precision  Recall Accuracy Precision Recall

Type
2 classes 1 0993 09925 0995 1 1
2 09965 09967 0997 09999 09999
1 09987 09992 0997 1 1
209947 09942  0.99% 1 1
109817 09975 0997  0.9884 1
2 0985 09917 0993 09902 1

network learns to differentiate COVID-19 positive and negative cases.
3-way The ‘other’ class is excluded, as it contains data from multiple lung
conditions which results in high in-class variations and may disrupt
network’s learning process due to the lack of uniformity in the data.
4-way The network remains the original dataset setting, and network is trained to 4 classes
classify 'COVID-19', 'normal', 'non-COVID-19" and 'other’ class.

3 classes
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Figure 2: a) Experiment parameters description. b) Classification results for 5-shot and 100-shot
conditions.

with increasing class numbers indicates increasing problem complexity. Parameters are described in
Fighl]

3 Experiments and Results

Across all classification types and models, performance metrics increases from 5-shot and plateaus
after 75-shot (ex. Figl[Ip). ResNet networks [14] demonstrate the ability to classify COVID-19
with precision and recall above 98% consistently under both 5-shot and above 99% under 100-shot
condition (Fig[Zb). The increasing classes in 3-way and 4-way classification types reduces the
performance of the network as problem complexity increases, but it is compensated as the number of
shots increases, since more training examples improves class prototypes’ representativeness. Deeper
model (i.e., model 2 with ResNet50 as encoder) with re-trained final convolutional layers parameters
perform the best in all classification types and shot conditions. Moreover, the ’COVID-19 infection’
class is classified with the highest precision and recall among all classes, with normal’ and ’non-
COVID-19 infection’ precision and recall being 2-3% lower and the ’other’ class having the lowest
precision and recall. This is expected since the *other’ class covers various lung conditions.

In order to clinically validate the network output and ensure that it captures clinically relevant patterns
in the ultrasound images, our contributing clinician reviewed a randomly selected set of images.
Fig[3| presents two Grad-CAM and GSInquire annotated COVID-19 ultrasound example images,
enclosing two most common patterns deemed as critical for the final classification decision made
by the network. Grad-CAM generates a visual explanation of the input image using the gradient
information flowing into the last convolutional layer of the encoder, assigns importance values to
each neuron for making a classification decision and outputs a heatmap-overlayed image showing
regions that strongly impact the network decision [8]]. The other tool GSInquire identifies the critical
factors in an input image that are shown to be integral to the decisions made by the network in a
generative synthesis approach [9]. As seen, the annotated images identified (1) the lung pleura region
at the top (Fig[3[1)), and (2) the bottom region (Fig[3(2)) to have high importance. Clinically, B-lines,
or the light comet-tail artifacts extending from pleura to the bottom of the image corresponds to signs
of lung consolidation and are indicators of abnormality [15]. Hence, the visual annotations for Fig[3p
more closely represent disease-related patterns within the ultrasound image. While the pleura regions
at the top of the images are not entirely irrelevant features, the model might have mistaken these dark
regions as signs of consolidation. To improve model explainability, we experimented with removing
the pleura region of the images by cropping so that network focuses on the disease-defining features
at mostly the bottom of the images, and the strategy demonstrates initial improvements in annotations
from both explainability tools.

4 Conclusion and Limitations

In this work we propose a deep prototypical network, tailored to detect COVID-19 infection with high
accuracy from very few ultrasound images. The proposed network leverages fine-tuned pretrained
models to achieve high classification performance when only 5 examples from each class are available
for training. Accuracy, precision and recall for the best performing network are over 99%, which

"Due to limit in space, not all encoder types are presented in this abstract and tables are kept in figure format.
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Figure 3: Two COVID-19 positive case examples correctly classified by the network with high
confidence, a) original images, b) Grad-CAM annotated images and c) GSInquire annotated images.

are comparable or outperforming other existing work [7; [16]. For example, the work MetaCOVID
[[L7] which also applied a few-shot approach for ultrasound COVID-19 detection, achieved 95.6%
accuracy under 3-way, 10-shot setting. Predictive behaviour of our network is also consistent with
clinical interpretation, as validated by our contributing clinician.

Several research directions can be explored to further improve the network. First, image augmentation
and preparation techniques can be experimented to include linear probe data (which are excluded in
this study) and increase the data size. Second, in this work, we experimented with simple cropping to
remove the pleura region of the images. A more procedural image segmentation step could be added
to include only clinically relevant areas of the images for network construction to further improve
network explainability. Lastly, we used a public dataset (i.e., COVIDx-US) that includes data of
various sources and quality.

5 Potential Societal Impact

We used the COVIDx-US public dataset for this study. As a potential societal impact, the proposed
network and the published model could be used by healthcare providers to augment their decision
and facilitate patients’ screening, especially during initial onset of new diseases/pandemics where
not many data is available. Based on our intensive experiments, although the evaluation results look
promising, the model is not yet a production-ready solution and could be only considered as an
Al-enabled tool to assist professional medical practitioners and not to replace them. Moreover, the
network should also be tested on (at least) another external dataset to ensure network decisions are
unbiased.
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