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Abstract

We here summarise and discuss our published work on semantic segmentation of
3D neonatal brain MRI with deep networks. In addition to developing an accurate,
end-to-end segmentation pipeline specifically designed for neonatal brain MRI, we
investigated two approaches that can help alleviate the problem of label scarcity
often faced in neonatal imaging. First, we examined different strategies of distribut-
ing a limited budget of annotated 2D slices over 3D whole-brain images. In the
second approach, we compared the segmentation performance of pre-trained mod-
els with different strategies of fine-tuning on a small subset of preterm infants. We
illustrated our findings using publicly available MRI scans obtained retrospectively
from the Developing Human Connectome Project (ages at scan: 26-45 weeks).

1 Introduction

Initiatives such as the Developing Human Connectome Project (dHCP) [1]] and the Baby Connectome
Project [2] aim to develop a blueprint of the developing human brain with Magnetic Resonance
Imaging (MRI) techniques. Mapping out neonatal brain development could accelerate the detection
of cerebral palsy, autism, hypoxic ischemic encephalopathy and congenital deformations, which are
thought to originate during the perinatal period of human development [[1]], [3]. Accurate structural
processing of MRI data, particularly semantic segmentation, is an important step towards delivering
a precise connectome of the developing brain. Yet, despite advances in deep learning, obtaining
sufficient ground truth labels for data-driven methods can be expensive, cumbersome, and time-
consuming. With neonatal brain MRI, there are also unique complications associated with this type
of data (see [4}5,16]); one example is that the scans are oftentimes heterogeneous in morphology and
texture, which is caused by the rapid brain development taking place over narrow time-scales [4].

In our recently published paper [7], we made three novel contributions to the specific area of neonatal
brain MRI segmentation: i) We developed a fully automated, deep learning pipeline for segmenting
highly complex 3D neonatal brain MRI that achieves high segmentation performance on subjects of
a wide age range; ii) We studied different strategies for dealing with insufficient labels in neonatal
brain MRI, by framing the problem as having a limited budget of labels that would be distributed
over a training set, e.g., ‘what is the best way to distribute a constrained budget of 2D labels over 3D
data?’ iii) Finally, we examined the extent to which transfer learning can alleviate the problem of
label scarcity in the context of neonatal imaging.

2 Materials and Methods

Dataset: We used publicly available data provided by the Developing Human Connectome Project
(dHCP) consortium. The most recent, publicy available Third Data Release includes 783 neonatal
MRI scans. For the purpose of this research, T1- and T2-weighted 3D scans, as well as minimal
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meta data were used. We utilised labels that were generated by the dHCP consortium using an
automated software pipeline (not deep learning-based, see [1]]), and are publicly available as part of
the aforementioned data release. The labels represented the following classes: Cerebrospinal Fluid
(CSF), Cortical Grey Matter (cGM), White Matter (WM), Ventricles, Cerebellum, Deep Grey Matter
(dGM), Brainstem (BS), Hippocampus, as well as inner and outer background classes [8]]. When
developing the deep learning pipeline, we selected an age-representative subset consisting of 20% of
the complete data, resulting in 142 samples. We further divided the 142 samples into 114 training and
28 validation samples, and used an independent test set of 100 separate samples.

Pipeline Design: U-Net [9] was a natural starting point in terms of architecture, given the excellent
performance demonstrated on variety of tasks [10, [11, [12]. We cropped training and validation
images to non-zero value regions using a bounding box in order to increase information density and
save computation power. We cropped the images into patches and we introduced a range of spatial
and intensity-based transformations using random spatial cropping, 3D elastic deformation, flipping,
Gaussian noising and smoothing, as well as intensity scaling and shifting.

We introduced three key modifications to the U-Net architecture: i) Kernels and strides were modified
for 3D data; ii) Residual connections were used within the convolution blocks; iii) Deep supervision
was utilised as per [13]]. We computed the loss not only from the final output of the network and the
ground truth label, but by taking outputs from deeper layers with a lower resolution into account as
well. The model compared the outputs from deeper layers with downsampled versions of the ground
truth segmentations. The number of deeper U-Net layers used is a hyperparameter of the network
architecture; however, we did not add undersampled output near the bottleneck layer [12]]. Following
[L1], we implemented a combined loss of Dice Loss and Cross Entropy (CE) Loss:

‘Ctotal = EDice + £CE (1)

The Dice Loss, which is derived from Dice Similarity Coefficient (DSC), was computed as per [11]:
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For each voxel i of the image, a softmax output vector u; € R¥ was assumed, with K = # classes.
During training, we used stochastic gradient descent with an initial learning rate of 1e — 2, a Nesterov
momentum of 0.99 and weight decay, and a scheduler which decays the learning rate via the scheme

(1 — epoch / epoch,,. ).
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Incorrect segmentations from the low-resolution outputs of deeper layers were assigned lower weights
than final segmentation maps [12], i.e.:

£total = Wfinal * Efinal +w_y1- £,1 +w_2- £72 + ... (3)

where w_1 is the weight given to the loss based on the penultimate layer of the U-Net, w_s is the
weight given to the loss based on the layer before that, etc.

Moreover, we extended the pipeline aiming to perform age prediction and semantic segmentation
simultaneously (AgeU-Net) as subject age has been shown to be an important source of variance in
neonatal brain MRI and a reason for the particular difficulty of neonatal brain segmentation [14]].

Label Budgeting Experiments: The lack of sufficient ground truth labels is frequently mentioned in
the medical imaging literature, including in relation to neonatal data, e.g., [15} 116} 8} 14} 3], amongst
others. Since manual labeling of scans by experts is directly constrained by time and financial costs,
one can reframe the problem as having a certain limited budget of labels that ought to be efficiently
allocated. This label budget may contain, for example, a maximum number of 2D slices that ought
to be annotated on a certain modality and along a certain axis. Hence, in addition to developing
the pipeline, we investigated empirically how this budget can be allocated as efficiently as possible,
i.e., ‘which allocation strategy would lead to the best performance?’. We defined the baseline ideal
condition as the labeling of all slices in the 3D brain scans.

Transfer Learning Experiments: Transfer learning can overcome the absence of sufficient labels.
Inspired by [[16}[17]], we investigated six strategies to adapt a baseline model pre-trained on a source



dataset of older infant brains to the task of segmenting preterm infant brain MRI. These strategies
differed in the degree to which they incorporated preterm training data; full details can be found in
our published paper [7]].

3 Results

The results obtained with the segmentation pipeline are summarised in Table[I] The table shows
mean DSCs averaged over 4 runs for the 10 classes (including the two background classes), as well
as mean DSCs that only take into account the 8 physiological classes. The highest DSC obtained on
the test set was 0.913 averaged over all classes, and 0.920 averaged over the physiologically relevant
tissue classes. Table 2] further breaks down these results per specific tissue classes.

Validation Set Test Set
Mean DSC Mean DSC (no BG) Mean DSC Mean DSC (no BG)
Mean DSC | 0.934 +4e—4 0.943 +4e—4 0.913 £3e—3 0.917 £3e—3
Table 1: Mean DSC values averaged over 4 runs, computed on both the validation and held-out test
sets. Note that the two background classes were not taken into account in Mean Dice (no BG) [[1].

CSF | cGM | WM | Ventr. | Cereb. | dGM | BS Hippoc.
Validation DSC | 0.925 | 0.943 | 0.961 | 0.907 | 0.950 | 0.960 | 0.961 | 0.903
Test DSC 0.919 | 0.926 | 0.932 | 0.903 | 0.895 | 0.940 | 0.940 | 0.877
Table 2: DSC values for the 8 physiologically relevant tissue classes, averaged over 4 runs [[/].

With regards to the label budgeting experiments, we investigated four strategies of distributing a
limited number of labelled 2D slices over 3D training data; sagittal, coronal, axial, and random. In
each condition, the proportion of selected 2D slices per 3D brain was 33%, i.e., two thirds of the
slices along the respective axis were hidden during training (60 epochs). To enable a fair comparison,
we made sure that the number of data units in the training set was tripled compared to the first set
of experiments. The results of the 4 runs, as well as of the baseline model after 20 epochs, are
summarised in Table 3]

Validation Set Test Set
Mean DSC | Mean DSC (no BG) | Mean DSC | Mean DSC (no BG)
Random 0.913 0.913 0.910 0.914
Sagittal 0.912 0.912 0.900 0.907
Coronal 0911 0.910 0.913 0.917
Axial 0.913 0.912 0.905 0.908
Full (20 epochs) 0.908 0.909 0.852 0.849

Table 3: Mean DSC values obtained with the 4 budgeting conditions. The values obtained with the
baseline model, which was trained on fully annotated brain scans, are summarised in the last row [7].

Lastly, when comparing different transfer learning strategies, we observed that including more
parameters during training (i.e., deeper fine-tuning) ultimately yielded better performance. Fine-
tuning only the bottleneck and adjacent layer was clearly sub-optimal, but the performance did not
reflect linear dependence on the number of parameters included during training. To illustrate, the
difference between the shallow and medium fine-tuning strategies was primarily the addition of two
blocks, while with the deep fine-tuning strategy, four new blocks were included during training. In
spite of this, the improvement observed between the medium and shallow conditions was higher than
that between deep and medium conditions.

To summarise, there is a need within the neonatal neuroimaging community for accurate and auto-
mated computational tools for the segmentation of MRI scans, but the complexity of data impedes
the use of deep learning and data-driven techniques. Despite this, we developed a highly accurate,
end-to-end deep learning pipeline for segmenting 3D neonatal brain MRI of a wide age range. Addi-
tionally, we studied the efficacy of different label budgeting strategies for dealing with the ground
truth bottleneck in the context of neonatal MRI. Finally, we investigated the extent to which different
transfer learning strategies can alleviate the label scarcity bottleneck in neonatal imaging.



4 Broader Impact

The data used in this research is fully anonymised and publicly available from the dHCP consortium
as part of the Third Data Release, there were therefore no risks of leaking patients’ identifiable
information. The problem of label scarcity that is often encountered in medical imaging is intensified
with neonatal neuroimaging data, mainly due to low signal-to-noise ratio, low contrast-to-noise ratio,
high occurrence of motion artifacts, as well as inverted signals; addressing the ground truth bottleneck
is therefore essential for deep learning to find its way in neonatal neuroimage segmentation tasks.
Developing a robust pipeline for neonatal neuroimaging data based on deep networks would usually
require large amounts of labels to be annotated manually by experienced annotators. We avoided
this by making use of structural segmentation maps that were generated by the JHCP initiative using
an automated structural pipeline (not deep learning-based), and are publicly available as part of
the aforementioned data release. We also used these labels in the budgeting and transfer learning
experiments. Note that the dHCP structural data and segmentations had undergone a quality assurance
process detailed in their release notes, which reported small regions of common inaccuracies; however,
we did not manually refine the labels used in this research. The work discussed here presents a
proof-of-concept and is based on retrospective data; translating this research for clincial adoption
would require ethical and regulatory approvals, as well as large-scale prospective trials. To aid
reproducibility, all the software we developed was made publicly available on Github[ﬂ
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